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Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition
where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress con-
ditions, identification of the responsible genes is required. Clustering is a datamining technique used to group the
geneswith similar expression. The genes of a cluster show similar expression and function.We applied clustering
algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum
under salt stress. The clusters, which were common inmultiple algorithms were taken further for analysis. Prin-
cipal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their
clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved
in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the
function of co-expressed genes.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Heat, cold, drought and salinity are common abiotic stress
conditions for the plants. These stresses affect both plant growth and
production [1]. Salt stress presents an increasing threat to agriculture
due to its effect on plant growth [2]. Reduced availability of water,
increased respiration rate, altered mineral distribution, membrane
instability, failure in the maintenance of turgor pressure are some of
the events that prevails during salt stress [3]. The response of plants to
salinity consists of numerous processes that function in coordination
to reduce the cellular hyper-osmolarity and ion disequilibrium [4]. It is
important to analyze the function of stress-inducible genes not only to
understand the molecular mechanisms of stress tolerance but also to
improve the stress tolerance of crops by gene manipulation. Gene ex-
pression analysis or expression profiling refers to the study of response
of an organism against environmental changes [5]. The expression
profiles of thousands of genes results from microarray technology, a
preferred method to identify genes involved in abiotic stress responses
[6,7]. In addition, analysis of relationship between genes, their functions
and classification is also required. Because of the large number of genes
and the complexity of biological networks, clustering algorithms are
found to be useful exploratory technique for the analysis of gene expres-
sion data [8]. To make some meaningful biological inference from
a).
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large number of genes or samples, they are required to be clustered
together to obtain co-expressed genes. The co-expressed genes
may have similarity in their expression levels. Cluster analysis is
one of the primary statistical tool for data analysis [9,10]. The clus-
tering algorithms have been proven useful for identifying biological-
ly relevant groups of genes or samples and can be applied for gene
function discovery process. Clustering algorithms can be classified
mainly as unsupervised like Hierarchical clustering (HCL) [11],
K-means clustering (KMC) [12], Principal Component Analysis
(PCA) [13] and Self Organizing Map (SOM) [14] or supervised like
Support Vector Machine (SVM) [15]. These clustering techniques
are based on the hypothesis that the genes in a cluster might share
common function and regulatory elements [16]. The cluster analysis
routinely run as a first step of data analysis and separates a set of ob-
jects into several subsets based on their similarity [17,18]. None of
the clustering algorithms available provides evidence to support
that clustering of genes having similar expression patterns is more
likely to have similar biological function [19]. The genes with similar
expression profiles are said to be co-expressed genes [20]. Co-
expressed genes may help in revealing useful biological information
as they are functionally related [11,21]. Hence, grouping of genes
with similar expression levels can reveal the function of those
genes, which were previously uncharacterized. To find out the utility
of clustering techniques, the gene expression profiles of the genes of
Solanum tuberosum showing differential expression under salt stress
at six different time points in Capsicum annuum were retrieved and
analyzed. The clusters, obtained from different algorithms showed
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 2. Heatmap of clustered genes showing five clusters. The hierarchical clustering of the gen
respectively. The range of expression values is−0.3 to 0.3. The genes are represented in form

Fig. 1. Eigenvalue plot of the principal components. The six principal components (PC)
represent six samples of the gene expression data. The PC containing large eigenvalue
represents high variability among its genes.
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common patterns of genes having similarity in their expression and
function.

2. Materials and methods

2.1. Retrieval of gene expression data

The normalized gene expression data of S. tuberosum showing differ-
ential expression in Capsicum annuum were retrieved. As per
experimented details provided in GEO database, the ESTs of
S. tuberosum were used as spotted PCR amplified cDNA array. After the
application of 150 mM NaCl at different time periods in C. annuum, the
leaf tissue samples were collected including control plants. The RNA
from these tissues were isolated and hybridized with cDNA arrays. The
genes, showing response under salt stress at six different time points
were considered as six samples andwere downloaded fromGeneExpres-
sion Omnibus (GEO) database at NCBI (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE8158) [22]. The sample ids were
GSM201905, GSM201906, GSM201907, GSM2019058, GSM201909 and
GSM201910 (Supplementary Table 1). The filtering of dataset was done
in order to obtain highly expressed and significant genes.

2.2. Clustering of genes

Clustering of the genes having similar expression profile was done
using the clustering tool, Genesis 1.7.6 [20]. The genes expression data
es is represented in heatmap. The red and green color shows the up and down expression
of their accession number followed by their function.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=SE8158
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=SE8158


Fig. 4. Expression views of K-means clustering. The clusters resulted from K-means clustering are shown. The number of genes lying in each cluster is mentioned. Multiple black lines
represent each gene showing its expression values. In each cluster, the pink line represents the mean of expression values of all the genes.

Fig. 3. Expression views of hierarchical clustering. The clusters resulted fromhierarchical clustering are shown. The number of genes lying in each cluster ismentioned.Multiple black lines
represent each gene showing its expression values. In each cluster, the pink line represents the mean of expression values of all the genes.
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was imported in the form of a text file. Different algorithms like, hierar-
chical clustering, k-means clustering, principal component analysis and
self-organized map algorithms were applied for clustering of the gene
expression data. The number of runs for each clustering algorithms
were minimum 1000 cycles.

2.3. Functional annotation

The functional annotation of the geneswas doneusing already anno-
tated genes of Arabidopsis thaliana, using Gene Ontology (GO), a feature
available in the programGenesis. For the GO annotation, a mapping file,
having the GO annotations for A. thaliana, was created using Batch
SOURCE (http://smd.stanford.edu/cgi-bin/source//sourceBatchSearch)
available in Stanford SOURCE database (http://source.stanford.edu/).
This file was imported to Genesis for creating GO tree. From this tree,
Fig. 5. Expression images of SOM algorithm. The clusters resulted from SOM clustering shown. T
gene showing its expression values. In each cluster, the pink line represents the mean of expre
the genes of C. annuum, induced in salt stress were assigned their
functions.

3. Results

3.1. Retrieval and filtering of gene expression data

The differential expression data were retrieved from GEO data-
base. The data were in form of 17,453 genes having corresponding
expression values at different time periods of salt stress responses.
These genes were of S. tuberosum showing differential expression
in C. annuum. Themean of intensity values of six samples were calcu-
lated for each gene. The genes having the mean of intensity value
greater than +0.585 were considered as highly up regulated and
less than−0.585 as highly down regulated. Walia et al. has reported
he number of genes lying in each cluster ismentioned.Multiple black lines represent each
ssion values of all the genes.

http://smd.stanford.edu/cgiin/source//sourceBatchSearch
http://source.stanford.edu


Fig. 6. Clusters of HCL (a), KMC (b) and SOM (c) in 3-D space. The clustered genes are represented in balls of different colors in three-dimensional space. The balls of different colors
represent genes. The clusters, which are similar in their expression values, lie close to each other.
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0.585 as cut off log2 value of expression ratio to get the significant
genes [23]. After filtering, sixty genes were obtained and taken for
further analyses.

3.2. Clustering results to find co-expressed genes

3.2.1. Principal component analysis (PCA)
PCA algorithm was performed prior to clustering to obtain different

patterns or dimensions formed from the expression data. PCA calculates
a new system of coordinates. The directions of the coordinate system cal-
culated by PCA are knownas eigenvectors. Six different timepoints (prin-
cipal components) were observed in the data, based on eigenvectors. The
eigenvalues for all the principal components (PCs) have been plotted
(Fig. 1). First PC revealed largest eigenvalueswhichmean that it accounts
for high variation in expression value of the genes. The variation in ex-
pression values of the genes decreased successively in other PCs.
Fig. 7. Centroid views of comparison of clustersmade fromHCL andKMC. Three clusters of HCL
the pattern of mean expression values in each sample.
3.2.2. Hierarchical clustering (HCL)
HCL algorithm was performed to obtain the number of patterns

hidden in the dataset using average linkage method. Based on
these patterns the number of clusters was identified. These patterns
are useful to set the number of clusters in other algorithms. Five clus-
ters were identified among 60 genes (Fig. 2). Cluster 5 showed
highest number of genes, which were down regulated. Cluster 2
showed most of the up-regulated genes. In the heatmap, for each
gene red, green and black colors indicates up, down and no expres-
sion respectively. These colors are representative of a relative scale
(−3.0 to +3.0) derived from the expression values. The white dots
in the heatmap represent the gene showing maximum expression
at a particular time point. The expression images of the clusters hav-
ing similar genes belonging to a particular cluster have been plotted
(Fig. 3). Clusters 1 and 2 consisted of upregulated genes whereas
clusters 3, 4 and 5 had downregulated genes. The magenta curve
and KMC are represented in a comparativemanner. The pink line in each cluster represents



Table 1
Functional assignment to the genes, having no any prior information.

Genes Functions

BQ516961 Biological process| response to cold and salt stress
BQ515216 Response to light stimulus| response to stress
BQ516960 Biological process| response to cold and salt stress
BQ515215 Response to light stimulus| response to stress
BQ518795 Biological process| response to cold and salt stress
BQ516985 Biological process| response to cold and salt stress
BQ512282 Response to light stimulus| response to stress
BQ516986 Biological process| response to cold and salt stress
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represents the mean expression values at different time points. In
each expression view, the x-axis represents time points whereas
the y-axis represents expression values.

3.2.3. K-Means clustering (KMC)
KMC algorithm is based on given number of clusters. The number of

clusters can be chosen randomly or estimated by performing a hierar-
chical clustering of the dataset [24]. In this study, we took the number
of clusters as five based on result of HCL algorithm. Out of 5 obtained
clusters, clusters 1 and 3 had downregulated and clusters 2, 4 and 5
were with upregulated genes. The mean of all the genes belonging to
a particular cluster have been represented in magenta color. The
x-axis represents time points whereas the y-axis represents expression
values (Fig. 4).

3.2.4. Self-organizing map (SOM)
SOM clustering algorithm has also been applied to the dataset for

clustering. The number of clusters was set as 6 (2 × 3), on the basis of
clusters obtained from HCL algorithm. However, SOM analysis resulted
in six clusters. Five clusters showed the presence of genes and cluster 3
did not had any gene (Fig. 5).

3.2.5. Cluster comparison analysis
The comparison of clusters obtained from common clustering

techniques might provide additional information as compared to single
method approach [20]. In comparison, three clusters of HCL and KMC
algorithmswere found to be similar to each other showing samepattern
of expression. One cluster from SOM and HCL algorithms and one clus-
ter from all three algorithm revealed similarity in their expression.

3.2.6. Visualization of clustering algorithms through PCA
PCA algorithmwas used to visualize the clusters obtained from HCL,

KMC and SOM algorithms. The five groups of genes obtained from each
Fig. 8.Centroid views of similar clustersmade from SOMandHCL. One cluster of SOMandHCL i
of mean expression values in each sample.
algorithmhave been shown in the 3D space of PCA analysis (Fig. 6). PCA
analysis demonstrates measure of variability among genes [25]. The
genes of cluster 2 of HCL showed highest variability. The value of aver-
age distance from the mean was 0.77, which is highest among all the
clusters made fromHCL algorithm. Cluster 4 of KMC revealed 0.73 aver-
age distance from the mean indicating highest variability among its
genes. In SOM algorithm, highest variability of 0.94 was observed
among genes of cluster 4. The analysis suggests that the variability
among genes within a cluster depends upon the values of average dis-
tance from the mean.

3.2.7. Functional annotation of genes
The ontological classification of selected differentially expressed

genes was done. Biological process, molecular function and cellular lo-
cation classificationwere taken into consideration for functional assign-
ment of the genes. Some of the genes could not be assigned any
function. The genes, for which function could not be assigned, were
found to be present in cluster 5 of HCL and cluster 1 of KMC. Both the
clusters were similar as could be seen in the centroid views (Fig. 7a).
Some other genes having no function belonged to cluster 1 of HCL and
cluster 5 of KMC, which were also similar to each other (Fig. 7b). Thus,
these eight genes were assigned of their functions according to their
co-expression present in the same clusters (Table 1). Most of these
genes belonged to function related to stress responses.

4. Discussion

In this study, we have examined the distribution of genes showing
differential expression under salt stress. All four algorithms resulted in
similar patterns of clustering of genes. An earlier study have used HCL
algorithm to list the genes of barley, expressed under salinity stress.
The identified groups of genes with similar expression patterns were
up and downregulated separately. The group of upregulated genes
were mainly responsible for heat shock protein (HSP), calmodulin and
arginine/serine rich protein [23]. Earlier studies demonstrated that the
genes responsible for HSPs show change in expression in A. thaliana
and rice under abiotic stresses including salt [26,27]. The calmodulin
genes have been earlier reported to enhance drought and salt tolerance
in rice plant [28]. The objective of the clusteringwas to use the appropri-
ate method for grouping the expression data having similarity in their
expression values. All algorithms resulted in equal number of clusters.
However, the difference was observed in the pattern of genes in the
cluster. In our analysis, cluster 5 of HCL and 1 of KMC showed same
set of genes having up-expression under salt stress (Fig. 7a). The
genes ware mainly responsible for carbohydrate metabolism like
s represented in a comparativemanner. The pink line in each cluster is showing the pattern



Fig. 9.Centroid views of similar clustersmade from SOM,KMC andHCL. One cluster of SOM, KMC andHCL is similar and represented in a comparativemanner. The pink line in each cluster
is showing the pattern of mean expression values in each sample.
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fructose 1,6-bisphosphate 1-phosphatase activity, kinase activity, re-
sponse to abscisic acid stimuli and some heat shock proteins clustered
together. Cluster 1 of KMC and 2 of HCL also showed similar expression
pattern (Fig. 7b). According to functional similarity, the above genes
belonged mainly to stress responses viz., serine/threonine phosphatase
an enzymeofMAP kinase pathway activated in stress response, calmod-
ulin binding and peroxidase activity responsible for oxidative stress.
MAP kinases play an important role in abiotic stress signaling pathway
[29]. Cluster 5 of HCL and 1 of KMC were compared and revealed 19
common genes showing expression level and functional similarity
(Fig. 7c). All the genes were downregulated in the presence of salt
stress. The expression of these genes was lowered in the presence of
salt stress. The genes of both the clusters belonged to stress responses
such as zinc and cadmium ion binding. The genes had biological func-
tions like ATP binding, transferase activity and hydrolase activity. Ex-
pression views made by cluster 2 analyzed from two algorithms HCL
Fig. 10. Expression level representation of eight genes. The expression viewof theuncharacteriz
up and down expression respectively.
and SOM were found to be similar to each other (Fig. 8). The number
of common genes in both the clusters were 19. These genes showed up-
regulation under the salt stress condition. The intensity value was ob-
served with range from 0.58 to 1.02. The functional similarity among
the geneswas observed asmost of the genes belonged to peroxidase ac-
tivity in the presence of oxidative stress and response to abscisic acid
signaling pathways due to stress condition. Comparative analysis of
the results indicated that the clusters of all three algorithms showed
similar patterns of genes e.g. cluster 5 of HCL, cluster 6 of SOM and clus-
ter 1 of KMC have similar function and are downregulated under stress
(Fig. 9). Among three clusters 15 genes were common having range of
intensity value of−0.58 to−0.69 indicating that they aredownregulat-
ed. The functional similarities in terms of oxidase activity in response to
cold suggested that these genes were responsible both for cold and salt
stress. The histone deacetylase activity showed the response of genes
for abscisic acid stimulus. It was earlier demonstrated that expression
ed genes is represented. Thepink line,which lies above and below theblack line, represents
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of histone deacetylase gene was repressed by ABA in A. thaliana, sug-
gesting its possible role in the ABA response [30]. Thus, clustering of
the genes in accordance to the similarity in their expression profiles
along six different time points was useful to find out the co-expressed
genes. Some clusters obtained through different clustering algorithms
were similar indicating that the genes were clustered accurately. The
distribution of the genes in clusterswas found to be similar in each algo-
rithm. The functional annotation of all the genes was done. The
uncharacterized genes were predicted for their function based on
their similarity to the genes of participating cluster. All the genes were
assigned functions for cold and salt stress responses. The expression
level analysis of each uncharacterized genes at all time points was
done (Fig. 10). The genes showing expression values below the
mean were considered to be downregulated. Genes BQ516961 and
BQ516960 showed samepattern of down expression. Themean intensi-
ty value of both the genes was −0.6045. The expression patterns of
BQ515216 and BQ515215 was similar having 0.692667 intensity value
and up expression. BQ516985 and BQ516986 showed down expression
of −0.5915 intensity value.

5. Conclusion

In this work, we aimed to study the clustering analysis of genes
showing differential expression in salinity stress. The genes of
S. tuberosum showing change in their expression in C. annuum were
taken. The clustering programs are routinely run as a first step of data
summary and grouping genes in a microarray data analysis [9,10,17].
The prediction of correct number of clusters is a critical problem in
unsupervised algorithms like KMC and SOM. HCL, an agglomerative
method is used for pre-specification of the number of clusters for
other algorithms. Use of multiple clustering algorithms is required for
accuracy of the results. In our study, the application of four clustering
algorithms, HCL, KMC, PCA and SOM resulted in almost similar clusters.
The similarity in the clusters frommultiple algorithms indicates that the
co-expressed genes are clustered efficiently. Earlier reports have shown
that application ofmore than one clustering techniquemay facilitate the
generation of more accurate and reliable results [31]. The gene ontology
annotation from A. thaliana helped to find out the functions for the
genes, which were found to be up- and down-regulated in C. annuum,
under salt stress. Functional annotation revealed that most of the
genes were related to stress response. The functions of eight unknown
genes were predicted based on their occurrence in the cluster. Out of
these eight genes, 3 were up and 5 downregulated. Thus, clustering of
the co-expressed genes is also helpful in getting information about the
uncharacterized genes. The functional information of uncharacterized
genes can be predicted based on other participating genes in particular
cluster. The efficiency of the clustering algorithm can be measured by
validating the analyzed clusters. The validation of the clusters will be
our future endeavor to find the co-expressed genes.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2016.01.009.

Conflict of interest

Authors declare no conflict of interest.

Acknowledgments

Wewould like to thank C Robin Buell who has submitted her exper-
iments in GEO database of NCBI and make them freely available to the
scientific community. S is thankful to CSIR, New Delhi, India for CSIR-
SRF fellowship.
References

[1] J. Krasensky, C. Jonak, Drought, salt, and temperature stress-induced metabolic
rearrangements and regulatory networks. J. Exp. Bot. 63 (2012) 1593–1608.

[2] J.K. Zhu, Plant salt stress. Encyclopedia of Life Science, Wiley Online Library, 2007.
[3] M.A. Babu, D. Singh, K.M. Gothandam, The effect of salinity on growth, hormones

and mineral elements in leaf and fruit of tomato cultivar Pkm1. J. Anim. Plant Sci.
22 (2012) 159–164.

[4] Y. Shuji, R.A. Bressan, P.M. Hasegawa, Salt stress tolerance of plants. JIRCASWorking
Report 2002, pp. 25–33.

[5] S.P. Hazen, Y. Wu, J.A. Kreps, Gene expression profiling of plant responses to abiotic
stress. Funct. Integr. Genomics 3 (2003) 105–111.

[6] M.B. Eisen, P.O. Brown, DNA arrays for analysis of gene expression. Methods
Enzymol. 303 (1999) 179–205.

[7] W.A. Rensink, S. Iobst, A. Hart, S. Stegalkina, J. Liu, et al., Gene expression profiling of
potato responses to cold, heat, and salt stress. Funct. Integr. Genomics 5 (2005)
201–207.

[8] K.Y. Yeung, W.L. Ruzzo, Principal component analysis for clustering gene expression
data. Bioinformatics 17 (2001) 763–774.

[9] T. Chandrasekhar, K. Thangavel, E. Elayaraja, Effective clustering algorithms for gene
expression data. Int. J. Comput. Appl. 32 (2011) 0975–8887.

[10] I.G. Costa, F.A.T. de Carvalho, M.C.P. de Souto, Comparative analysis of clustering
methods for gene expression time course data. Genet. Mol. Biol. 27 (2004) 623–631.

[11] M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. U. S. A. 95 (1998)
14863–14868.

[12] S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, G.M. Church, Systematic determina-
tion of genetic network architecture. Nat. Genet. 22 (1999) 281–285.

[13] S. Raychaudhuri, J.M. Stuart, R.B. Altman, Principal components analysis to summa-
rize microarray experiments: application to sporulation time series. Pac. Symp.
Biocomput. 455-466 (2000).

[14] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, et al., Interpreting patterns of
gene expression with self-organizing maps: methods and application to
hematopoietic differentiation. Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 2907–2912.

[15] M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W. Sugnet, et al., Knowledge-
based analysis of microarray gene expression data by using support vector
machines. Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 262–267.

[16] J. Quackenbush, Computational analysis of microarray data. Nat. Rev. Genet. 2
(2001) 418–427.

[17] S. Datta, Comparisons and validation of statistical clustering techniques for microar-
ray gene expression data. Bioinformatics 19 (2003) 459–466.

[18] D.R. Gilbert, M. Schroeder, J. van Helden, Interactive visualization and exploration of
relationships between biological objects. Trends Biotechnol. 18 (2000) 487–494.

[19] F.D. Gibbons, F.P. Roth, Judging the quality of gene expression-based clustering
methods using gene annotation. Genome Res. 12 (2002) 1574–1581.

[20] A. Sturn, J. Quackenbush, Z. Trajanoski, Genesis: cluster analysis of microarray data.
Bioinformatics 18 (2002) 207–208.

[21] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, et al., Comprehensive
identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by
microarray hybridization. Mol. Biol. Cell 9 (1998) 3273–3297.

[22] R. Edgar, M. Domrachev, E. Lash A, Gene Expression Omnibus: NCBI gene expression
and hybridization array data repository. Nucleic Acids Res. 30 (2002) 207–210.

[23] H.Walia, C.Wilson, A.Wahid, P. Condamine, X. Cui, et al., Expression analysis of bar-
ley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genomics 6 (2006)
143–156.

[24] M.M. Babu, An introduction to microarray data analysis. Computational genomics,
Horizon Press 2004, pp. 225–249.

[25] T. Jombart, S. Devillard, F. Balloux, Discriminant analysis of principal components: a
new method for the analysis of genetically structured populations. BMC Genet. 11
(2010) 1–15.

[26] W.R. Swindell, M. Huebner, A.P. Weber, Transcriptional profiling of Arabidopsis heat
shock proteins and transcription factors reveals extensive overlap between heat and
non-heat stress response pathways. BMC Genomics 8 (2007) 1–15.

[27] W.H. Hu, G.C. Hu, B. Han, Genome-wide survey and expression profiling of heat
shock proteins and heat shock factors revealed overlapped and stress specific
response under abiotic stresses in rice. Plant Sci. 176 (2009) 583–590.

[28] G.Y. Xu, P.S. Rocha, M.L. Wang, M.L. Xu, Y.C. Cui, et al., A novel rice calmodulin-like
gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity
in Arabidopsis. Planta 234 (2011) 47–59.

[29] C. Jonak, W. Ligterink, H. Hirt, MAP kinases in plant signal transduction. Cell. Mol.
Life Sci. 55 (1999) 204–213.

[30] S. Sridha, K.Q. Wu, Identification of AtHD2C as a novel regulator of abscisic acid
responses in Arabidopsis. Plant J. 46 (2006) 124–133.

[31] F. Azuaje, Clustering-based approaches to discovering and visualising microarray
data patterns. Brief. Bioinform. 4 (2003) 31–42.

http://dx.doi.org/10.1016/j.gdata.2016.01.009
http://dx.doi.org/10.1016/j.gdata.2016.01.009
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0005
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0005
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0010
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0015
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0015
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0015
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0020
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0020
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0025
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0025
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0030
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0030
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0035
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0035
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0035
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0040
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0040
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0045
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0045
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0050
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0050
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0055
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0055
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0055
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0060
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0060
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0065
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0065
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0065
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0070
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0070
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0070
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0075
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0075
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0075
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0080
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0080
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0085
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0085
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0090
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0090
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0095
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0095
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0100
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0100
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0105
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0105
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0105
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0110
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0110
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0115
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0115
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0115
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0120
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0120
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0125
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0125
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0125
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0130
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0130
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0130
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0135
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0135
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0135
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0140
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0140
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0140
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0145
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0145
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0150
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0150
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0155
http://refhub.elsevier.com/S2213-5960(16)30008-3/rf0155

	Computational gene expression profiling under salt stress reveals patterns of co-�expression
	1. Introduction
	2. Materials and methods
	2.1. Retrieval of gene expression data
	2.2. Clustering of genes
	2.3. Functional annotation

	3. Results
	3.1. Retrieval and filtering of gene expression data
	3.2. Clustering results to find co-expressed genes
	3.2.1. Principal component analysis (PCA)
	3.2.2. Hierarchical clustering (HCL)
	3.2.3. K-Means clustering (KMC)
	3.2.4. Self-organizing map (SOM)
	3.2.5. Cluster comparison analysis
	3.2.6. Visualization of clustering algorithms through PCA
	3.2.7. Functional annotation of genes


	4. Discussion
	5. Conclusion
	Conflict of interest
	Acknowledgments
	References


