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Abstract
The differential evolution algorithm has been widely applied on unmanned aerial vehicle

(UAV) path planning. At present, four random tuning parameters exist for differential evolu-

tion algorithm, namely, population size, differential weight, crossover, and generation num-

ber. These tuning parameters are required, together with user setting on path and

computational cost weightage. However, the optimum settings of these tuning parameters

vary according to application. Instead of trial and error, this paper presents an optimization

method of differential evolution algorithm for tuning the parameters of UAV path planning.

The parameters that this research focuses on are population size, differential weight, cross-

over, and generation number. The developed algorithm enables the user to simply define

the weightage desired between the path and computational cost to converge with the mini-

mum generation required based on user requirement. In conclusion, the proposed optimiza-

tion of tuning parameters in differential evolution algorithm for UAV path planning expedites

and improves the final output path and computational cost.

Introduction
In recent years, unmanned aerial vehicles (UAVs) have received significant attention from the
military and commercial industries. Moreover, many studies have been conducted on UAV
development because of its wide variety of applications, including surveillance, traffic monitor-
ing, rescue mission, and aerial photography [1–12]. Aircraft path planning is a UAV operation
that aims to generate an optimum flight path from the starting coordinate to the destination
location.

Various algorithms are applicable for UAV path planning. This includes graph search algo-
rithm [13, 14], potential field based algorithm [15], probabilistic roadmap algorithm [16, 17],
rapidly-exploring random trees algorithm [18, 19], Dubin curve based algorithm [20, 21] and
evolutionary algorithm [22]. Each method has its own strengths and weaknesses over others.
Graph search algorithms like Dijkstra, Bellman Ford and A� are algorithms with straight for-
ward implementation. Yet, graph search algorithms are not efficient when they are used in
large search space environment.
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Hence, Differential evolution (DE) algorithm has often been used in UAV path planning
because of its good performance in addressing real-world optimization problems. DE a type of
evolutionary algorithm, which is a stochastic, population based optimization algorithm. Thus,
it may also be used in non-differential and non-linear optimization problems. In addition, DE
has good convergence properties with easy implementation into applications [23–25].

There are several control parameters in DE, namely the population size, differential weight,
and crossover. Obtaining an optimum value for these control parameters in DE is difficult and
requires trial and error because different applications require different optimum parameter set-
tings. DE performance is sensitive to the control parameter setting [26]. Furthermore, tuning the
control parameters is often time consuming [26, 27] and justifying the optimum performance of
DE is difficult. To overcome this issue, the use of mimetic algorithm in DE has been proposed
[28].

Furthermore, studies claim that dynamic control parameters in the DE perform better than
constant control parameters. However, most of these parameters conduct analyses by using
standard test functions and are rarely specific in a particular field [25, 27, 29, 30]. Zielinski [31]
has conducted a parameter study of DE by using the power allocation problem. In addition,
parameter optimization has been studied in other system such as power system using Genetic
algorithm and Kalman-based methods [32–36].

Besada-Portas [24] has presented a performance comparison method by using evolutionary
algorithms for UAV path planning. However, this method does not analyze the control param-
eters in detail. Thus, the optimum control parameter strategy of DE in UAV path planning is
unclear. In this study, we thoroughly investigate the effect of the control parameters in DE for
UAV path planning. Thus, the proposed DE control parameter optimization expedites and
improves in obtaining the desired path and computational cost for UAV path planning.

Methodology

Problem Formulation
The main objective of path planning is to produce an optimum 3D flight path in both compu-
tational time and path distance from initial coordinate to target coordinate. To implement DE
in path planning with high search speed, the initial point is connected with the final point as
the virtual x-axis. Depending on the number of waypoint throughout the flight path, the virtual
x-axis is divided into the same number of intervals and forms a virtual y-axis at each point of
interval (Fig 1). The start and the goal for the desired path throughout the simulations are

Fig 1. Transformation of coordinates system.

doi:10.1371/journal.pone.0150558.g001
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similar in Fig 1 which are [10, 90] and [90, 10] respectively. The map chosen for this study is
from an alpine region, where the mountains and hills are treated as the path obstacles.

Function Cost
The function costs of UAV path planning include flight path distance, real-time computa-
tional time, minimum turning radius, power consumption, and threat area. However, only
the path distance and computational time are analyzed in this study. The other function
costs require study using a specific UAV model to ensure impartial comparison can be done.
Yet, this limits application of the proposed DE model for a particular type of UAV. Thus, by
only optimizing path distance and computational time, the proposed method benefits all
types of UAV.

Also, there are 5 parameters in DE algorithm, namely maximum generation number, length
of solution (number of waypoint in this case study), population size, differential weight and
crossover. Generally, solutions can evolve further when generation number is increased. The
length of solution decides the complexity of the problem while population size, differential
weight and crossover alter the performance of DE. Hence, this work analyzes the effect of pop-
ulation size, differential weight, and crossover on DE to obtain optimized range for those
parameters.

Therefore, the UAV is assumed to carry sufficient power throughout the flight regardless of
the length of the flight with no threat area on a 3D terrain map. The UAV will also maintain a
minimum altitude of 100 m from the ground at each waypoint coordinate. The function cost
can be evaluated by using the following:

J ¼
Xw

i¼1
li ; ð1Þ

where w is the number of waypoints and l is the length between the previous and current
location.

Principles of DE Algorithm
DE was first proposed by renowned researchers Storn and Price [37]. Similar to genetic algo-
rithm (GA), DE involves selection, crossover, and mutation but in a different sequence. The
population is initialized by randomizing individuals within a search space. The population
then undergoes mutation, and an individual vGþ1

i is generated by using the following equation
[38–43]:

vGþ1
i ¼ xGr1 þ F:ðxGr2 � xGr3Þ ; r1 6¼ r2 6¼ r3; i ¼ 1; 2; . . . ;NP; ð2Þ

where x is an individual from the population r ϵ (1, NP), G is the generation or iteration, NP is
the population size, and F is the differential weight. However, not all particles from the muta-
tion will be used in the next operation, depending on crossover probability. Population with
trial individuals uG+1 is produced by the crossover process with the following condition:

uGþ1
ij ¼

vGþ1
ij ; randij � crossover

xGij ; otherwise
j ¼ 1; 2; . . . ; D; ð3Þ

(

where randij is a random value between zero and one for the ith individual at the jth particle.
Thereafter, the trial population will go through the selection process. Unlike GA, the selection
process of DE compares the current population and trial population. The individual with
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lowest cost in the trial population will replace the individual of the current population:

xGþ1
i ¼ uGþ1

i ; f ðuGþ1
i Þ � f ðxGi Þ

xGi ; otherwise
: ð4Þ

(

The process is repeated from mutation to selection until the termination condition is met.
Fig 2 demonstrates the flow of the DE algorithm.

Results and Discussions
To determine the effect of population size, differential weight, and crossover in DE, all combina-
tions of control parameter values are tested. The range of differential weight is set from 0.1 to 1.
Both crossover and population size parameters are set from 10 to 100. The generation number is
from 100 to 1000. Furthermore, the number of waypoints is fixed at 50 in this investigation.

However, similar to other evolutionary algorithms, DE output depends on certain random
probability to obtain better solutions; as a result, the output of DE is uncertain every time.
Therefore, each combination simulation will be repeated 100 times to obtain the average out-
put performance of DE.

The average path and computational cost at the 1000th generation with variations in differ-
ential weight and crossover at various NPs are given in Fig 3. Increasing the differential weight
will favor the reduction of the average path cost when the population size is small because it
increases the diversity of the population. However, an immoderate differential weight will
reduce the performance of DE.

Moreover, a bigger population size tends to limit the optimum range of differential weight
because the diversity of the population is sufficient for bigger populations. An excessive differ-
ential weight will retard the decline of the average path cost. If the crossover increases, the opti-
mum differential weight prone will increase, particularly when the population size is small.

Additionally, increasing both the crossover and differential weight increases the average
computational cost. The reason behind this effect is that more work is needed for higher

Fig 2. DE flowchart.

doi:10.1371/journal.pone.0150558.g002
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crossover probability, whereas a high differential weight is prone to have values outside the
search space. Furthermore, extra work is required to adjust the values within the search space.

Optimization of Differential Weight and Crossover
According to the average path and computational cost given in Fig 3, the balanced value of the
differential weight at various crossover settings can be assumed at the interception point of the

Fig 3. Average path and computational cost at the 1000th generation with variation between
differential weight and crossover at various population sizes of 10, 30, 50, 70, and 100 “Table A in S1
Dataset.”

doi:10.1371/journal.pone.0150558.g003
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average path cost and computational cost. This assumption is valid because increasing the dif-
ferential weight will reduce the average path cost to a certain level before it increases again with
a significant increase in computational cost.

Fig 4 presents an example for obtaining the optimum differential weight at a population size
of 10, generation number of 1000, and crossover rate of 100%. Each interception point from all
combinations of crossover, population size, and generation number is recorded by using the
same method. Hence, the optimum differential weight for different crossover rates at various
population sizes from a generation number of 200 to 1000 is obtained.

In each generation, the average computational cost of various crossovers for the same popu-
lation size is almost the same for all cases in the same generation number, as given in Fig 5. Fur-
thermore, the trend of the average path cost from various crossovers for the same population
size is a parabola with a minimum point. Thus, we assume that the optimum crossover with its
optimum differential weight can be determined at the lowest average path cost of a particular
population size. Fig 6 displays the optimum crossover value and differential weight for different
population sizes from a generation number of 100 to 1000.

Overall Optimization of Control Parameters
The optimum crossover has a tendency to decrease with increasing generation number,
whereas the optimum differential weight is the opposite. A larger population size will have
lower path cost and higher computational cost and vice versa (Fig 6). Moreover, a similar trend
between the average path and computational cost is shown in Fig 7.

Thus, the interception point between both is identified as the balanced performance of the
DE algorithm. The optimum population size at various generation numbers is illustrated in
Fig 8. The figure indicates that the optimum population is almost consistent at the same level
when the generation number increases within the range. Therefore, the optimum population
size will not be affected evidently in these simulations from the initial stage to the convergence
stage. The optimum population size in relation to the maximum generation numbers may be
determined by using the following equation:

P ¼ 0:006909 � Gþ 33:2: ð5Þ

The optimum differential weight and crossover along the generation number is shown in
Fig 9. At this instance, the number of generation is small when the optimum differential weight

Fig 4. Estimation of optimum differential weight at NP = 10, G = 1000, and CR = 100%.

doi:10.1371/journal.pone.0150558.g004
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is small. As the generation number becomes larger, the optimum differential weight increases
with decreasing rate. However, the optimum crossover decreases as the generation number
grows with decreasing rate. Therefore, the optimum differential weight and crossover in

Fig 5. Average path and computational cost obtained with crossover rates on the optimum differential
weight over population sizes at various generations of 200, 400, 600, 800, and 1000 “Table B in S1
Dataset.”

doi:10.1371/journal.pone.0150558.g005
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Fig 6. Optimum crossover and differential weight for various population sizes and generations
“Table C in S1 Dataset.”

doi:10.1371/journal.pone.0150558.g006

Fig 7. Average path and computational cost between various population sizes and generation
numbers at the optimum crossover and differential weight “Table D in S1 Dataset.”

doi:10.1371/journal.pone.0150558.g007

Fig 8. Optimum population size along generation number.

doi:10.1371/journal.pone.0150558.g008
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relation to the generation numbers may be determined by using Eqs (6) and (7), respectively,

F ¼ 1:858 � 10�10G3 � 4:068 � 10�7G2 þ 0:0002821Gþ 0:07939 ð6Þ

CR ¼ 80:55� 8:864 � 10�2Gþ 3:374 � 10�5G2 : ð7Þ

The optimized setting of population size, differential weight and crossover using Eqs (5) till
(7) for different maximum generation number is shown in Table 1. This simplifies the need to
trial and error of the crucial parameters especially population size, differential weight and
crossover for the specific maximum generation number. As a result, the intended output to
obtain the desired path distance and computational time may be achieved for aircraft path
planning mission.

Proposed DE Algorithm Optimization Result
The analyses on the effect of using and optimized DE algorithm are presented. In this occasion,
a simulation was done for a maximum generation number input value of 1000, to make a per-
formance comparison between the optimized parameter setting (i.e. shown in Table 1) and the
all other setting. Fig 10 illustrates the average path cost changes in percentage when compared
to the optimized parameter setting at maximum generation number of 1000.

These analyses clearly indicates that the average path cost at optimized parameter setting is
better than all other setting, except for 3 combination setting (i.e. when Differential Weight is
0.2 and Crossover rate of 30, 40 and 50%). Still, the path cost at these non-optimized parameter
setting are only better in the range of 1–3%. Moreover, the average path cost at all other setting
are generally higher than optimized parameter setting, which may be by almost 200%.

The average computational cost changes in percentage when compared to the optimized
parameter setting at maximum generation number of 1000 is shown in Fig 11. In contrast to

Fig 9. Optimum differential weight and crossover along generation number.

doi:10.1371/journal.pone.0150558.g009

Table 1. Optimized setting of population size, differential weight & crossover at variousmaximum generation number.

Generation 100 200 300 400 500 600 700 800 900 1000

Population 34 35 35 36 37 37 38 39 39 40

Differential Weight 0.10 0.12 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Crossover (%) 72 64 57 51 45 40 35 31 28 26

doi:10.1371/journal.pone.0150558.t001
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the path distance cost, the computational time of optimized parameter setting were better than
all non-optimized parameter setting. In addition, some non-optimized parameter setting have
achieved more than 100% increment in computational time. This clearly indicates the impor-
tance for an optimized parameter setting in DE algorithm for aircraft path planning using opti-
mized setting based on maximum generation number.

Conclusion
Instead trial and error, an optimization of the DE algorithm for tuning the parameters of UAV
path planning is presented in this paper. The parameters focused are population size, differen-
tial weight, crossover, and generation number. In conclusion, the proposed optimization of the
tuning parameters in the DE algorithm for UAV path planning has enabled an expedited and
improved simulation of the final output path and computational cost. The developed algorithm
enables the user to simply define the weightage desired between the path and computational
cost to converge with the minimum generation required based on user requirement.

Supporting Information
S1 Dataset. Path and computational cost data of UAV path planning using DE.
(XLSX)
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Fig 10. Average path cost changes in %when compared to the optimized parameter setting at
maximum generation number of 1000 “Table E in S1 Dataset.”

doi:10.1371/journal.pone.0150558.g010

Fig 11. Average computational cost changes in % when compared to the optimized parameter setting
at maximum generation number of 1000 “Table F in S1 Dataset.”

doi:10.1371/journal.pone.0150558.g011
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