
Computational schemes for the prediction and annotation of 
enhancers from epigenomic assays

John W. Whitaker1,2, Tung T. Nguyen2, Yun Zhu2, Andre Wildberg2, and Wei Wang*

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 
92093-0359, United States. Department of Cellular and Molecular Medicine, University of 
California, San Diego, La Jolla, CA 92093-0359, United States

Abstract

Identifying and annotating distal regulatory enhancers is critical to understand the mechanisms 

that control gene expression and cell-type-specific activities. Next-generation sequencing 

techniques have provided us an exciting toolkit of genome-wide assays that can be used to predict 

and annotate enhancers. However, each assay comes with its own specific set of analytical needs if 

enhancer prediction is to be optimal. Furthermore, integration of multiple genome-wide assays 

allows for different genomic features to be combined, and can improve predictive performance. 

Herein, we review the genome-wide assays and analysis schemes that are used to predict and 

annotate enhancers. In particular, we focus on three key computational topics: predicting enhancer 

locations, determining the cell-type-specific activity of enhancers, and linking enhancers to their 

target genes.
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1. Introduction

During animal development, a single cell divides many times to give rise to a great variety 

of cell-types and tissues. Each of an individual’s cell-types has its own specific set of 

characteristics, yet they are all constructed from the same “blueprints,” as they possess the 

same genome sequence. The genome defines all the genes that are expressed in an 

individual; however, only a specific subset of genes is expressed in any given cell-type. 

Thus, cell-type-specific gene expression must be tightly controlled throughout development. 

Furthermore, incorrect patterns of gene expression can result in diseases, such as cancers.

The expression of genes is controlled by RNA polymerase II (RNA Pol II), which 

transcribes DNA into RNA. The initiation of transcription occurs at the transcription start 

site (TSS). Adjacent to the TSS is the gene promoter, which contains cis-regulatory elements 
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that are bound by transcription factors (TFs) and regulate gene expression. Enhancers, which 

are distal regulatory sites bound by TFs, interact with promoters through DNA looping and 

further tune gene expression [1,2]. The looping increases the local concentration of TFs that 

recruits RNA Pol II to initiate the transcriptional process [3,4]. While gene-coding regions 

and promoters have been well annotated, identification of enhancers remains a great 

challenge, as they can be located hundreds of kilobases (kb) to millions of bases from their 

interacting genes and function independently of their location and/or orientation relative to 

the TSS [4,5].

Initial genome-wide enhancer identification strategies relied on properties of the DNA 

sequence, such as clusters of TF binding sites [6,7] and highly conserved genomic regions 

[8–11]. However, these approaches may not be accurate enough and lack information about 

the cell-type specificity of the identified enhancers. More recently, next-generation 

sequencing technologies have given rise to numerous genome-wide assays that allow the 

cell-type-specific measurement of genomic properties. These approaches have started to be 

applied en masse, especially by projects like ENCODE [12] and the Roadmap Epigenomics 

Project [13]. Herein, we review the use of genome-wide assays, particularly computational 

strategies to identify enhancers on a genome-wide level and to link enhancers to their target 

genes.

2. Identifying the location of enhancers

In this section we discuss approaches that use epigenomic data to predict the genomic 

positions of enhancers. Important assays and predictive features they provide are discussed 

and brought into context, such as enhancer sequence patterns, ChIP-seq, chromatin 

signatures, and DNA methylation.

The genome-wide mapping and annotation of enhancers is a critical step towards a 

comprehensive understanding of the underlying principles of mammalian gene regulation. 

An initial genome-wide approach to enhancer discovery relies on non-coding regions of the 

genome that are conserved across multiple species. The assumption is that functional regions 

evolve under constraints and thus at a lower rate than non-functional regions. This approach 

has been used extensively in the past decade, when genome sequences of multiple species 

became available for comparison. While most commonly used to predict functional TF 

binding sites, several studies used this approach to identify enhancers [7–11]. However, 

recent studies showed that enhancers may not be conserved across species and that 

conservation alone is insufficient to identify cell-type-specific activity of enhancers [14,15]. 

Deletion of conserved regions of the mouse genome resulted in viable mice showing that 

these regions are not always crucial [16]. Moreover, conserved regions of the genome may 

have non-enhancer functions, such as attaching to the cellular matrix [17]. Consequently, 

additional tissue-specific information is needed for more accurate enhancer prediction and 

annotation (Fig. 1).

Since enhancer activity is dependent on sequence-specific DNA-binding of TFs, which in 

turn recruits coactivators to initiate gene transcription, particular sequence signatures 

associated with TF binding sites can be exploited to predict enhancer locations. Sequence 
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features, typically corresponding to cis-regulatory elements, can be detected using known-

TF motifs or de novo motif discovery methods. Several recent studies have demonstrated the 

usefulness of predicting enhancers from combinations of cell-type-specific sequence motifs 

[18–20]. Sets of cell-type-specific enhancers and/or promoters might be regulated through 

common mechanisms, and therefore, sequence motifs might be shared between the sets. 

Several recent studies used DNA oligomers of a specific length, referred to as k-mers, to 

form length k motifs from a training set of enhancer sequences; then a statistical model was 

applied to learn and generalize the rules to discriminate enhancers from non-functional DNA 

sequences [21–23].

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a 

powerful method to identify cell-type-specific binding sites of TFs [24,25]. These binding 

sites have been used in combination with machine learning methods to predict the locations 

of enhancers [6,26]. Such methods are limited as many TF ChIP-seq binding sites are not 

functional [27,28] and any specific TF will only bind to a subset of a cell-type-specific 

enhancers.

Sequence-specific binding TFs often recruit cofactor proteins, such as chromatin-modifying 

enzymes, for example: histone acetyltransferase p300/CBP, BRG1 complex and Mediator 

complex [29,30]. The binding of cofactors facilitates chromatin remodeling and DNA 

looping to form crucial enhancer–promoter interaction [31,32]. Therefore, genome-wide 

profiling of cofactor occupancy provides a general strategy for detecting enhancers [33,34]. 

For instance, Visel et al. used a transgenic mouse assay to show that 87% of enhancers 

identified from p300 ChIP-seq in three tissues were reproducibly active [33].

Nucleosome positioning and dynamics (assembly, mobilization and disassembly of 

nucleosomes) also influence gene transcription [35]. Furthermore, enhancer activity is 

associated with characteristic chromatin signatures that consist of histone tail modifications, 

including H3 lysine 4 monomethylation (H3K4me1), H3K4me3 and H3K27ac [36–38]; 

such chromatin signatures can be identified by clustering analysis of histone modification 

ChIP-seq data [39,40] (Fig. 2A). As an example, in human CD4+ T cells, 39 histone 

modifications have been mapped and several combinations of histone modifications were 

found to mark enhancers; however, no single histone modification was associated with more 

than 35% of enhancers [41]. These results suggested that histone modifications are likely to 

act cooperatively to mark enhancers. This complication suggests that statistical models must 

consider multiple histone modifications when predicting enhancers.

Sophisticated computational methods have been developed to predict enhancer locations 

from histone modifications and the majority fit into two categories: discriminative and 

generative models (Table 1). The discriminative category is inherently supervised and 

requires a large training set, usually collected from coactivator binding sites, such as p300. 

Examples of computational tools in this category are: CSI–ANN [42], ChromaGenSVM 

[43], and RFECS [44]. CSI–ANN first applies a Particle Swarm Optimization technique to 

train a time-delay neural network whose optimal structure is determined by testing different 

numbers of hidden layer nodes and delays. The model then slides a 2.5 kb window across 

the genome to determine if regions match the profile of enhancers. ChromaGenSVM trains a 
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support vector machine (SVM) to recognize the histone modification profiles associated 

with enhancers. It integrates a genetic algorithm to automatically select the types of histone 

marks and the window size of the epigenomic profiles that best characterize enhancer 

regions. For example, from 38 distinct ChIP-seq chromatin marks in human CD4+ T cells, 

ChromaGenSVM picked out a set of only five epigenomic marks (H3K4me1, H3K4me3, 

H3R2me2, H3K8ac, and H2BK5ac) that best characterize active enhancers. Furthermore, it 

was determined that the optimal window size for ChIP-chip data was 5 kb but this dropped 

to 1 kb with ChIP-seq. RFECS is a Random Forest based method that trains a forest of 

binary decision trees, in which the Fisher discriminative approach is used as a linear 

classifier at each tree branch. Each feature is a multi-dimensional vector of 100 bp bins 

forming a window of 2 kb along the enhancers, and the final enhancer prediction is 

determined by votes from all the trees in the forest. These three methods have a similar 

workflow of training and prediction but apply different statistical models. These statistical 

methods also provide a systematic way to evaluate the contribution of individual histone 

marks to enhancer location prediction. For example, RFECS identified H3K4me1 and 

H3K4me3 as the most important features when predicting enhancer locations [44]. It is 

worth of noting that the optimal set of histone marks to predict enhancer locations may not 

be unique due to the functional redundancy of these marks (see below). Comparing the 

performance of these methods should also be interpreted with caution as no gold standard 

set of enhancer locations currently exists. Furthermore, commonly used evaluation criteria, 

such as overlapping predicted enhancers with DNase I hypersensitivity site (DHS) or p300 

binding sites, only provide indirect evidence and represent only a subset of enhancers.

In the generative category, multiple methods use hidden Markov model (HMM) or dynamic 

bayesian network (DBN), including: Chromia [45], ChromHMM [46,47], Segway [48], and 

ChroModule [49]. Both Chromia and ChroModule are supervised learning HMMs; Chromia 

focuses on predicting promoters and enhancers while ChroModule uses a modularHMMto 

segment the entire genome into five categories: promoters, enhancers, transcribed, repressed 

and background. Chromatin modifications surrounding regulatory elements often form 

characteristic shapes, such as bimodal H3K4me3 peaks at active promoters 

[36,39,40,50,51]. Robust methods are needed to represent these profiles as they vary in 

terms of length, magnitude and pattern of epigenomic modification. Both Chromia and 

ChroModule use a mixture of Gaussians to flexibly represent the diverse signal patterns 

associated with regulatory elements and capture the signature patterns. For example, the 

enhancer module in ChroModule can model enhancers either with or without a nucleosome 

free region using a Gaussian mixture model. Therefore, ChroModule can capture novel 

signal patterns and combination of epigenomic modifications associated with regulatory 

elements. Alternatively, ChromHMM puts read counts into 200 bp bins that are discretized 

[52]. In order to associate the genomic locations with HMM states, a posterior probability 

distribution over the state of each interval (bin) is computed. Segway exploits a DBN model 

that works with the full data matrix at 1 bp genomic resolution [48]. An advantage of the 

DBN framework is that it can handle heterogeneous missing data. The method uses a single 

Gaussian distribution to represent the sequencing signals. When applying ChromHMM and 

Segway, a critical step is to select the optimal number of states that best fits the data, which 

is normally achieved by testing a range of states and picking the best performing one. The 
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unsupervised learning strategy in ChromHMM and Segway allows these methods to learn 

unknown combination of chromatin signatures, which may correspond to novel biology. In 

order to interpret the segmentation results of these methods and annotate each state, 

additional information such as TSS and p300 binding sites are needed to associate the 

identified chromatin states to functional elements like promoters and enhancers.

Methods in the discriminative category aim to predict enhancers while generative methods 

segment the epigenome and enhancers are annotated as a part of segmentation. Choice of 

method depends on the purpose of the analysis and the availability of data, as illustrated by a 

comparison between ChromHMM and Segway annotations [47].

Besides histone modification, DNA methylation – the addition of a methyl group to the 

nucleotide cytosine – is another epigenomic feature that can predict enhancer locations. 

Different cell-types and tissues display distinct patterns of DNA methylation [53–55] and 

specific changes in DNA methylation are associated with development of cancers and 

autoimmune diseases, such as rheumatoid arthritis [56,57]. Enhancers have methylation 

levels between 10 and 50% while promoters have methylation levels between 0 and 10% 

and the rest of the genome is marked by higher levels of DNA methylation 

(hypermethylation) [58]. In the Stadler et al. study, the characteristic DNA methylation 

levels are modeled by a three-state HMM model to compartmentalize the genome into cell-

type-specific enhancer and promoter regions [58]. Similar to segmentation of chromatin 

modification data, HMM models have been developed to segment methylomes to 

systematically uncover the regulatory regions associated with characteristic DNA 

methylation levels [59,60]. Additionally, these methods can also reveal regions with 

consecutive DNA methylation levels; such as partially methylated domains (PMD), which 

are broad and inactive regions of the genome. Furthermore, changes in DNA methylation at 

enhancers correlate with changes in the expression of distal genes that may be regulated by 

the enhancers. Therefore, given the gene expression levels and DNA methylation profiles in 

different tissues it is possible to simultaneously identify enhancers and link them to their 

target genes (see below) [61]. For example, Aran et al. first identified differentially 

expressed genes across 58 human cell-types. To train a statistical model they created two 

sets of genomic regions that represent positive and negative examples. The positive set was 

the correlation between CpG methylation in the promoters and the expression levels of their 

corresponding genes, these were taken as the positive examples. The background consisted 

of randomly selected CpG-gene pairs that are located in different chromosomes. Then they 

trained a support vector machine (SVM), known as SVMmap (Table 1), to identify CpG-

gene pairs within a set of genomic window. These distal methylation site and gene pairs 

were found to be enriched with enhancer-associated histone modifications and significantly 

overlapped those detected using 5C (see below).

In summary, various genomic and epigenomic properties have been exploited to predict 

genome-wide enhancer positions. Owing to the complex nature of development and cell-

type-specificity, any single modification or factor used in isolation is often not the best 

predictor of enhancer locations. Instead the integration of multiple layers of genomic/

epigenomic information is more powerful for producing a comprehensive annotation and 

understanding of enhancers. Following this trend, several recent studies have started to 
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explore integrative models to identify potential enhancers [62,63]. Furthermore, there are 

recent advances in high-throughput enhancer identification assays (e.g. STARR-seq [64] or 

using bidirectional expression of short transcripts measured by GRO-seq [65]). These 

techniques should become even more powerful once they are combined with computational 

methodologies. When a complete set of enhancers are cataloged, much work will be 

required to examine spatiotemporal activity of enhancers in a high-throughput, unbiased, 

and dynamic way, especially in the context of multiple developmental stages.

2.1. Predicting the cell-type-specific activity of enhancers

Since the activity signatures of enhancers are diverse and complex, it is important to chart 

their developmental and cell-type specificity. We discuss the techniques that are available 

and how they can be used to determine enhancer activity on a spatiotemporal level (location 

and developmental stage specificity).

As discussed above, enrichment of H3K4me1 [36], hypersensitivity to nuclease digestion 

[66], and sequence conservation between species [8,9,67] have been exploited to identify 

enhancers (Fig. 2A). However, not all enhancers exhibiting these properties are functionally 

active in a specific cell-type (Fig. 2B and C). The histone acetyltransferase p300 was 

initially used to measure enhancer activity [33] but follow-up studies showed that only a 

fraction of enhancers bound by p300 modulate transcription in a given cell-type [37,38]. 

H3K4me1, by itself, is not sufficient to distinguish active enhancers from inactive ones 

[37,38], while H3K27ac, in combination with H3K4me1, were shown to be a more robust 

indicator of enhancer activity [37,38]. For example, genome-wide analysis in mouse 

embryonic stem cells (ESCs) and four other cell-types demonstrated that enhancers marked 

by H3K27ac are associated with genes with higher levels of expression [37]. In addition to 

H3K27ac, several other epigenomic signatures have also been associated with enhancer 

activity: H3K4me3, which is enriched in active promoters, was found to reflect enhancer 

activity in T cells [68]; H3K79me3 and RNA Pol II are also significantly enriched for active 

enhancers in Drosophila melanogaster embryos [69]. Together, these results suggest that 

there is not just one epigenomic modification associated with enhancer activity [69]. Indeed, 

enhancers marked by H3K4me1 but not by H3K27ac in human ESCs were shown to be 

active in other tissues [37]. This suggests that these enhancers, termed poised enhancers, are 

in a primed state and become active upon differentiation or stimuli. Furthermore, poised 

enhancers are associated with enrichment of H3K27me3 [38] and H3K9me3 [70].

A more direct measure of enhancer activity is the transcription of RNAs at the enhancer site. 

While transcription at enhancers was first observed more than 20 years ago [71], only 

recently has evidence been found that enhancer transcription is genome-wide and indicative 

of enhancer activity. Kim et al. identified a large number of short (<2 kb), bi-directionally 

transcribed, and non-polyadenylated RNA transcripts at enhancer sites [72]. These RNA 

transcripts are termed as enhancer RNAs (eRNAs). Interestingly, eRNA transcription levels 

were found to be correlated with the expression levels of their target genes. Moreover, 

eRNAs are produced only in the presence of functional target promoters. These findings 

suggest that eRNA transcription is associated with enhancer activity [72]. Wang et al. 

further confirmed that eRNA transcription is a robust indicator of enhancer activity [73]. 
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Computational methods have been developed to predict enhancer activity from eRNA 

transcription levels measured by global nuclear run-on sequencing (GRO-seq) [65]. For 

example, Melgar et al. extracted GRO-seq signals at enhancers and in nearby windows, then 

used a Bayesian model to predict enhancer activity [65]. Furthermore, knockdown 

experiments showed that eRNAs are functional consequence of enhancers, rather than by-

products of gene transcription [74].

Although eRNA transcription is a direct indicator of enhancer activity, its abundance is low 

and its accurate measurement requires higher sequencing depth than mRNA. Thus, 

integration of chromatin signatures and eRNA transcription becomes a promising approach 

to predict enhancer activity. Zhu et al. used a logistic regression model to learn the 

relationship between chromatin signatures and eRNA production [75]. They demonstrated 

that four histone modification marks are sufficiently accurate to predict eRNA transcription. 

Interestingly, many combinations of four modifications can achieve superior predictions, 

which is consistent with other studies showing that histone marks redundantly mark 

enhancers. They then used the luciferase reporter assay to confirm that their model predicted 

enhancer activity more accurately than using H3K27ac in isolation.

Both chromatin modifications and eRNAs exhibit high cell-type specificity during 

development, differentiation and homeostasis, indicating enhancers have a crucial role in the 

fine tuning cell-type-specific gene expression. In vivo mapping of p300 binding sites in 

mouse embryonic forebrain, midbrain, limb, and heart identified enhancers that recapitulate 

tissue-specific gene expression in transgenic mouse assays [33]. H3K4me1-defined 

enhancers are also cell type-specific and are correlated with gene expression patterns [36]. 

H3K27ac and eRNA production are even more dynamic than the universal mark H3K4me1 

[37,38,70]. Genome-wide mapping of H3K27ac and eRNA production reveals highly 

dynamic enhancer activity during embryogenesis [76], embryonic limb development [77] 

and at estrogen receptor binding sites [78]. Interestingly, a significant portion of H3K4me1-

defined enhancers are not enriched with H3K27ac and do not produce bidirectional eRNA 

transcripts. These poised enhancers are likely not regulatory active but may become active 

in other cell-types, especially those in the same developmental lineage, or following 

stimulation [37].

A recent study used CAGE sequencing to identify active enhancers via eRNA identification 

[79]. However, only 43,011 active enhancers were identified in 808 human cell-types and 

tissues, suggesting that eRNA alone is still limited to predict enhancers due to the low 

eRNA abundance that makes detection difficult. This recent observation further highlights 

the importance of overcoming this hurdle by training computational models to capture the 

characteristic patterns of multiple chromatin modifications based on the top active enhancers 

with the most abundant eRNAs to more exhaustively identify enhancers.

2.2. Linking enhancers with their target genes

Once a putative enhancer is identified it is important to confidently identify the genes it is 

regulating. In this section we will discuss methods that can be used to link enhancers and 

genes. In particular, methods used to analyze chromosome conformation capture methods, 

such as Hi-C and ChIA-PET.
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To determine the regulatory functions of enhancers they must be linked to the genes whose 

expression they control. This task is very important, as enhancer activity is critical in 

controlling cell-type-specific patterns of gene expression. Knowing enhancer–gene 

interactions permits the identification of the regulatory targets of non-promoter TF binding 

sites; such as those identified with ChIP-seq or using DNA-binding motifs. Furthermore, 

these interactions can be identified en masse allowing transcriptional regulatory network to 

be constructed [46,80]. However, linking enhancers to their target genes is very challenging 

since enhancers and target genes: (i) may be very distant [81], (ii) may be located on 

different chromosomes [82], (iii) may have many-to-many relationships [83], and (iv) have 

cell-type-specific interactions [51]. Thus, to accurately link enhancers to their target genes a 

method must be able to evaluate a huge number of potential enhancer–gene combinations in 

a cell-type-specific manner.

The simplest method is to assign enhancers to the closest TSS. However, this method can 

generate many false positives and a 5C (see below) study has shown as little as 7% of 

enhancer interactions are with the closest TSS [84]. An advancement on the closest TSS 

approach is to take into account of genomic domains created by the insulator protein, CTCF 

[85], which is assumed to block promoter- enhancer interactions [51,80]. However, the 

assignment of promoter-enhancer pairs by either of these two methods has been shown to be 

only slightly better than the random control [86]. Comparing promoter and enhancer activity 

between different cell-types can achieve more accurate assignment of promoter-enhancer 

pairs. The idea is that interacting enhancers and promoters display similar patterns of 

activity across cell-types. A logistic regression classifier coupled with transcription factor 

(TF) motifs and expression levels was used to assign promoter-enhancer interactions and 

classify TFs into activators or repressors [46]. However, this approach is based on modeling 

one-to-one promoter-enhancer relationships and is biased towards the closest TSS. To better 

model the many-to-many interaction relationship that exists between promoters and 

enhancers, the genome can be divided into domains of co-regulated promoters and 

enhancers, called enhancer promoter units (EPUs) [86]. Chromatin modification data from 

19 mouse tissues/cell-types was used to define EPUs; there were an average of 5.67 

enhancers per TSS and the domains are highly correlated with 3D chromatin domains 

identified using a technique called Hi-C (see below).

There are a number of experimental techniques that use variants of chromosome 

conformation capture (3C) [87] to identify interactions between enhancers and their target 

genes. In 3C experiments, regions of genomic DNA are cross-linked using formaldehyde, 

forming stable complexes between regions of the genome that are nearby and potentially 

interacting. These DNA region complexes can be measured using PCR primers that are 

designed to measure the level of interaction between two regions of interest, such as a gene 

and an enhancer [88]. Other variants of 3C, such as 4C and 5C [84,89], increase the 

throughput and reduce biases by allowing interactions between multiple regions to be tested 

at one time. These techniques are more powerful when coupled with Hi-C and high-

throughput sequencing, allowing for genome-wide maps of interacting regions [90] (Fig. 

3A). Recently, Hi-C was used to uncover over one million long-range chromatin interactions 

at 5–10 kb resolution [91]; however, this study used 3.4 billion uniquely mapped reads 
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making it very costly to experimentally determine high-resolution enhancer–gene 

interactions in other cell-types or under other conditions. An alternative technology, 

chromatin interaction analysis by paired-end tag sequencing (ChIA-PET), measures 

interactions at a specific factor of interest [92] that requires less sequencing depth (Fig. 3B). 

In particular, ChIA-PET is powerful when targeting a general factor that is enriched at 

interacting enhancer–promoter pairs, such as CTCF [93] or pre-initiation complexes of RNA 

Pol II [94]. However, ChIA-PET requires a high-quality antibody and interactions not 

involving the factor of interest are missed. Similar to the observation that not all binding 

sites of a TF detected by ChIP-seq are functional, it is worth of noting that the interactions 

defined by Hi-C or ChIA-PET may not be functional enhancer–gene pairs but rather 

physical contacts due to nearby functional interactions.

Within the nucleus, genomic loci are organized in functional compartments, which interact 

on a level correlated to gene expression. Hi-C aims to find these interactions by 

interrogating all possible loci as it is not focused on pre-defined interaction sites. However, 

Hi-C data may incorporate many false positive signals and include biases brought about by 

random and self-polymer looping, technical and experimental inaccuracies, and biases 

during the experiment [95]. Hence, when using Hi-C to search for locus interactions, the 

first step should be to filter the interactions, to adjust for and remove biases. An initial 

filtering of contacts with a mixture Poisson regression model, 23,337,830 potential inter-loci 

connections were reduced to 96,137 [96]. A more accurate filtering might be achieved by 

removing biases through comparison of multiple Hi-C data sets [97]. The method is 

motivated by the idea that equivalent biases for detecting contacts between two regions exist 

within multiple datasets. To do this, an iterative correction procedure was applied to mapped 

reads to uncover relative contact probabilities. An iterative normalization process then 

calculates contact probabilities between two pairs of regions for the complete set of 

probability-pairs, which helps to eliminate biases.

Some Hi-C analysis methods have explicitly attempted linking enhancers and genes. One 

recent method used a geometric distribution- based model to form hotspots (or clusters) of 

adjacent Hi-C reads that represent potential sites of DNA–DNA interaction [98]. This first 

step was done without any consideration of read pairing that provides connection in Hi-C. 

Next interaction hotspots are extended by ~3 kb to account for Hi-C reads being enriched at 

the cut sites of the restriction enzymes used in the assay. Finally, high confidence enhancer–

gene links are identified between hotspot pairs where one contains a DHS and enhancer-

related histone modifications and a second is an annotated promoter. The two hotspots must 

also be connected by 2 or more Hi-C reads. The predicted enhancer–gene links were 

enriched with p300 binding sites and enhancer binding TFs. Furthermore, the target 

promoters were significantly bound by RNA Pol II. More recently, a statistical approach to 

distinguish between random loops, technical or experimental biases in the dataset and true 

mid-range contacts was proposed [99]. It extended an existing method [100] via replacing 

the discrete binning approach originally used to sort out random looping events, by a spline-

fitting procedure to achieve an enhanced estimate of contact probability. By using this 

approach, 6–46% more contacts were found compared to the original method. Validation of 

the method was done using a ChIA-PET contact catalog, resulting in 77% matching 
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enhancer–promoter interactions, which also outperformed the original binning approach. 

Furthermore, predictions were successfully compared with 3C-validated contacts.

Alternatively, to remove noise in the contacts identified in Hi-C, it is also possible to 

combine the approach with cross-species conservation data (Fig. 4A) [101]. For example, Lu 

et al. compared the presence/absence of genomic regions across 45 species and established a 

phylogenetic profile for each gene and enhancer in human, in which the predictions were 

being made. Enhancer–gene interactions supported by high Hi-C reads have an average 

correlation of 0.6 between their phylogenetic profiles while an average of 0.35 was observed 

in the background. Based on this observation, they next determined the cut-offs of 

correlation coefficient and Hi-C read counts for selecting enhancer–gene pairs that resulted 

in enhancer–gene links that were more reproducible between replica cell lines. This method 

allows the prediction of many-to-many enhancer–gene links. They observed that genes 

regulated by the same enhancers were functionally related and co-expressed, and links could 

help to explain the role of a disease-causing SNP. However, this method is limited by the 

sequencing depth of Hi-C (only 2 reads were required to connect an enhancer and gene) and 

newly evolved enhancer–gene links maybe be missed as the two are unlikely to share cross-

species conservation patterns.

Owing to the great financial cost involved in experimentally generating genome-wide high-

resolution maps for enhancer and gene interactions from Hi-C, there is a great need for 

computational methodologies that can identify interactions from other types of data. 

Integrative computational methodologies combine cell-type-specific genome-wide 

experiments with non-cell-type-specific information to link enhancers with their target 

genes. For example, ChIP-seq for the histone acetyltransferase p300, which localizes to 

enhancers, was combined with four general features: (i) genomic distance from an enhancer 

to its target gene, (ii) conservation of genes and enhancers across species, (iii) distance in a 

protein– protein interaction network between TFs binding to the enhancer and the target 

gene, and (iv) Gene Ontology (GO) similarities between regulators and the putative target 

genes [102]. The protein– protein interaction and GO features were motivated by the fact 

that auto-regulatory loops are common in gene regulatory networks, and therefore, 

enhancer-binding proteins might be relatively proximal to their target genes in the network 

and have similar GO classifications. These features were combined in a Random Forest 

classifier to achieve a greater than 2-fold improvement over any single feature. However, 

this method can only link enhancers to genes within 2000 kb and identify one-to-one 

relationships. Furthermore, they assumed that all differentially expressed genes were 

positive targets of an enhancer, which is not always the case.

Mapping studies have identified expression quantitative trait loci (eQTLs), which link 

alterations in gene expression to SNPs (Fig. 4b). To identify eQTLs, both SNP variants and 

gene expression are measured in multiple genotypes of the same cell-type. Then the two are 

correlated allowing links between the SNPs and alterations in gene expression. When eQTLs 

lay outside of genes and promoters, they likely correspond to enhancers. Thus, eQTLs 

provide a way of linking enhancers to target genes [103,104]. Combined with enhancer 

predictions made from epigenomic data, eQTLs can be used to computationally predict 

enhancer–gene links; such as an integrative Random Forest model that used the following 
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features: (i) genomic distance, (ii) co-occurrence of TF ChIP-seq peaks at enhancers and 

promoters, (iii) co-expression of target gene and TFs with ChIP-seq peaks at the promoter, 

(iv) DHS at the enhancer, (v) similarity in the GO-terms of the target gene and TFs with 

ChIP-seq peaks at the promoter, (iv) the strength of any CTCF peaks located between the 

enhancer and target gene [105]. Using all the features the method achieved a great 

improvement in performance, an area under the receiver operator curve (AUC) of 0.9 

compared to 0.75 when only a single feature was used. Furthermore, when enhancers and 

genes are separated by >150 kb, the genomic distance feature becomes uninformative while 

the other features remain good predictors and the overall model performance only decreases 

slightly.

3. Conclusions

The advent of next-generation sequencing has brought with it a plethora of genome-wide 

assays that have revolutionized our ability to interrogate the genome. Owing to projects like 

ENCODE [106], Roadmap Epigenomics Project [13] and BLUEPRINT [107], the catalogue 

of human enhancers and its annotation has risen rapidly in recent years. To accompany these 

advances there have been many sophisticated enhancer prediction and annotation methods 

developed. In particular, integrative analysis strategies that use multiple genome-wide 

assays are becoming powerful; continuous development on the experimental and 

computational technologies is likely to further improve the prediction accuracy of enhancers 

and enhancer-target gene linkage.

There are still many challenges ahead. Firstly, large sets of functionally confirmed 

enhancers in different cell-types, at various developmental stages and under diverse cellular 

conditions are needed for developing novel computational methods and further interrogating 

genome-wide measurements. Secondly, better understanding of the mechanistic relationship 

between epigenomic modifications, eRNA transcription, and enhancer activity is critical for 

advancing prediction and annotation of enhancers in the human genome. Thirdly, an 

emerging need is to develop computational methods that can model and infer the dynamics 

of enhancer activity and enhancer–gene interactions in a biological context-dependent 

manner. With the fast advancement of genomic and computational technologies, 

overcoming these hurdles may come much sooner than expected.
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Fig. 1. 
Transcriptional controls and enhancers features in use for computational prediction. (A) 

Schematic representation of the transcriptional activity. Regulatory TFs recruit chromatin-

remodeling complex (coactivators) and histone acetyltransferases (HATs). After 

decondensation of chromatin, regulatory TFs recruit basal transcription complex and RNA 

Pol II to form the initial complex and begin the transcription. (B) A classification of features 

used in computational models for enhancer prediction. Sequence features are those mainly 

relevant to TF binding regions while epigenetic features are relevant to modifications of 

chromatin structure.
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Fig. 2. 
Epigenomic features that mark active and poised enhancers. (A) Generally active enhancers 

are marked by H3K4me1, H3K27ac, H3K9ac, H3K79me1, and H3K79me3. They are also 

bi-directionally transcribed, producing eRNAs that are 1– 2 kb in length. (B) Poised 

enhancers are not active but instead are primed for activation during development and are 

marked by H3K4me1, H3K27me3, and H3K9me3. (C) Closed chromatin is not bound by 

TFs. Binding of pioneer TFs often induces the transition from “closed” to “open” chromatin.
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Fig. 3. 
Overview of Hi-C and ChIA-PET. (A) A schematic shows the Hi-C protocol. (i) 

Formaldehyde cross-linking of the cells (Proteins in green, Chromatin dark blue and light 

blue), followed by digestion (HindIII) of the chromatin. (ii) The restriction site is used to 

attach biotinylated nucleotides (purple). (iii) Ligation of the open ends. (iv) Streptavidin 

beads are used to isolate the biotinylated molecules, followed by (v) paired-end sequencing. 

(B) Schematic of ChIA-PET analysis: The chromatin is prepared by formaldehyde cross-

linking, fragmentation (not shown) and (i) precipitation, followed by (ii), (iii) separate linker 

ligation A and B. Then, the separate probes are mixed to allow for proximity (inter) and self-

ligation, which is followed by (iv) MmeI restriction enzyme digestion. After sequencing, the 

resulting tag-linker products (v) are mapped to the genome (vi). The linker can be used to 

categorize between self and inter ligation, which allows for clustering of self-ligation and 

long-range chromatin interactions (vii).
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Fig. 4. 
Concepts used to link enhancers to their target genes. (A) A schematic shows the 

phylogenetic profiles of two genes and an enhancer. The gene and enhancer pair that share 

the same phylogenetic profile are shown to interact resulting in the expression of ‘Gene B’ 

while ‘Gene A’ does not interact with the enhancer and is inactive. (B) A schematic shows 

an eQTL located within an enhancer that interacts with the shown gene. The genotype ‘A’ 

has a negative effect on enhancer activity resulting in a reduction in gene expression. 

Correlating these changes over multiple genotypes allows enhancers and genes to be linked.
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Table 1

Computational tools for enhancer identification.

Category Approach Statistical model Program/Note Ref.

Sequence motif De novo motifs Support vector machine kmer-SVM [21–23]

TF-binding motifs n/a EEL-enhancer element locator [6]

ChIP-seq p300/Mediator n/a Peak profile scanning [33,34,51]

DNA methylation n/a Support vector machine SVMmap [61]

Genomic window based methylSeekR [58,60]

Histone modification Discriminative models Time-delay neural network CSI–ANN [42]

Support vector machine ChromaGenSVM [43]

Random Forest RFECS [44]

Generative models Dynamic Bayesian network Segway [48]

Hidden Markov model ChromHMM [47]

Modular Hidden Markov model ChroModule [45,49]
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