Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 24;72(Pt 3):420–423. doi: 10.1107/S2056989016002930

Crystal structure of the salt bis­(tri­ethano­lamine-κ3 N,O,O′)cobalt(II) bis­[2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate]

Jamshid M Ashurov a,*, Nodira J Obidova a, Hudaybergen B Abdireymov b, Bakhtiyar T Ibragimov a
PMCID: PMC4778810  PMID: 27006821

The reaction of 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetic acid (NBTA) and tri­ethano­lamine (TEA) with Co(NO3)2 results in the formation of the title complex. In the complex cation, the CoII ion is octa­hedrally coordinated by two N,O,O′-tridentate TEA mol­ecules with a facial distribution and the N atoms in a trans arrangement.

Keywords: crystal structure, tri­ethano­lamine, α-(N-benzo­thia­zolin-2-one) acetic acid, hydrogen bonding

Abstract

The reaction of 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetic acid (NBTA) and tri­ethano­lamine (TEA) with Co(NO3)2 results in the formation of the title complex, [Co(C6H15NO3)2](C9H6NO3S)2, which is formed as a result of the association of bis­(tri­ethano­lamine)­cobalt(II) and 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate units. It crystallizes in the monoclinic centrosymmetric space group P21/c, with the CoII ion situated on an inversion centre. In the complex cation, the CoII ion is octa­hedrally coordinated by two N,O,O′-tridentate TEA mol­ecules with a facial distribution and the N atoms in a trans arrangement. Two ethanol groups of each TEA mol­ecule form two five-membered chelate rings around the CoII ion, while the third ethanol group does not coordinate to the metal. The free and coordinating hy­droxy groups of the TEA mol­ecules are involved in hydrogen bonding with the O atoms of NBTA anions, forming an infinite two-dimensional network extending parallel to the bc plane.

Chemical context  

Tri­ethano­lamine (TEA) is used as a corrosion inhibitor in metal-cutting fluids, as a curing agent for ep­oxy and rubber polymers, adhesives and anti­static agents and as a pharmaceutical inter­mediate and an ointment emulsifier etc. However, TEA is not a substance possessing a specific physiological action (Beyer et al., 1983; Knaak et al., 1997) with exception of its low anti­bacterial activity. Benzo­thia­zole is a precursor for rubber accelerators, a component of cyanine dyes, a slimicide in the paper and pulp industry, and is used in the production of certain fungicides, herbicides, anti­fungal agents and pharmaceuticals (Bellavia et al., 2000; Seo et al., 2000). The inter­action of metal ions with TEA results in the formation of complexes in which TEA demonstrates monodentate (Kumar et al., 2014), bidentate (Kapteijn et al., 1997), tridentate (Gao et al., 2004; Ucar et al., 2004; Topcu et al., 2001; Krabbes et al., 1999; Haukka et al., 2005; Yeşilel et al., 2004; Mirskova et al., 2013) and tetra­dentate binding (Zaitsev et al., 2014; Kazak et al., 2003; Yilmaz et al., 2004; Langley et al., 2011; Rickard et al., 1999; Maestri & Brown, 2004; Kovbasyuk et al., 2001; Tudor et al., 2001). In some complexes, TEA can show bridging properties (Atria et al., 2015; Wittick et al., 2006; Sharma et al., 2014; Yang et al., 2014; Funes et al., 2014). Here, we report the synthesis and structure of the title compound, [Co(C6H15NO3)2](C9H6NO3S)2, (I). graphic file with name e-72-00420-scheme1.jpg

Structural commentary  

The mol­ecular structure of compound (I) is shown in Fig. 1. The structure consists of a complex cation and one 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate anion. The asymmetric unit contains a half of the cationic moiety because the CoII ion is located on an inversion centre. The cation and anion are linked by an O6—H6⋯O2 hydrogen bond (Table 1). In the cationic complex, the CoII ion is coordinated by four oxygen and two nitro­gen atoms of two ligands. The nitro­gen atoms occupy trans positions of the coordination polyhedron. The Co—N bond lengths [2.151 (3) Å] are equal as a result of symmetry, and the N—Co—N bond angle is 180°. The Co—O distances are 2.097 (2) Å and 2.101 (3) Å. One hy­droxy group of each ethanol substituent is not involved in the coordination and is directed away from the coordination centre. The N—Co—O bond angles range from 81.60 (10) to 98.40 (10)° and the O—Co—O angles are 89.79 (10) and 90.21 (10)°. Thus, the coordination polyhedron of the central atom is a slightly distorted octa­hedron of the CoN2O4-type. The thia­zoline ring (C1/C6/N1/C7/S1) and the bicyclic benzo­thia­zole unit (N1/S1/C1–C7) are close to planar, the largest deviations from the least-squares planes being 0.019 (2) and 0.028 (4) Å, respectively. The dihedral angle between the plane of the carboxyl­ate group and the benzo­thia­zole ring system is 85.6 (2)°.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme. Unlabelled atoms are generated by the inversion centre.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.88 (3) 1.71 (3) 2.572 (4) 166 (3)
O5—H5⋯O3ii 0.86 (1) 1.75 (2) 2.577 (4) 159 (3)
O6—H6⋯O2 0.82 1.88 2.697 (4) 173
C8—H8A⋯O1iii 0.97 2.48 3.432 (6) 167
C12—H12B⋯O6iv 0.97 2.53 3.455 (6) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

The crystal structure of (I) contains an intricate network of inter­molecular O—H⋯O and C—H⋯O hydrogen bonds (Table 1). The [Co(TEA)2]2+ cations play an important role in the supra­molecular architecture. Each cation is surrounded by four 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate anions. The H atoms of the free hy­droxy group of the TEA ligand form a hydrogen bond with the carboxyl­ate O atom of the NBTA ion while the coordinating hy­droxy H atoms are involved in inter­molecular hydrogen bonding with the carboxyl­ate O atoms of the NBTA ions [H4⋯O2i = 1.71 (3) Å and H5⋯O3ii = 1.752 (17)Å; symmetry codes: (i) x, −1 + y, z; (ii) 2 − x, 1 − y, 2 − z]. In addition, there is weak hydrogen bond between the –CH2 group and the non-coordinating hy­droxy-O atoms of the TEA ligand, with a C⋯O distance of 3.455 (6) Å. The above-mentioned hydrogen bonds give rise to Inline graphic(22) and Inline graphic(22) graph-set motifs. The crystal structure contains layers of hydrogen-bonded cations that are sandwiched between layers of hydrogen-bonded anions. Each layer extends in the bc plane. There is hydrogen bonding within and between these layers. These are arranged along [100] in the sequence ACA·ACA·ACA (where A = anion layer and C = cation layer; Fig. 2) The NBTA anion layers are not linked by hydrogen bonds, but there are π–π stacking inter­actions between benzene (centroid Cg1) and thia­zolin (centroid Cg2) rings [Cg1⋯Cg2(-x, −y, −z) = 3.71 Å] of adjacent inversion-related mol­ecules (Fig. 3).

Figure 2.

Figure 2

Part of the crystal structure with hydrogen bonds shown as dashed lines. For clarity, H atoms not involved in hydrogen bonding are not shown.

Figure 3.

Figure 3

The crystal structure packing of (I). Hydrogen bonds are indicated by black dashed lines and π–π stacking inter­actions by red dashed lines.

Database survey  

A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014) showed that coordination complexes of TEA with many metals including those of the s-, d-, p-, and f-blocks have been reported. Structures containing the bis­(tri­ethano­lamine)­cobalt(II) cation are described in the CSD entries with refcodes ASUGEA, IGALOR, WEPLIN.

Synthesis and crystallization  

To an aqueous solution (2.5 ml) of Co(NO3)2 (0.091 g, 0.5 mmol) was added slowly an ethanol solution (5 ml) containing TEA (132 µl) and NBTA (0.209 g, 1 mmol) with constant stirring. A light-brown crystalline product was obtained at room temperature by solvent evaporation after four weeks (yield 70%). Elemental analysis calculated for C30H42CoN4O12S2: C, 46.57; H, 5.47; N, 7.24. Found: C, 46.62; H, 5.41; N, 7.19.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. The coordinating hy­droxy H atoms of the TEA ligand were located in a difference Fourier map and freely refined. C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 and 0.97 Å for aromatic and methyl­ene H, with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [Co(C6H15NO3)2](C9H6NO3S)2
M r 773.73
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 14.6953 (6), 9.7043 (3), 12.1311 (4)
β (°) 98.513 (4)
V3) 1710.94 (11)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.66
Crystal size (mm) 0.28 × 0.24 × 0.18
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
T min, T max 0.280, 0.797
No. of measured, independent and observed [I > 2σ(I)] reflections 7096, 3487, 2693
R int 0.048
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.061, 0.175, 1.03
No. of reflections 3487
No. of parameters 230
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.53

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97, SHELXL97 XP and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016002930/pj2027sup1.cif

e-72-00420-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002930/pj2027Isup2.hkl

e-72-00420-Isup2.hkl (171KB, hkl)

CCDC reference: 1454443

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. FPFI T.3-14).

supplementary crystallographic information

Crystal data

[Co(C6H15NO3)2](C9H6NO3S)2 F(000) = 810
Mr = 773.73 Dx = 1.502 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 1414 reflections
a = 14.6953 (6) Å θ = 3.7–75.3°
b = 9.7043 (3) Å µ = 5.66 mm1
c = 12.1311 (4) Å T = 293 K
β = 98.513 (4)° Block, dark orange
V = 1710.94 (11) Å3 0.28 × 0.24 × 0.18 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer 3487 independent reflections
Radiation source: fine-focus sealed tube 2693 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 10.2576 pixels mm-1 θmax = 75.8°, θmin = 5.5°
ω scans h = −18→17
Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009) k = −10→12
Tmin = 0.280, Tmax = 0.797 l = −12→15
7096 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0899P)2 + 0.4878P] where P = (Fo2 + 2Fc2)/3
3487 reflections (Δ/σ)max < 0.001
230 parameters Δρmax = 0.47 e Å3
6 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 1.0000 0.0000 1.0000 0.0321 (2)
S1 1.42643 (10) 0.51313 (12) 1.23063 (9) 0.0613 (3)
O4 1.09939 (16) −0.1150 (3) 1.1029 (2) 0.0405 (6)
H4 1.1359 (16) −0.175 (3) 1.078 (2) 0.061*
O2 1.21319 (18) 0.7409 (3) 1.0090 (3) 0.0511 (7)
O5 0.92168 (17) 0.0172 (2) 1.1309 (2) 0.0397 (6)
H5 0.8630 (7) 0.025 (4) 1.130 (2) 0.060*
C4 1.3618 (3) 0.3107 (6) 0.8983 (4) 0.0640 (12)
H4A 1.3469 0.2728 0.8275 0.077*
N2 1.07355 (19) 0.1681 (3) 1.0879 (2) 0.0354 (6)
O6 1.1297 (3) 0.4967 (3) 0.9585 (3) 0.0719 (11)
H6 1.1537 0.5703 0.9793 0.108*
O3 1.25064 (18) 0.9228 (3) 0.9142 (3) 0.0593 (8)
O1 1.4058 (3) 0.7837 (3) 1.1993 (3) 0.0715 (9)
N1 1.3885 (2) 0.6444 (3) 1.0445 (3) 0.0432 (7)
C11 1.0861 (3) 0.2771 (4) 1.0053 (3) 0.0455 (9)
H11A 1.0256 0.3054 0.9693 0.055*
H11B 1.1176 0.2363 0.9484 0.055*
C1 1.4051 (2) 0.4195 (4) 1.1068 (3) 0.0441 (8)
C9 1.2684 (2) 0.8119 (4) 0.9634 (3) 0.0437 (8)
C10 1.1382 (3) 0.4043 (4) 1.0483 (3) 0.0507 (9)
H10A 1.1122 0.4435 1.1102 0.061*
H10B 1.2024 0.3826 1.0731 0.061*
C6 1.3850 (2) 0.5060 (4) 1.0156 (3) 0.0405 (8)
C13 1.1640 (3) 0.1118 (4) 1.1391 (4) 0.0535 (10)
H13A 1.1899 0.1712 1.2002 0.064*
H13B 1.2056 0.1126 1.0841 0.064*
C15 1.0160 (3) 0.2213 (4) 1.1688 (3) 0.0464 (9)
H15A 0.9732 0.2890 1.1321 0.056*
H15B 1.0551 0.2672 1.2292 0.056*
C8 1.3671 (3) 0.7592 (4) 0.9693 (4) 0.0500 (10)
H8A 1.3771 0.7314 0.8952 0.060*
H8B 1.4092 0.8341 0.9928 0.060*
C7 1.4049 (3) 0.6711 (5) 1.1570 (4) 0.0520 (10)
C12 1.1576 (3) −0.0320 (5) 1.1821 (4) 0.0542 (11)
H12A 1.2186 −0.0725 1.1962 0.065*
H12B 1.1329 −0.0298 1.2520 0.065*
C3 1.3811 (3) 0.2232 (5) 0.9886 (4) 0.0628 (12)
H3 1.3783 0.1283 0.9781 0.075*
C5 1.3638 (3) 0.4522 (5) 0.9094 (3) 0.0522 (10)
H5A 1.3512 0.5095 0.8475 0.063*
C2 1.4045 (3) 0.2764 (4) 1.0941 (4) 0.0540 (10)
H2 1.4195 0.2186 1.1552 0.065*
C14 0.9626 (3) 0.1087 (4) 1.2162 (3) 0.0480 (9)
H14A 1.0035 0.0572 1.2714 0.058*
H14B 0.9148 0.1495 1.2530 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0309 (4) 0.0303 (4) 0.0344 (4) 0.0010 (3) 0.0022 (3) 0.0001 (3)
S1 0.0879 (9) 0.0538 (7) 0.0408 (5) 0.0058 (5) 0.0049 (5) 0.0012 (4)
O4 0.0378 (12) 0.0369 (14) 0.0464 (13) 0.0066 (10) 0.0050 (10) 0.0020 (11)
O2 0.0412 (13) 0.0348 (14) 0.0799 (19) 0.0011 (11) 0.0180 (13) 0.0036 (13)
O5 0.0371 (12) 0.0378 (14) 0.0445 (14) −0.0006 (10) 0.0072 (10) −0.0045 (10)
C4 0.056 (2) 0.075 (3) 0.058 (3) 0.007 (2) −0.001 (2) −0.025 (2)
N2 0.0368 (14) 0.0308 (15) 0.0384 (14) −0.0032 (11) 0.0050 (11) −0.0025 (12)
O6 0.090 (3) 0.048 (2) 0.072 (2) −0.0219 (16) −0.007 (2) 0.0152 (16)
O3 0.0405 (14) 0.0499 (18) 0.089 (2) 0.0076 (13) 0.0143 (14) 0.0197 (16)
O1 0.094 (3) 0.0485 (19) 0.069 (2) 0.0017 (17) 0.0040 (18) −0.0165 (16)
N1 0.0388 (15) 0.0467 (19) 0.0439 (16) 0.0064 (13) 0.0056 (12) 0.0039 (14)
C11 0.052 (2) 0.039 (2) 0.0442 (19) −0.0072 (17) 0.0051 (16) −0.0020 (16)
C1 0.0381 (17) 0.048 (2) 0.046 (2) 0.0000 (16) 0.0090 (15) −0.0006 (17)
C9 0.0375 (17) 0.041 (2) 0.052 (2) 0.0019 (15) 0.0066 (15) −0.0002 (17)
C10 0.057 (2) 0.043 (2) 0.051 (2) −0.0116 (18) 0.0041 (18) −0.0016 (18)
C6 0.0294 (15) 0.050 (2) 0.0422 (19) 0.0057 (14) 0.0044 (14) −0.0037 (16)
C13 0.041 (2) 0.049 (2) 0.066 (2) −0.0023 (17) −0.0108 (18) −0.012 (2)
C15 0.055 (2) 0.040 (2) 0.045 (2) −0.0034 (17) 0.0101 (17) −0.0086 (17)
C8 0.0390 (18) 0.051 (2) 0.062 (2) 0.0061 (17) 0.0114 (17) 0.011 (2)
C7 0.054 (2) 0.047 (2) 0.054 (2) 0.0028 (18) 0.0059 (18) −0.003 (2)
C12 0.055 (2) 0.048 (2) 0.053 (2) 0.0105 (18) −0.0121 (19) −0.0029 (19)
C3 0.052 (2) 0.051 (3) 0.086 (3) 0.000 (2) 0.014 (2) −0.017 (2)
C5 0.046 (2) 0.066 (3) 0.043 (2) 0.013 (2) 0.0007 (17) −0.009 (2)
C2 0.053 (2) 0.044 (2) 0.067 (3) 0.0011 (18) 0.014 (2) 0.003 (2)
C14 0.056 (2) 0.048 (2) 0.0405 (19) −0.0068 (18) 0.0112 (16) −0.0064 (17)

Geometric parameters (Å, º)

Co1—O4 2.097 (2) C11—C10 1.505 (5)
Co1—O4i 2.097 (2) C11—H11A 0.9700
Co1—O5i 2.101 (3) C11—H11B 0.9700
Co1—O5 2.101 (3) C1—C6 1.386 (5)
Co1—N2i 2.151 (3) C1—C2 1.398 (6)
Co1—N2 2.151 (3) C9—C8 1.529 (5)
S1—C1 1.744 (4) C10—H10A 0.9700
S1—C7 1.779 (5) C10—H10B 0.9700
O4—C12 1.436 (5) C6—C5 1.382 (5)
O4—H4 0.875 (9) C13—C12 1.498 (6)
O2—C9 1.254 (4) C13—H13A 0.9700
O5—C14 1.427 (4) C13—H13B 0.9700
O5—H5 0.863 (9) C15—C14 1.509 (5)
C4—C5 1.380 (7) C15—H15A 0.9700
C4—C3 1.382 (7) C15—H15B 0.9700
C4—H4A 0.9300 C8—H8A 0.9700
N2—C15 1.480 (4) C8—H8B 0.9700
N2—C13 1.486 (5) C12—H12A 0.9700
N2—C11 1.487 (5) C12—H12B 0.9700
O6—C10 1.401 (5) C3—C2 1.374 (6)
O6—H6 0.8200 C3—H3 0.9300
O3—C9 1.239 (5) C5—H5A 0.9300
O1—C7 1.207 (5) C2—H2 0.9300
N1—C7 1.374 (5) C14—H14A 0.9700
N1—C6 1.387 (5) C14—H14B 0.9700
N1—C8 1.445 (5)
O4—Co1—O4i 179.999 (1) C11—C10—H10A 110.6
O4—Co1—O5i 89.79 (10) O6—C10—H10B 110.6
O4i—Co1—O5i 90.21 (10) C11—C10—H10B 110.6
O4—Co1—O5 90.21 (10) H10A—C10—H10B 108.7
O4i—Co1—O5 89.79 (10) C5—C6—C1 120.5 (4)
O5i—Co1—O5 180.00 (14) C5—C6—N1 126.6 (4)
O4—Co1—N2i 98.40 (10) C1—C6—N1 112.9 (3)
O4i—Co1—N2i 81.60 (10) N2—C13—C12 112.9 (3)
O5i—Co1—N2i 81.74 (10) N2—C13—H13A 109.0
O5—Co1—N2i 98.26 (10) C12—C13—H13A 109.0
O4—Co1—N2 81.60 (10) N2—C13—H13B 109.0
O4i—Co1—N2 98.40 (10) C12—C13—H13B 109.0
O5i—Co1—N2 98.26 (10) H13A—C13—H13B 107.8
O5—Co1—N2 81.74 (10) N2—C15—C14 112.4 (3)
N2i—Co1—N2 180.0 N2—C15—H15A 109.1
C1—S1—C7 91.15 (19) C14—C15—H15A 109.1
C12—O4—Co1 113.2 (2) N2—C15—H15B 109.1
C12—O4—H4 105.5 (16) C14—C15—H15B 109.1
Co1—O4—H4 124.2 (16) H15A—C15—H15B 107.9
C14—O5—Co1 112.2 (2) N1—C8—C9 113.8 (3)
C14—O5—H5 105.9 (15) N1—C8—H8A 108.8
Co1—O5—H5 130.5 (18) C9—C8—H8A 108.8
C5—C4—C3 122.3 (4) N1—C8—H8B 108.8
C5—C4—H4A 118.8 C9—C8—H8B 108.8
C3—C4—H4A 118.8 H8A—C8—H8B 107.7
C15—N2—C13 114.6 (3) O1—C7—N1 125.6 (4)
C15—N2—C11 109.8 (3) O1—C7—S1 125.2 (3)
C13—N2—C11 110.5 (3) N1—C7—S1 109.2 (3)
C15—N2—Co1 107.4 (2) O4—C12—C13 110.6 (3)
C13—N2—Co1 106.3 (2) O4—C12—H12A 109.5
C11—N2—Co1 108.0 (2) C13—C12—H12A 109.5
C10—O6—H6 109.5 O4—C12—H12B 109.5
C7—N1—C6 115.3 (3) C13—C12—H12B 109.5
C7—N1—C8 118.2 (3) H12A—C12—H12B 108.1
C6—N1—C8 126.1 (3) C2—C3—C4 120.1 (5)
N2—C11—C10 117.2 (3) C2—C3—H3 120.0
N2—C11—H11A 108.0 C4—C3—H3 120.0
C10—C11—H11A 108.0 C4—C5—C6 117.7 (4)
N2—C11—H11B 108.0 C4—C5—H5A 121.1
C10—C11—H11B 108.0 C6—C5—H5A 121.1
H11A—C11—H11B 107.2 C3—C2—C1 118.2 (4)
C6—C1—C2 121.1 (4) C3—C2—H2 120.9
C6—C1—S1 111.2 (3) C1—C2—H2 120.9
C2—C1—S1 127.6 (3) O5—C14—C15 111.2 (3)
O3—C9—O2 125.8 (3) O5—C14—H14A 109.4
O3—C9—C8 116.4 (3) C15—C14—H14A 109.4
O2—C9—C8 117.8 (3) O5—C14—H14B 109.4
O6—C10—C11 105.9 (3) C15—C14—H14B 109.4
O6—C10—H10A 110.6 H14A—C14—H14B 108.0
O4i—Co1—O4—C12 −139 (11) C2—C1—C6—N1 179.6 (3)
O5i—Co1—O4—C12 103.4 (3) S1—C1—C6—N1 1.1 (4)
O5—Co1—O4—C12 −76.6 (3) C7—N1—C6—C5 175.5 (4)
N2i—Co1—O4—C12 −175.0 (3) C8—N1—C6—C5 2.5 (6)
N2—Co1—O4—C12 5.0 (3) C7—N1—C6—C1 −4.1 (5)
O4—Co1—O5—C14 72.2 (2) C8—N1—C6—C1 −177.1 (3)
O4i—Co1—O5—C14 −107.8 (2) C15—N2—C13—C12 80.4 (4)
O5i—Co1—O5—C14 −141.4 (8) C11—N2—C13—C12 −154.9 (3)
N2i—Co1—O5—C14 170.7 (2) Co1—N2—C13—C12 −38.0 (4)
N2—Co1—O5—C14 −9.3 (2) C13—N2—C15—C14 −83.1 (4)
O4—Co1—N2—C15 −105.4 (2) C11—N2—C15—C14 151.8 (3)
O4i—Co1—N2—C15 74.6 (2) Co1—N2—C15—C14 34.7 (4)
O5i—Co1—N2—C15 166.0 (2) C7—N1—C8—C9 −77.0 (5)
O5—Co1—N2—C15 −14.0 (2) C6—N1—C8—C9 95.8 (4)
N2i—Co1—N2—C15 −5 (14) O3—C9—C8—N1 169.0 (4)
O4—Co1—N2—C13 17.6 (2) O2—C9—C8—N1 −10.3 (5)
O4i—Co1—N2—C13 −162.4 (2) C6—N1—C7—O1 −176.0 (4)
O5i—Co1—N2—C13 −70.9 (3) C8—N1—C7—O1 −2.4 (6)
O5—Co1—N2—C13 109.1 (3) C6—N1—C7—S1 4.9 (4)
N2i—Co1—N2—C13 118 (14) C8—N1—C7—S1 178.5 (3)
O4—Co1—N2—C11 136.3 (2) C1—S1—C7—O1 177.4 (4)
O4i—Co1—N2—C11 −43.7 (2) C1—S1—C7—N1 −3.5 (3)
O5i—Co1—N2—C11 47.7 (2) Co1—O4—C12—C13 −26.9 (4)
O5—Co1—N2—C11 −132.3 (2) N2—C13—C12—O4 44.2 (5)
N2i—Co1—N2—C11 −123 (13) C5—C4—C3—C2 −0.9 (7)
C15—N2—C11—C10 64.6 (4) C3—C4—C5—C6 −0.7 (7)
C13—N2—C11—C10 −62.7 (4) C1—C6—C5—C4 1.1 (6)
Co1—N2—C11—C10 −178.6 (3) N1—C6—C5—C4 −178.4 (4)
C7—S1—C1—C6 1.4 (3) C4—C3—C2—C1 2.0 (6)
C7—S1—C1—C2 −177.0 (4) C6—C1—C2—C3 −1.6 (6)
N2—C11—C10—O6 −172.3 (4) S1—C1—C2—C3 176.6 (3)
C2—C1—C6—C5 0.1 (6) Co1—O5—C14—C15 30.8 (4)
S1—C1—C6—C5 −178.4 (3) N2—C15—C14—O5 −44.5 (4)

Symmetry code: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O2ii 0.88 (3) 1.71 (3) 2.572 (4) 166 (3)
O5—H5···O3iii 0.86 (1) 1.75 (2) 2.577 (4) 159 (3)
O6—H6···O2 0.82 1.88 2.697 (4) 173
C8—H8A···O1iv 0.97 2.48 3.432 (6) 167
C12—H12B···O6v 0.97 2.53 3.455 (6) 159

Symmetry codes: (ii) x, y−1, z; (iii) −x+2, −y+1, −z+2; (iv) x, −y+3/2, z−1/2; (v) x, −y+1/2, z+1/2.

References

  1. Atria, A. M., Parada, J., Garland, M. T. & Baggio, R. (2015). J. Chil. Chem. Soc. 60, 3059–3062.
  2. Bellavia, V., Natangelo, M., Fanelli, R. & Rotilio, D. (2000). J. Agric. Food Chem. 48, 1239–1242. [DOI] [PubMed]
  3. Beyer, K. H., Bergfeld, W. F., Berndt, W. O., Boutwell, R. K., Carlton, W. W., Hoffmann, D. K. & Schroeder, A. L. (1983). J. Am. Coll. Toxicol 2, 183–235.
  4. Funes, A. V., Carrella, L., Rentschler, E. & Alborés, P. (2014). Dalton Trans. 43, 2361–2364. [DOI] [PubMed]
  5. Gao, S., Liu, J.-W., Huo, L.-H. & Ng, S. W. (2004). Acta Cryst. E60, m462–m464.
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748.
  8. Kapteijn, G. M., Baesjou, P. J., Alsters, P. L., Grove, D. M., Koten, G. V., Smeets, W. J. J., Kooijman, H. & Spek, A. L. (1997). Chem. Ber. Recl, 130, 35–44.
  9. Kazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351–356.
  10. Knaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1–86. [DOI] [PubMed]
  11. Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Chun, H., Bernal, I., Reedijk, J., Albada, G. V. & Skelton, B. W. (2001). Cryst. Eng. 4, 201–213.
  12. Krabbes, I., Seichter, W., Breuning, T., Otschik, P. & Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562–1565.
  13. Kumar, R., Obrai, S., Kaur, A., Hundal, M. S., Meehnian, H. & Jana, A. K. (2014). New J. Chem. 38, 1186–1198.
  14. Langley, S. K., Chilton, N. F., Moubaraki, B. & Murray, K. S. (2011). Dalton Trans. 40, 12201–12209. [DOI] [PubMed]
  15. Maestri, A. G. & Brown, S. N. (2004). Inorg. Chem. 43, 6995–7004. [DOI] [PubMed]
  16. Mirskova, A. N., Adamovich, S. N., Mirskov, R. G. & Schilde, U. (2013). Chem. Cent. J. 7, 34–38. [DOI] [PMC free article] [PubMed]
  17. Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  18. Rickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 837–838.
  19. Seo, K. W., Park, M., Kim, J. G., Kim, T. W. & $ Kim, H. J. (2000). J. Appl. Toxicol. 20, 427–430. [DOI] [PubMed]
  20. Sharma, R. P., Saini, A., Venugopalan, P., Ferretti, V., Spizzo, F., Angeli, C. & Calzado, C. J. (2014). New J. Chem. 38, 574–583.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Topcu, Y., Yilmaz, V. T. & Thöne, C. (2001). Acta Cryst. E57, m600–m602.
  23. Tudor, V., Kravtsov, V., Julve, M., Lloret, F., Simonov, Y. A., Lipkowski, J., Buculei, V. & Andruh, M. (2001). Polyhedron, 20, 3033–3037.
  24. Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324. [DOI] [PubMed]
  25. Wittick, L. M., Jones, L. F., Jensen, P., Moubaraki, B., Spiccia, L., Berry, K. J. & Murray, K. S. (2006). Dalton Trans. pp. 1534–1543. [DOI] [PubMed]
  26. Yang, D., Liang, Y., Ma, P., Li, S., Wang, J. & Niu, J. (2014). CrystEngComm, 16, 8041–8046.
  27. Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230. [DOI] [PubMed]
  28. Yilmaz, V. T., Senel, E. & Thöne, C. (2004). Transition Met. Chem. 29, 336–342.
  29. Zaitsev, K. V., Churakov, A. V., Poleshchuk, O. Kh., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605–6609. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016002930/pj2027sup1.cif

e-72-00420-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002930/pj2027Isup2.hkl

e-72-00420-Isup2.hkl (171KB, hkl)

CCDC reference: 1454443

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES