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Abstract

Acute brain diseases such as acute strokes and transit ischemic attacks are the leading causes of 

mortality and morbidity worldwide, responsible for 9% of total death every year. ‘Time is brain’ is 

a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate 

computational framework for hemodynamic parameters estimation can save critical time for 

thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous 

image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. 

However, low-radiation leads to increased noise and artifacts which require more sophisticated and 

time-consuming algorithms for robust estimation. In this paper, we focus on developing a robust 
and efficient framework to accurately estimate the perfusion parameters at low radiation dosage. 

Specifically, we present a tensor total-variation (TTV) technique which fuses the spatial 

correlation of the vascular structure and the temporal continuation of the blood signal flow. An 

efficient algorithm is proposed to find the solution with fast convergence and reduced 

computational complexity. Extensive evaluations are carried out in terms of sensitivity to noise 

levels, estimation accuracy, contrast preservation, and performed on digital perfusion phantom 

estimation, as well as in-vivo clinical subjects. Our framework reduces the necessary radiation 

dose to only 8% of the original level and outperforms the state-of-art algorithms with peak signal-

to-noise ratio improved by 32%. It reduces the oscillation in the residue functions, corrects over-

estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), and 

maintains the distinction between the deficit and normal regions.
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I. Introduction

Computed tomography perfusion (CTP) has important advantages in clinical practice due to 

its widespread availability, rapid acquisition time, high spatial resolution and few patient 

contraindications. Brain CTP has been proposed for improving the detection of ischemic 

stroke and evaluation of the extent and severity of hypoperfusion [1], [2]. Recently, the 

radiation exposure associated with CTP has raised significant public concerns regarding its 

potential biologic effects, including hair and skin damage, cataract formation and very small 

but finite risk of cancer induction [3], [4]. Consensus has been reached that the “as low as 

reasonably achievable” (ALARA) principle should be executed more consistently. The low-

dose protocols are unfortunately leading to higher image noise, which is compensated by 

using spatial smoothing, reduced matrix reconstruction and/or thick-slices, at the cost of 

lowering spatial resolution [5], [6].

Recent efforts have focused on reducing radiation exposure in CTP while maintaining the 

spatial resolution and the quantitative accuracy. Various algorithms have been proposed to 

reduce the noise in the reconstructed CT image series, including the low-pass filtering, edge-

preserving filtering such as anisotropic diffusion [7], bilateral filtering [8], non-local means 

[9], total variation regularization [10], spatio-temporal filtering such as highly constrained 

back projection (HYPR) [11] and multi-band filtering (MBF). These algorithms attempt to 

reduce the noise in the reconstructed CT image series (first step in Fig. 1), instead of 

improving the deconvolution algorithms or the quantification of perfusion maps (second step 

in Fig. 1). While improving the reconstructed CT images is an important step towards robust 

and accurate hemodynamics quantification, the deconvolution process itself to quantify the 

hemodynamic parameter maps is an essential procedure that generates the perfusion maps 

for disease diagnosis and treatment assessment. A good preprocessing step to reduce the 

noise combined with an unstable deconvolution algorithm is not good enough for accurate 

parameter estimation. Thus, perfusion parameter estimation via robust deconvolution is the 

task we are tackling in this paper.

In this work, we propose a new robust deconvolution algorithm to improve the quantification 

of the perfusion parameter estimation at low-dose by tensor total variation (TTV) 

regularized optimization. All the previously mentioned noise reduction algorithms for CT 

image series can complement our model to further reduce the noise and improve the image 

quality. While previous deconvolution methods have treated each voxel’s concentration 

signal independently, efforts have been put forward in recent years to take the spatial 

correlation of the vascular structure and the temporal continuation of the signal flow 

simultaneously. Spatio-temporal regularization methods to stabilize the residue functions in 

the deconvolution process have been proposed, including weighted derivative [12], sparse 

perfusion deconvolution using learned dictionaries [13]–[16], tensor total variation [17], and 
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Bayesian hemodynamic parameter estimation [18] (these methods are reviewed in Section 

II). However these approaches lack a strong convergence guarantee for the global optimal 

solution to be reached, which is critical for perfusion quantification in clinical practice.

The purpose of this original research is to develop and evaluate the TTV regularized 

deconvolution framework for low dose CTP data. The method is retrospectively evaluated in 

terms of image quality and signal characteristics of low dose brain CTP on both synthetic 

and clinical data.

The contribution of our work is six-fold: (i) we propose to regularize the impulse residue 

functions instead of the perfusion parameter maps; (ii) the optimization is performed 

globally on the entire spatio-temporal data, instead of each patch individually; (iii) total 

variation regularizer is extended into the four dimensional sequence with distinction between 

the temporal and spatial dimensions to couple their strength with the optimal coalition; (iv) 

we provide a globally convergent algorithm with a strong convergence guarantee to solve the 

convex cost function; (v) there is no need of training data or the learning stage, and (vi) our 

approach is able to compute all the common perfusion parameters, including cerebral blood 

flow (CBF), cerebral blood volume (CBV), mean transit time (MTT) and time-to-peak 

(TTP). Finally we show that our proposed approach reduces the necessary radiation dose to 

only 8% of the original level and outperforms the state-of-art algorithms with peak signal-to-

noise ratio (PSNR) improved by 32%. It also corrects over-estimation of CBF and under-

estimation of MTT, and maintains the distinction between the deficit and normal regions.

II. Related work

In this section, we review recent robust deconvolution algorithm for CT or MR perfusion 

(MRP) [10], [12], [13], [15], [16], [18], [19], with an emphasis on the differences between 

the previous contributions and our approach.

In [12], a 4-D spatio-temporal data structure is modeled as a piecewise-smooth function with 

no distinction between the temporal and spatial dimensions. There are two regularization 

terms: one to penalize the gradient within the homogeneous regions; another to control the 

weights of the gradient of the edge fields. Though their formulation is inspired by [20], the 

actual cost function does not have a convergence guarantee. Contrary to their formulation, 

our proposed approach has the following advantages: (i) the temporal and spatial 

components are distinguished by assigning different weights and allowing for optimal fusion 

of their strength; and (ii) it has a convergence guarantee of the convex optimization function.

In [19], the low-dose residue functions are sparsely represented by a linear combination of 

high-dose residue functions from the repository to remove the noise. The sparsity prior 

restricts the number of selected candidate residue functions and encourages high-fidelity 

data restoration. However this approach requires residue functions computed from high-dose 

perfusion data for learning a dictionary, and the patch-wise sparse representation of the 

spatio-temporal representations is computational expensive. In contrast, our proposed 

approach requires no high-quality data for training or learning the dictionary, and performs 
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on the entire 4-D data structure simultaneously with an efficient algorithm and fast 

convergence rate.

In [13], [15], [16], a patch-wise sparse perfusion deconvolution approach is proposed for 

low-dose deconvolution. It has two regularization terms: the first one penalizes the error of 

perfusion map reconstruction from the dictionary patches, the second one penalizes the 

number of non-zeros in the selection coefficient from the dictionary. The data fidelity term is 

based on the basic kinetic flow model. Extensions with tissue-specific dictionaries and 

different perfusion parameters such as blood-brain-barrier permeability are also proposed. 

However, this line of work needs a training stage on the high-dose data, and the patch-based 

computation of the perfusion parameters are relatively slow. Each perfusion map also needs 

to be optimized separately, instead of being computed from one joint model. On the other 

hand, our proposed approach does not require data and time for training, and the global 

optimization on the entire 4-D data yields residue functions that can generate all the 

common perfusion parameter maps in one shot.

In [18], a Bayesian probabilistic framework is proposed to estimate hemodynamic 

parameters, delays, theoretical residue functions and concentration time curves. Multiple 

stationary assumptions and new parameters need to be introduced. Moreover the 

computation of the Bayesian maximum likelihood takes about 10 min on a 256 × 256 × 25 

instances. On the contrary, our proposed method does not need complex Bayesian 

framework and only take less than one minute for computation on a 512 × 512 × 118 spatio-

temporal data.

The deconvolution approach proposed in this paper is also distinct from the previous work 

which uses edge-preserving total variation [10] in low-dose CT reconstruction. [10] focuses 

on the reconstruction procedure from sinogram to images using inverse Radon transform 

while our work addresses the deconvolution procedure from image sequences to perfusion 

maps based on the Indicator dilution theory [21]. Besides this, both the data term and the 

regularization terms in our paper have substantially different meanings from their 

definitions. For CT reconstruction, the data term is a projection process, while for 

deconvolution, it is a spatial-temporal convolution. The TV regularization term is a 

regularization on 2D CT images for CT reconstruction, while we extended it to 4D tensor 

regularization involving both the temporal and the spatial correlation information in the 

deconvolution. To our knowledge, this is the first research proposing tensor total-variation to 

stabilize the deconvolution process.

III. Materials and methods

A. Data acquisition and preprocessing

Clinical dataset—Retrospective review of consecutive CTP exams in an IRB-approved 

and HIPAA-compliant clinical trial from August 2007–June 2014 was used. Twelve 

consecutive patients (10 women, 2 men) admitted to the Weill Cornell Medical College, with 

mean age (range) of 53 (35–83) years were included. 6 subjects (1–6) had brain deficits 

caused by aneurysmal subarachnoid hemorrhage (aSAH) or ischemic stroke, and the other 6 

subjects (7–12) had normal brain images. CTP was performed with a standard protocol 
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using GE Lightspeed Pro-16 scanners (General Electric Medical Systems, Milwaukee, WI) 

with cine 4i scanning mode and 60 second acquisition at 1 rotation per second, 0.5 sec per 

sample, using 80 kVp and 190 mA. Four 5-mm-thick sections with pixel spacing of 0.43 mm 

between centers of columns and rows were assessed at the level of the third ventricle and the 

basal ganglia, yielding a spatio-temporal tensor of 512 × 512 × 4 × 118 where there are 4 

slices and 119 temporal samples. Approximately 45 mL of nonionic iodinated contrast was 

administered intravenously at 5 mL/s using a power injector with a 5 second delay. These 

acquired CTP data at high-dose were considered the reference standard for comparison to 

lower-dose CTP. For data analysis, vascular pixel elimination was applied by using a 

previously described method [22], in which the threshold for a vascular pixel was 1.5 times 

the average CBV of the unaffected hemisphere.

Low-dose simulation—To avoid the unethical repetitive scanning of the same patient at 

different radiation doses, we follow the practice in [23], [24] to simulate low-dose CT scan 

by adding spatially correlated statistical noise to the reconstructed CT images (before 

deconvolution). The tube current-exposure time product (mAs) varies linearly with the 

radiation dosage level. The dominant source of noise in CT imaging is quantum mottle and it 

is inversely proportional to the square root of mAs (1/ mAs).

The standard deviation of the added noise is computed by

σa = K · (1
I − 1

I0
)

1
2 (1)

where I and I0 are the tube current-exposure time product (mAs) at low-dose and normal 

dose. K is calibrated on 22 patients and the average value of K = 103.09mA
1
2 . Gaussian noise 

is convolved with the noise autocorrelation function (ACF) generated from scanned low-

dose phantom and scaled to the desired σa. For low-dose tube current of 30, 15 and 10 mAs 

gives the standard deviation σa = 17.27, 25.54, 31.73. The noise spectrum of any simulated 

noise added to any image by this procedure is guaranteed to have the spectral property 

observed in an actual CT scan of the phantom on the same scanner.

Synthetic dataset—Because the clinical CTP does not have ground truth perfusion 

parameter values for comparison, we first use synthetic data to evaluate the proposed 

algorithm. The arterial input function (AIF) is simulated using a gamma-variant function 

[25] with the analytical form of:

cart(t) =
0 if t ≤ ta

a(t − ta)be
−(t − ta)/c

if t > ta
(2)
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where ta is bolus arrival time to any given region. Generally, a = 1, b = 3, c = 1.5 s, ta = 0 are 

used to generate AIF typically obtained for a standard injection scheme. The transpose 

function h(t) is

h(t; α, β) = 1
βαΓ(α)

tα − 1e−t /β α, β > 0 (3)

We set β = MTT/α to satisfy the central volume theorem [26]. Three types of experiments 

were performance on synthetic data: residue function recovery, uniform region estimation 

and contrast preserving.

Digital brain perfusion phantom—To provide a more authentic evaluation of the 

deconvolution algorithms on brain perfusion data, we use the Digital Brain Perfusion 

Phantom package1 provided by Pattern Recognition Lab, FAU Erlangen-Nurnberg, 

Germany. The package offers data and MATLAB tools to create a realistic digital 4D brain 

phantom with user-input regions of infarct core and ischemic penumbra in the white and 

gray matters, as well as the healthy tissue. Since the classical digital CT perfusion phantoms 

usually consist of homogeneous structures and therefore have a very sparse representation in 

transformed domains, this digital phantom derived from a human volunteer with additionally 

created spatial variation allows a more realistic evaluation platform for non-linear 

regularization of perfusion CT with regions with high intrinsic variability.

B. Computation of perfusion parameters using deconvolution

The computational framework of the perfusion parameters in CTP has been well explained 

in a review paper by [27]. We briefly introduce the mathematic functionals here and lay the 

foundation for our proposed algorithm. For a volume under consideration vvoi, let cart be the 

local contrast agent concentration at the artery inlet, and cvoi be the average contrast agent 

concentration in vvoi. ρvoi is the mean density of the volume vvoi. CBF is defined as the 

blood volume flow normalized by the mass of the volume vvoi and is typically measured in 

mL/100g/min. CBV quantifies the blood volume normalized by the mass of vvoi and is 

typically measured in mL/100g. MTT usually measured in seconds, is defined as the first 

moment of the probability density function h(t) of the transit times. TTP of the time-

concentration curve is the time for the contrast concentration to reach its maximum.

Furthermore, the (dimensionless) residue function R(t) quantifies the relative amount of 

contrast agent that is still inside the volume vvoi of interest at time t after a contrast agent 

bolus has entered the volume at the arterial inlet at time t = 0, as

R(t) = 1 − ∫
0

t
h(τ)dτ if t ≥ 0

0 if t < 0
(4)

1http://www5.cs.fau.de/data
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Due to the various transit times within the capillary bed, the contrast will leave the volume 

gradually overtime. According to the indicator-dilution theory, the time attenuation curve 

(TAC) cvoi can be computed by

cvoi(t) = CBF · ρvoi ·
−∞

∞
cart(τ)R(t − τ)dτ = CBF · ρvoi · (cart ⊗ R)(t) (5)

where ⊗ denotes the convolution operator. Here the variables cvoi(t) and cart(t) can be 

measured and are known, whereas the values of CBF, R(t) and ρvoi are unknown. To 

compute the perfusion parameters, an intermediate variable, the flow-scaled residue function 

K(t) is introduced:

K(t) = CBF · ρvoi · R(t) (6)

which is given in units of 1/s. The function cart(t) is usually replaced by a global arterial 

input function (AIF) measured in a larger feeding artery in order to achieve a reasonable 

signal-to-noise ratio (SNR). In brain perfusion imaging, the anterior cerebral artery is often 

selected. Thus, Eq. (4) can be rewritten as

cvoi(t) = (AIF ⊗ K)(t) (7)

Hence K(t) can be computed from the measured data AIF(t) and cvoi(t) using a 

deconvolution method, and the perfusion parameters may be determined as

CBF = 1
ρvoi

· max (K(t))

MTT = 1
max (K(t)) ·

0

∞
K(τ)dτ (8)

CBV = MTT · CBF = 1
ρvoi

·
0

∞
K(τ)dτ

TTP = arg max 
t

cvoi(t) = arg max
t

(AIF ⊗ K)(t)

Here using max (K(t)) instead of K(0) has particular practical advantages due to bolus delay, 

defined as the delay time between the contrast arrival at tissue and the artery due to disease 

or other reasons.
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In practice, AIF and cvoi(t) are sampled at discrete time points, ti = (i − 1) · Δt with i = 1, …, 

T. Eq. (7) can be discretized as

cvoi(ti) =
0

∞
AIF(τ)K(t − τ)dτ ≈ Δt ∑

j = 1

T
AIF(t j)K(ti − j + 1) = Δt ∑

j = 1

T
AIF(ti − j + 1)K(t j)

(9)

Here we assume that the values of AIF(t) can be neglected for t > T. The end of summation 

index can also be set to i instead of T since K(t) = 0 for t < 0. For a voxel of interest, Eq. (9) 

can be abbreviated as

c = Ak (10)

where Δt and AIF(ti) are incorporated in the matrix A ∈ ℝT×T, cvoi(ti) and K(ti) represent the 

entries in vectors c ∈ ℝT and k ∈ ℝT. For a volume of interest with N voxels, we have

C = AK (11)

where C = [c1, …, cN] ∈ ℝT×N, K = [k1, …, kN] ∈ ℝT×N represent the contrast agent 

concentration and scaled residue function for the N voxels in the volume of interest.

In practice, the causality assumption in Eq. (9), i.e. the voxel signal cannot arrive before the 

AIF, may not hold. The AIF can lag cvoi(t) by a time delay td in practice because the 

measured AIF is not necessarily the true AIF for that voxel, thus resulting in AIF(t) = cart(t − 
td). For instance, this lag can happen when the chosen AIF comes from a highly blocked 

vessel. Thus the calculated R′(t) should be R(t + td) to yield cvoi(t) at the voxel. However the 

causuality assumption in Eq. (9) makes the estimation of R′(t) improper. Circular 

deconvolution has been introduced to reduce the influence of bolus delay [28], where R′(t) 
can be represented by time shifting R(t) circularly by td.

Specifically, cart(t) and cvoi(t) are zero-padded to length L, to avoid time aliasing in circular 

deconvolution, where L ≥ 2T. We denote the zero-padded time series as c̅art ∈ ℝL×1 and c̅voi 

∈ ℝL×1. Matrix A is replaced with its block-circulant version Acirc, with the elements 

(acirc)i,j of the block-circulant matrix Acirc ∈ ℝL×L defined as in [27] with the form of

(acirc)i, j
=

cart(ti − j + 1), for  j ≤ i

cart(tL + i − j + 1), for  j > i
(12)

In this paper, we set L = 2T, and Eq. (10) can be replaced by
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c = Acirck (13)

and Eq. (11) can be replaced by

C = AcircK (14)

where c̅ ∈ ℝL×1 and k̅ ∈ ℝL×1 are the zero-padded time series of c and k, as

c = [c1, c2, …, cN, 0, 0, …, 0]T (15)

k = [k1, k2, …, kN, 0, 0, …, 0]T

Similarly, C̅ ∈ ℝL×N and K̅ ∈ ℝL×N are the zero-padded time series of C and K. For 

simplicity, we use C, A and K to represent the block-circulant version in Eq. (14) in the rest 

of the paper.

C. Tensor total variation regularized deconvolution

The least square solution of Eq. (11) is equivalent to minimizing the squared Euclidean 

residual norm of the linear system given by Eq. (11) as

Kls = arg min 
K ∈ ℝT × N

(‖AK − C‖2
2) (16)

However, for the ill-conditioned Toeplitz matrix A, the least-square solution Kls does not 

represent a suitable solution. A small change in C (e.g. due to projection noise or low-dose 

scan) can cause a large change in Kls. Regularization is necessary to avoid the strong 

oscillation in the solution due to small singular values of matrix A.

Our assumption is that since the voxel dimensions in a typical CTP image are much smaller 

than tissue structures and changes in perfusion are regional effects rather than single voxel 

effects. Within extended voxel neighborhoods the perfusion parameters will be constant or 

of low-variation, while it is also important to identify edges between different regions where 

tissues undergo perfusion changes, particularly deficit regions. Specifically the pixel spacing 

of our clinical data is 0.43 mm between the centers of adjacent rows and columns. In 

comparison, the tissue structure of the white matter and gray matter usually in the range of 

10–50 pixels with relatively similar perfusion parameters or residue functions.

We introduce the tensor total variation regularizer to the data fidelity term in Eq. (16) as
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Kttv = arg min 
K ∈ ℝT × N

(1
2‖AK − C‖2

2 + ‖K‖TV) (17)

It is based on the assumption that the piecewise smooth residue functions in CTP should 

have small total variation. The tensor total variation term is defined as

‖K‖TTV
γ = ∑

i, j, k, t
∑

d = 1

4
(γd ∇dK)2 (18)

where ∇d is the forward finite difference operator in dimension d, and K̃ ∈ ℝT×N1×N2×N3 is 

the 4-D volume obtained by reshaping matrix K based on the spatial and temporal dimension 

sizes. Here N = N1 × N2 × N3 is the total number of voxels in the entire CTP data and T is 

the time duration of the whole sampling sequence. Note that the computation is performed 

on the entire spatio-temporal data in one shot, instead of splitting the data into patches. So 

there is no parameter for the neighborhood size in the TTV regularization. The forward finite 

difference is computed based on the difference between two adjacent voxels only, just as in 

the standard TV. Non-local total variation with difference between non-adjacent voxels 

would be an interesting research direction in the future. The tensor total variation term here 

uses the forward finite difference operator using L1 norm. The regularization parameter γi, i 
= t, x, y, z controls the regularization strength for the temporal and spatial dimension. The 

larger the γi, the more smoothing the TV term imposes on the residue function in ith 

dimension.

Since the TV term is non-smooth, this problem is difficult to solve. The conjugate gradient 

(CG) and PDE methods could be used to attack it, but they are very slow and impractical for 

real CTP images. Motivated by the effective acceleration scheme in Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) [29], we propose an algorithm to efficiently solve the 

problem in Eq. (17) based on the framework of [29], which uses FISTA for TV 

regularization.

Algorithm 1

The framework of TTV algorithm.

Input: Regularization parameters γi, i = t, x, y, z

Output: Flow-scaled residue functions K ∈ ℝT × N1 × N2 × N3.

K0 = 0

t1 = r1 = K0

for n = 1, 2, …, N do

1 Steepest gradient descent

Kg = rn + sn + 1AT(C − Arn)
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where sn + 1 = vec(Q)Tvec(Q)
vec(AQ)Tvec(AQ)

, Q ≡ AT (Arn − C)

2 Proximal map:

Kn = proxγ(2‖K‖TV)( foldt(Kg))

where proxρ(g)(x) ≔ arg min 
u

g(u) + 1
2ρ‖u − x‖2

3 Update t, r

tn + 1 = (1 + 1 + 4(tn)2)/2

rn + 1 = Kn + ((tn − 1)/tn + 1)(Kn − Kn − 1)

end for

The proposed scheme include the following well-known important algorithms:

FISTA—FISTA considers minimizing the following problem:

min  f (x) + g(x), x ∈ ℝp (19)

where f is a smooth convex function with Lipschitz constant Lf and g is a convex function 

which may be non-smooth. An accelerated scheme is conceived in FISTA to obtain ε-

optimal solution in O( 1
ε ) iterations.

Steepest gradient descent—To find a local minimum of a function, steepest gradient 

descent takes steps proportional to the negative of the gradient of the function at the current 

point. An adaptive step size s [30] is used because the ill-conditioned matrix A makes the 

solution sensitive to the noise in the observation C. In Algiorithm 1, vec(x) means stacking 

the values in x as a vector.

The proximal map—Given a continuous convex function g(x) and any scalar ρ > 0, the 

proximal map associated to function g is defined as follows [29]

proxρ(g)(x) ≔ arg min 
u

g(u) + 1
2ρ‖u − x‖2 (20)

For the proximal map, we extended the 2-dimensional TV regularizer in [29] to 4-

dimensional and adapted the algorithm to tensor total variation regularization. The entire 
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algorithm is shown in Algorithm 1. Since the cost function in Eq. (17) is convex, global 

optimal solution can be reached using the proposed algorithm.

IV. Experiments

A. Baseline methods

There are four baseline deconvolution methods we compare against: standard truncated 

singular value decomposition (sSVD) [25], block-circulant truncated SVD (bSVD) [28], 

Tikhonov regularization [27] and sparse perfusion deconvolution (SPD) [13]. A threshold 

value λ is empirically chosen as 0.15 (15% of the maximum singular value) to yield optimal 

performance for SVD-based and Tikhonov algorithms. The first three methods are the most 

widely used regularized deconvolution methods for CTP, and widely adopted by commercial 

medical software [31]. SPD is the state-of-art algorithm for low-dose CTP deconvolution. 

We also further compare with the state-of-art noise reduction method - time-intensity profile 

similarity (TIPS) bilateral filter [8] - as a preprocessing step before deconvolution. TIPS 

reduces noise in 4D CTP scans while preserving the time-intensity profiles that are essential 

for determining the perfusion parameters. The parameters of TIPS filtering are set as 

recommended in [8], with half width = 5, and the standard deviation = 3 for the spatial 

dimension and 0.1 for the temporal dimension. We compare with two combinations of TIPS 

with deconvolution algorithms: TIPS + bSVD and TIPS + TTV, to examine the strength of 

TIPS in improving the accuracy of perfusion parameters by reducing the noise in 

preprocessing. We choose these two combinations as typical examples because bSVD is the 

mostly widely used deconvolution algorithm in commercial software, and TTV is the 

proposed robust deconvolution algorithm. Thus in total there are seven algorithms to 

compare with: sSVD, bSVD, TIPS+bSVD, Tikhonov, SPD, TTV and TIPS+TTV, in the 

following experiments.

B. Implementation details

All algorithms were implemented using MATLAB 2013a (MathWorks Inc, Natick, MA) on 

a MacBook Pro with Intel Core i7 2.3G Hz Duo CPU and 16GB RAM. One-tail student test 

is used to determine whether there is significant difference between the evaluation metrics of 

the comparing algorithms. A α level of .05 is used for all statistical tests to indicate 

significance.

C. Initialization

The initialization of the TTV algorithm is important for efficient optimization. Since the 

TTV algorithm is globally optimal, a good initialization would expedite the process to find 

the optimal solution. In Algorithm 1, we initialize the TTV algorithm with r1 = 0 because 

there is no need to compute any initial solution from existing deconvolution algorithms, and 

therefore improves the efficiency. We perform an experiment on the digital perfusion brain 

phantom using TTV algorithm initialized with zero, the solution of bSVD, and TIPS+TTV 

initialized with zero. Fig. 2 shows the convergence of the cost function of TTV algorithm. It 

demonstrates that though TTV initialized with the solution of bSVD does have a relatively 

lower cost to start with, the improvement is minor and by the third iteration, the difference of 

initialization has disappeared. The plot also shows that TIPS preprocessing does not further 
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improve the optimization to a lower cost. Therefore, initialize r with zero is a practical and 

efficient option for TTV algorithm.

D. Evaluation metrics

Three metrics were used to evaluate the image fidelity to the reference: Root mean-squared-

error (RMSE), PSNR and Lin’s Concordance Correlation Coefficient (CCC). RMSE 

evaluates the variability of the estimated low-dose maps compared to the reference. A value 

close to 0 indicates a smaller difference of data compared to the reference. PSNR reflects the 

signal-to-noise relationship of the result, and a higher PSNR indicates higher data quality. It 

is also used in the paper to describe the noise level. Lin’s CCC measures how well a new set 

of observations reproduce an original set, or the degree to which pairs of observations fall on 

the 45 line through the origin. Values of ±1 denote perfect concordance and discordance; a 

value of zero denotes its complete absence. In clinical CTP data, the maximum value in CT 

data is around 2600 HU, and simulated low-dose of 15 mAs yields σa = 25.54, which gives 

PSNR=40 for the noise level. In the synthetic evaluations, we conducted experiments at 

much lower PSNRs to highlight the differences between algorithms at even lower radiation.

V. Results

In this section, we describe our experiment design and results on three types of data: 

synthetic, digital brain phantom, and clinical subjects. The three types of data provide 

complementary evaluation of the proposed method compared to various baseline methods. 

The synthetic data gauge the fundamental properties of TTV in residue function recovery, 

uniform region estimation, contrast preservation, and accuracy at varying perfusion 

parameter values and noise levels. The digital brain phantom allows for a more authentic 

evaluation by providing a brain model based on real physiological data and avoiding sparsity 

by continuously varying perfusion parameters and anatomical structures of MR data. Finally 

the clinical in-vivo data provides realistic evaluation at varying radiation dosage levels. The 

subjects with normal brain, aneurysmal subarachnoid hemorrhage (aSAH) and acute stroke 

also allow the evaluation of diagnosis accuracy based on the perfusion maps computed from 

the deconvolution algorithms. Overall, the three types of data with the comprehensive 

experiment designs give a thorough assessment of the proposed method, as compared to the 

state-of-art. The MATLAB source code will be publicly available at the authors’ webpage2.

A. Synthetic Data

Due to the lack of ground truth perfusion parameter values in clinical data, we first evaluate 

the proposed method on synthetic data.

1) Noise Power Spectrum—To prove that the simulated noise is comparable to the real 

noise in the low-dose scans, we generate low-dose phantom by adding correlated Gaussian 

noise on a CT phantom with a uniform circular region in the background. The noise power 

spectrum of the simulated and real low-dose phantoms at 10 mA are shown in Fig. 3 (a). 

From the figure, we could observe that the simulated and real low-dose phantoms have 

2http://users.cs.fiu.edu/~rfang/software.html
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highly comparable noise power spectrum, indicating that the low-dose simulating method 

adopted in this paper is valid.

2) Residue Function Recovery—We first evaluate the deconvolution methods in residue 

function recovery. We produce the AIF and residue functions according to Eq. (2) and (4). 

Then cvoi is generated using Eq. (5), followed by adding correlated Gaussian noise to cvoi to 

simualted low-dose contrast curve at 10 mA. Finally all the competing algorithms are 

performed on cvoi and AIF to compare their ability in recovering the ideal residue functions.

The residue function recovered by the baseline methods and TTV are shown in Fig. 3(b–f). 

The baseline methods show unrealistic oscillation with negative values and elevated peaks, 

while the residue function recovered by TTV and TIPS+TTV are more in agreement with 

the reference. Since the maximum value of the residue function is defined as CBF, all the 

baseline methods over-estimate CBF while TTV-based algorithms has nearly accurate 

estimation of CBF. Because TTV already has noise removal property, preprocessing with 

TIPS does not further improve the residue function recovery. On the other hand, even with 

TIPS preprocessing to remove the noise in the low-dose CTP data, the popular bSVD 

algorithm still fails to recover the ground truth residue function or the perfusion parameters 

accurately. This indicates that preprocessing steps of the noisy CTP data can not surrogate a 

robust deconvolution algorithm to recover the residue functions.

3) Uniform region estimation—Once the residue function are recovered, perfusion 

parameters CBF, CBV, MTT and TTP can be estimated using Eq. (8). To analyze the 

perfusion parameter accuracy in the homogeneous region, we first experiment on a small 

uniform region of 40×40 voxels with the same perfusion characteristics, and compute the 

mean and standard deviation of the perfusion parameters over this region. We set CBV = 4 

mL/100 g, and vary CBF and MTT values or PSNR values to gauge the performance of 

competing deconvolution algorithms at a wide range of possible conditions. The standard 

deviation of each algorithm is also computed to judge their stability. Quantitative results are 

reported to give a detailed comparison using a number of evaluation metrics.

Visual comparison: The ideal variability of the perfusion maps in the uniform region 

should be zero while the estimated perfusion parameters should be close to ground truth. 

Fig. 4 shows the estimated perfusion maps of the reference and four methods on the uniform 

region. While the SVD-based methods (sSVD, bSVD, Tikhonov) behave poorly in 

recovering the smooth region, TTV yields accurate estimation of the perfusion maps for all 

four maps. SPD reduces the noise level in estimating CBF and TTP, but is unable to well 

recover CBV and MTT. It also over-estimate CBF and under-estimate MTT. TIPS 

preprocessing reduces the noise to certain extent and does improve the perfusion map 

accuracy and homogeneity when deconvolved with bSVD, yet the noise and artifacts still 

remain the CBF, MTT and TTP maps. In comparison, TTV not only decreases the noise 

standard deviation in the estimated perfusion maps, but also restores the accurate 

quantitative parameters for all maps. TIPS does not further improve the performance of TTV 

except for TTP, which is more sensitive to noise since it finds the time stamp of the curve 

peak. The conclusion from this experiment agrees with the residue function recovery result, 
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where TTV performs the best among all deconvolution algorithms, and purely using TIPS 

for preprocessing could not solve the issues embedded in the deconvolution algorithms.

Varying perfusion parameters: To evaluate the robustness of the deconvolution algorithms 

at different perfusion parameter values (such as in different tissue types or diseased/healthy 

regions), we vary the CBF value while keeping CBV the same. Fig. 5 (a)–(b) show the 

estimated CBF and MTT values at varying CBF values. Obviously, while sSVD tends to 

over-estimate CBF in all cases, other baseline methods overestimate CBF when CBF is less 

than 60 mL/100 g/min, and under-estimate CBF when CBF is greater than 60 mL/100 g/

min. For MTT, the baseline methods tend to under-estimate MTT. TIPS help to adjust the 

estimated perfusion parameters to the reference with certain extent, but still deviates from 

the ground truth. By comparison, TTV has a robust performance in estimating the perfusion 

parameters at varying CBF values.

Varying PSNR: To explore the effect of noise levels on the performance of perfusion 

parameter estimation, we simulate different levels of noise (PSNR varies from 5 to 60) and 

fix CBF at 15 mL/100 g/min, MTT at 16 s and CBV at 4 mL/100 g. Fig. 5 (c)–(d) show the 

estimation results. As PSNR decreases, the baseline methods over-estimate CBF and under-

estimate MTT. TIPS, as shown in the previous experiments, helps to improve the accuracy to 

some degree but not perfectly. TTV consistently generates more accurate estimation of CBF 

than the baseline methods across a broad rage of noise levels. Moreover, while the accuracy 

of the baseline methods degrades dramatically as the noise level increases, TTV method 

appears to be remarkably stable.

Stability: Stability refers to the standard deviation of the estimated perfusion parameters in 

repetitive experiments. Stable algorithms is capable of reproducing the same result every 

time, while unstable algorithms may yield highly distinct output even for the same setup. 

Thus, stability is a desired property of a robust deconvolution algorithm. As shown in Fig. 

6(a)–(b) (where CBF or MTT varies) and Fig. 6 (c)–(d) (where PSNR varies), TTV produces 

lower CBF and MTT variations than all the baseline algorithms. SPD achieves relatively 

lower variation, but has lower accuracy of CBF and MTT estimation. TIPS reduces the 

variation of the bSVD deconvolution algorithm but is less stable compared to TTV. In the 

meantime, TIPS does not further improve the stability of TTV, which validates the inherent 

denoising capability of TTV deconvolution algorithm.

Quantitative comparison: To quantitatively compare the accuracy of perfusion parameters 

in the uniform region, Table I shows RMSE and Lin’s CCC for Fig. 5. CBV is not included 

because it does not vary. Lin’s CCC are not shown for varying PSNR because the true value 

for the estimated perfusion parameter does not change and thus Lin’s CCC becomes zero. 

For CBF and MTT, the most important two perfusion maps for disease diagnosis, TTV-

based algorithm significantly outperforms the baseline methods with large margin. In TTP 

map, sSVD achieves relatively better result when CBF/MTT vary, but the different is small. 

When PSNR varies, TTV maintains the least RMSE in estimating TTP. An interesting 

observation is that while the third columns in Table I has higher RMSE than these in the first 

columns for all baseline methods, TTV has lower RMSE in the third column than in the first 
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column. By observing Fig. 5, it is not difficulty to find that TTV is remarkably robust at 

different PSNR values, especially at very low PSNR, as shown in Fig. 5(c) and (d). The 

errors introduced by TTV at different PSNR values are even smaller than those at different 

true CBF/MTT values. In contrast, the baseline methods either over-estimate CBF or under-

estimate MTT at different ground truth CBF/MTT values, but within certain bound, while 

the error at decreasing PSNR almost increases exponentially. This explains why in Table I 

TTV reverses the trend in RMSE contrary to the competing methods.

4) Contrast preserving—Contrast is an important indicator of how well two neighboring 

different regions can be distinguished. The contrast of perfusion parameters between the 

normal and abnormal tissue computed using the deconvolution algorithm from the noisy 

data should be comparable to that of the noise-free CTP data. To compare the performance 

of the baseline methods and TTV in preserving contrast, we generate synthetic CTP data 

spatially containing two 40 × 20 uniform regions with different perfusion characteristic. 

Peak contrast-to-noise ratio (PCNR) is defined as PCNR = max |I1 − I2|/σ, where I1 and I2 

are the perfusion parameter values of then two images to be compared for contrast. Typical 

perfusion parameters of the gray matter and the white matter are chosen for the two halves 

of the region.

Fig. 7 shows the estimated CBF and MTT by the different algorithms when PCNR=1 and 

0.2. The corresponding σ=40 and 200.

When PCNR = 1 and the noise level is moderate, SVD-based methods without 

preprocessing fails to preserve the uniform regions in each half, while the edge is reasonably 

maintained. SPD performs well in preserving the homogeneous regions in CBF, CBV and 

TTP but for the most sensitive perfusion map MTT, the noise level is relatively high. TTV 

performs well on recovering all the perfusion maps while keeping the boundary between the 

two regions sharp. TIPS preprocessing does help to remove the noise and improve the 

quality of the perfusion maps significantly when combined with bSVD at this PCNR level, 

but does not further improve the TTV performance.

When PCNR = 0.2, the story is different. At such a low contrast-to-noise ratio, it is 

extremely hard to recover the perfusion maps accurately. SVD-based algorithm could hardly 

preserve the boundary between the two regions, and the noise level is so high that salient 

information cannot be identified. They also over-estimate CBF and under-estimate MTT 

when observing the gray-scale color of the maps. SPD reduces the noise level slightly yet 

the boundary can not be well identified. TIPS removes the noise significantly to recover the 

perfusion maps, but due to the smoothing in the spatial domain, the boundary of CBF, MTT 

are blurred. TTV performs favorably compared to all baseline methods in preserving the 

edges between two adjacent regions in CBF and MTT, as well as accurate estimation of 

perfusion parameters. Though the variation in the most sensitive map MTT is observable, 

the boundary is clearly shown. With TIPS, TTV could further reduce the noise level, yet also 

blur the boundary.

Fang et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Digital brain perfusion phantom

A digital brain perfusion phantom is generated using the MATLAB toolbox. The diseased 

tissue with reduced or severely reduced blood flow are annotated manually on the digital 

brain phantom to simulate ischemic penumbra and infarct core in the brain, as shown in Fig. 

8. We use the default perfusion parameters in the toolbox for the gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF). TACs are generated by convolving the AIF with 

residue functions scaled by CBF. All deconvolution or denoising methods are applied to the 

created digital brain perfusion phantom to compute the residue functions, and then to yield 

the perfusion parameters including CBF, CBV, MTT and TTP. The visual and quantitative 

results are compared to evaluate the accuracy and robustness of the competing algorithms.

Fig. 9 shows the estimated perfusion maps (CBF, CBV, MTT and TTP) of the digital brain 

perfusion phantom using the completing methods. The ground truth perfusion maps are 

provided by the phantom toolbox, so we could compare the estimated maps with the ground 

truth. Baseline methods under-estimate CBF and over-estimate MTT, while TTV has highly 

accurate estimation for most of the perfusion maps. Though for MTT, the infarct core and 

ischemic penumbra are slightly under-estimated, the distinction between the health and 

reduced blood flow tissue are clear, and the overall MTT map are in better agreement with 

the reference than the baseline methods. Table II further validates the superiority of TTV 

algorithm compared to baseline methods for the two most important perfusion maps for 

clinical diagnosis - CBF and CBV. For MTT and TTP, TTV may not yield the best result for 

the diseased regions, but the difference with the optimal result is relatively small. It is also 

noted that TIPS preprocessing helps to boost the performance of bSVD, but may reduce the 

accuracy for TTV deconvolution by too much smoothing. This further demonstrates the 

robustness of TTV to noise. The experiments on the digital brain perfusion phantom proves 

the effectiveness of TTV deconvolution when the perfusion parameters are not sparse in the 

transformed domain and its capability to recover the anatomical structure and perfusion 

parameters with high intrinsic variability.

C. Clinical evaluation

We performed experiments on 12 clinical subjects. Visual comparisons are performed on 

two subject: one with ischemic stroke and the other with aneurysmal subarachnoid 

hemorrhage (aSAH). Because repetitive scanning of the same patient under different 

radiation levels is unethical, low-dose perfusion maps are simulated from the high-dose 190 

mAs by adding correlated statistical noise [23]. The maps calculated using bSVD from the 

190 mAs high-dose CTP data is regarded as the “gold standard” or reference images in 

clinical experiments.

1) Visual Comparison

Ischemic stroke: Ischemic stroke is reflected in the CTP map by decreased blood flow in 

part of the brain area, leading to dysfunction of the brain tissue in that area. Fig. 10 shows 

CBF maps at reduced tube current-exposure time product (mAs) for a subject with acute 

stroke in the right middle cerebral artery (MCA) and right posterior cerebral artery (PCA) 

deep branches (left and right are opposite in the medical image). Fig. 10 displays the CBF 

maps at 30, 15 and 10 mAs of a subject with ischemic stroke in the right MCA and PCA 

Fang et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deep branches. There are significant visual differences between the CBF maps of the 

different deconvolution methods, where sSVD, bSVD, Tikhonov and SPD overestimate CBF 

while TTV estimates accurately. With decreased mAs and therefore reduced radiation 

dosage level, the over-estimation and the increased noise level become more apparent for the 

baseline algorithms. At all mAs levels, TTV is capable to estimate CBF values at higher 

accuracy compared to the reference. The ischemic penumbra is in the left of the image with 

reduced blood flow is more distinguishable from the right hemisphere using TTV 

deconvolution compared to baseline methods.

Aneurysmal subarachnoid hemorrhage (aSAH): aSAH is a severe form of stroke with up 

to 50% of fetal rate and can lead to severe neurological or cognitive impairment even when 

diagnosed and treated at an early stage. The imaging of aSAH appears as significantly lower 

CBF in moderate or severe vasospasm at days 7–9. CBF is the most sensitive perfusion 

parameter for the diagnosis of cerebral vasospasm, a serious complication of aSAH [32]. 

Fig. 11 displays the CBF maps at 30, 15 and 10 mAs of a subject with aSAH in the left 

MCA inferior division. As the tube current-scanning time product in mAs decreases, the 

baseline methods tend to overestimate CBF with increasing bias, while TTV maintains the 

data fidelity. The distinction between the white matter, gray matter, cerebrospinal fluid and 

the arteries are well preserved, and the reduced blood flow on the left MCA (right of the 

image) is more identifiable, compared to the baseline methods. The noisy and biased 

estimation in the baseline methods, even with TIPS preprocessing to reduce the noise, can 

lead to lower diagnosis sensitivity.

2) Quantitative comparison—There is significant improvement in image fidelity 

between the low-dose CBF maps and the high-dose CBF maps by using the TTV algorithm 

compared to the baseline methods. On average, the PSNR increases by 32%, Lin’s CCC 

increases by 24% from the best performance by using the baseline methods (Table III, Fig. 

12). The quantitative values are computed with the vascular pixel elimination to exclude the 

influence of high blood flow values in the blood vessels. In Fig. 12, the notch shows the 95% 

confidence interval for the medians. Since the notches from box plots of TTV-based and the 

best performance among all the baseline methods (sSVD, bSVD, TIPS+bSVD, Tikhonov, 

SPD) don’t overlap, we can assume at the (0.05 significance level) that the medians are 

different. The one-tail student test on the values in Table III also validates that there are 

statistically significant difference between the PSNR and Lin’s CCC using TTV algorithm 

compared to the best performance among the baseline methods, with P-value < 0.05.

D. Computation complexity

For SVD-based algorithms, we need to compute both the singular vectors and the singular 

values. Therefore the computational complexity is O(NT3) for singular value decomposition 

on matrix A ∈ ℝT×T and N voxels [33]. For TTV, the computation involves mostly matrix 

and vector multiplication, with the computational complexity of O(NT2/ ε), where ε is the 

error bound. When the data matrix and time sequence are large, TTV has lower 

computational complexity over SVD-based methods.
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For computation time, it takes approximately 0.83 s, 2.04 s, 1.35 s, 80.6 s and 25 s to process 

a clinical dataset of 512 × 512 × 118 by sSVD, bSVD and Tikhonov, SPD and TTV, while 

TIPS take an additional 20.87 s for preprocessing. The TTV algorithm usually converges 

within 5–10 iterations. Deconvolution algorithms with less than 1 min processing time is 

acceptable clinically. In this paper, we use MATLAB implementation of all the algorithms, 

and TTV needs several iterations while SVD solves the problem in one step. MATLAB is 

known to be slow in iterations and fast in SVD since it uses lapack. Thus for large dataset in 

spatial and temporal dimensions, TTV may be more efficient when the number of iterations 

for TV solver is small.

In terms of trade-off between quality and efficiency, though SVD and Tikhonov based 

methods are faster, the over-estimation, low spatial resolution, less differentiable tissue types 

and graining in the perfusion maps generated by these baseline methods for the low-dose 

data are not acceptable. SPD and TTV have comparable high-quality results for the low-dose 

recovery, however TTV takes only 30% of the computation time compared to the time for 

SPD. Moreover, the output of TTV can generate all four perfusion maps at the same time 

from optimized residue functions, while SPD needs to compute each perfusion map 

separately.

E. Parameters

In the TTV algorithm, there is only a single type of tunable parameter: the TV regularization 

weight. If the spatial and temporal regularization are treated equally, only one weighting 

parameter γ needs to be determined. Fig. 13(a) show the RMSE and Lin’s CCC at different 

γ values. When γ < 103, RMSE and Lin’s CCC does not change much. The optimal γ is 

between 10−4 to 10−3.

Since the temporal and the spatial dimensions of the residue impulse functions have different 

scaling, regularization parameters for t and x, y, z should be different too. We set the spatial 

γs = γx,y,z = 10−4 since the spatial dimensions have similar scaling, and tune the ratio 

between the temporal weight t and spatial weight γs. Fig. 13(b) shows that when the ratio 

γt/γs < 10−4, the performance is stable. Thus we set γt = 10−8 and γs = 10−4 for all 

experiments.

VI. Discussion

In this study, a novel total variation regularization algorithm to distinctly treat the spatial 

structural variation and temporal changes is proposed to improve the quantification accuracy 

of the low-dose CTP perfusion maps. The method is extensively compared with the existing 

widely used algorithms, including sSVD, bSVD, Tikhonov and SPD, as well as TIPS for 

preprocessing, on all the common perfusion maps: CBF, CBV, MTT and TTP. Synthetic 

evaluation with accurate ground truth data is used to validate the effectiveness of the 

proposed algorithm in terms of residue function recovery, uniform and contrast preserving, 

sensitivity to blood flow values and noise levels. Digital brain perfusion phantom allows a 

more authentic validation with ground truth when there are intrinsic structural variability. 

Finally clinical data with different deficit types using high-dose perfusion maps as the 

reference image are used to show the visual quality and quantitative accuracy of the 

Fang et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perfusion maps at low-dose. In summary, the proposed TTV algorithm is capable of 

significantly increasing the signal-to-noise ratio in the recovered perfusion maps and residue 

functions, comparing to the state-of-art deconvolution algorithms.

When the SVD-based algorithms were first introduced in 1996 [25], [34], the perfusion 

parameters were computed from each tissue voxel independently. It assumes the X-ray 

radiation and intravenous injection were high enough to generate accurate tissue 

enhancement curves and AIF for deconvolution. However, SVD-based methods tend to 

introduce unwanted oscillations [35], [36] and results in overestimation of CBF and 

underestimation of MTT, especially in low-dose scan setting. The severely distorted residue 

functions estimated by the baseline methods at simulate 10 mAs tube current in our 

synthetic evaluation reveal the inherent problem existent in the SVD-based methods: 

instability. These methods are sensitive to noise in the low-dose environment, and lead to 

unrealistic oscillations in the residue function, which is the starting point for all perfusion 

parameter computation.

This instability could be alleviated using the context information in the neighboring tissue 

voxels with the assumption of a piece-wise smooth model: The residue functions within the 

extended neighborhood of a tissue voxel will have constant or similar shape, while the 

changes on the boundary between different regions where tissues undergo perfusion changes 

should be identified and preserved. The tensor total variation term in the objective function 

Eq. (17) penalizes large variation of residue functions within the extended neighborhood of 

the tissue voxels, and adopting the L1 norm in summing the gradient of all voxels, to avoid 

the much greater quadratic penalty of L2 norm at boundaries between different regions. In 

one word, the spatial and temporal contextual tissue voxels help to robustly estimate the 

ground truth residue functions while reducing the statistical correlated noise due to the low-

dose radiation.

The synthetic evaluations show that the residue functions computed by the baseline methods 

are unrealistically oscillating, leading to erroneous values of CBF, CBV, MTT and TTP. 

These baseline methods constantly over-estimate the value of CBF and the errors increase 

exponentially as PSNR decreases. This misleading over-estimation may cause neglect of 

infarct core or ischemic penumbra in the patients with acute stroke or other cerebral deficits, 

resulting in delay in diagnosis and treatment. The large variation in the uniform synthetic 

region and contrast regions are also caused by the oscillating nature of the results, and 

introduce misleading information in judging the perfusion condition of the healthy and the 

ischemic regions.

On the contrary, the proposed TTV method performs comparably to the 190 mAs high-dose 

results on the 15 mAs low-dose data, which is approximately 8% of the original dose used. 

The residue functions are stable and have the same shape as the ground truth. Perfusion 

parameters correlate well with the ground truth, without significant overestimation or under-

estimation. The variation in the uniform regions is significantly suppressed, while the edges 

in the contrast regions are more identifiable.
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The clinical evaluations show similar performance comparing the baseline methods and 

TTV algorithm. While the baseline methods significantly over-estimate CBF values, one of 

the most important perfusion parameter for stroke diagnosis in recently research [37], TTV 

yields comparable CBF maps to the reference maps. Moreover, the vascular structure and 

tissue details are well preserved by the TTV algorithm by removing the noise and 

maintaining the spatial resolution. Different evaluation metrics and statistical tests further 

verify the high correlation between the perfusion parameters of the low-dose maps computed 

by TTV and the reference maps.

There is only one type of parameter γ in the model, which determines the trade-off between 

data fidelity and TV regularization. Through extensive evaluation, we find that the results are 

not sensitive to the change of γ in the range of 10−6 to 10−4, and the ratio between the 

temporal and spatial regularization weight in the range of 10−8 to 10−4. So we set γs = 10−4 

and γt = 10−8 for all the experiments.

While the regularization parameter could be dependent on the temporal and spatial 

resolution of the data, through our experiments on both the digital perfusion phantom and 

the clinical data, which have different spatial and temporal resolutions, the same set of 

regularization parameter work pretty well and robustly estimate the perfusion parameters. 

Further evaluation on clinical data with varying spatial and temporal resolution would be an 

interesting analysis for future research.

There are several limitations to our study. First, the validation should be conducted by using 

larger and more diverse data sets with more samples and disease conditions. Since the aim of 

our study is to propose a new robust low-dose deconvolution algorithm and validate it 

preliminarily on synthetic and clinical data, and the improvement on low-dose quantification 

is significant enough to show the advantage of the proposed method. Second, SVD-based 

algorithms are used as baseline methods to compare with the proposed TTV. There are other 

existing methods to post-process the CTP imaging data, including maximum slope (MS), 

inverse filter (IF) and box-modulated transfer function (bMTF). Further comparison with 

these post-processing methods should be conducted. But MS, IF and bMTF are not designed 

for low-dose CTP imaging data, and SVD-based algorithm are the most widely accepted 

deconvoltuion algorithms in today’s commercial softwares.

In conclusion, we propose a robust low-dose CTP deconvolution algorithm using tensor total 

variation regularization that significantly improves the quantification accuracy of the 

perfusion maps in CTP data at a dose level as low as 8% of the original level. In particular, 

the over-estimation of CBF and under-estimation of MTT, presumably owing to the 

oscillatory nature of the results produced by the existing methods, is overcome by the total 

variation regularization in the proposed method. The proposed method could potentially 

reduce the necessary radiation exposure in clinical practices and significantly improve 

patient safety in CTP imaging.

Acknowledgments

This publication was supported by Grant Number 5K23NS058387-03S from the National Institute of Neurological 
Disorders and Stroke (NINDS), a component of the National Institutes of Health (NIH). Its contents are solely the 

Fang et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responsibility of the authors and do not necessarily represent the official view of NINDS or NIH. This work is also 
supported by Weill Cornell Medical College CTSC Pilot Award, and Cornell University Inter-Campus Seed Grant.

References

1. Koenig M, Klotz E, Luka B, Venderink DJ, Spittler JF, Heuser L. Perfusion CT of the brain: 
diagnostic approach for early detection of ischemic stroke. Radiology. 1998; 209(1):85–93. 
[PubMed: 9769817] 

2. Nabavi DG, Cenic A, Craen RA, Gelb AW, Bennett JD, Kozak R, Lee T-Y. CT assessment of 
cerebral perfusion: Experimental validation and initial clinical experience. Radiology. 1999; 213(1):
141–149. [PubMed: 10540654] 

3. Wintermark M, Lev M. FDA investigates the safety of brain perfusion CT. American Journal of 
Neuroradiology. 2010; 31(1):2–3. [PubMed: 19892810] 

4. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation 
exposure from 64-slice computed tomography coronary angiography. JAMA: the journal of the 
American Medical Association. 2007; 298(3):317–323. [PubMed: 17635892] 

5. König M. Brain perfusion CT in acute stroke: current status. European journal of radiology. 2003; 
45:S11–S22. [PubMed: 12598022] 

6. Wintermark M, Maeder P, Verdun FR, Thiran J-P, Valley J-F, Schnyder P, Meuli R. Using 80 kvp 
versus 120 kvp in perfusion CT measurement of regional cerebral blood flow. American Journal of 
Neuroradiology. 2000; 21(10):1881–1884. [PubMed: 11110541] 

7. Saito N, Kudo K, Sasaki T, Uesugi M, Koshino K, Miyamoto M, Suzuki S. Realization of reliable 
cerebral-blood-flow maps from low-dose CT perfusion images by statistical noise reduction using 
nonlinear diffusion filtering. Radiological physics and technology. 2008; 1(1):62–74. [PubMed: 
20821165] 

8. Mendrik AM, Vonken E-j, van Ginneken B, de Jong HW, Riordan A, van Seeters T, Smit EJ, 
Viergever MA, Prokop M. Tips bilateral noise reduction in 4d CT perfusion scans produces high-
quality cerebral blood flow maps. Physics in Medicine and Biology. 2011; 56(13):3857. [PubMed: 
21654042] 

9. Ma J, Huang J, Feng Q, Zhang H, Lu H, Liang Z, Chen W. Low-dose computed tomography image 
restoration using previous normal-dose scan. Medical physics. 2011; 38:5713. [PubMed: 21992386] 

10. Tian Z, Jia X, Yuan K, Pan T, Jiang SB. Low-dose CT reconstruction via edge-preserving total 
variation regularization. Physics in medicine and biology. 2011; 56(18):5949. [PubMed: 
21860076] 

11. Supanich M, Tao Y, Nett B, Pulfer K, Hsieh J, Turski P, Mistretta C, Rowley H, Chen G-H. 
Radiation dose reduction in time-resolved CT angiography using highly constrained back 
projection reconstruction. Physics in medicine and biology. 2009; 54(14):4575. [PubMed: 
19567941] 

12. He L, Orten B, Do S, Karl WC, Kambadakone A, Sahani DV, Pien H. A spatio-temporal 
deconvolution method to improve perfusion CT quantification. Medical Imaging, IEEE 
Transactions on. 2010; 29(5):1182–1191.

13. Fang R, Chen T, Sanelli PC. Towards robust deconvolution of low-dose perfusion CT: Sparse 
perfusion deconvolution using online dictionary learning. Medical image analysis. 2013; 17(4):
417–428. [PubMed: 23542422] 

14. Fang R, Chen T, Sanelli P. Sparsity-based deconvolution of low-dose perfusion ct using learned 
dictionaries. In: Ayache N, Delingette H, Golland P, Mori K, editorsMedical Image Computing 
and Computer-Assisted Intervention MICCAI 2012, ser. Lecture Notes in Computer Science. Vol. 
7510. Berlin Heidelberg: Springer; 2012. 272–280. 

15. Fang R, Chen T, Sanelli PC. Tissue-specific sparse deconvolution for low-dose CT perfusion. In: 
Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editorsMedical Image Computing and Computer-
Assisted Intervention MICCAI 2013, ser. Lecture Notes in Computer Science. Vol. 8149. Berlin 
Heidelberg: Springer; 2013. 114–121. 

16. Fang R, Karlsson K, Chen T, Sanelli PC. Improving low-dose blood–brain barrier permeability 
quantification using sparse high-dose induced prior for patlak model. Medical image analysis. 
2014; 18(6):866–880. [PubMed: 24200529] 

Fang et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Fang R, Sanelli PC, Zhang S, Chen T. Medical Image Computing and Computer-Assisted 
Intervention–MICCAI 2014. Springer; 2014. Tensor total-variation regularized deconvolution for 
efficient low-dose CT perfusion; 154–161. 

18. Boutelier T, Kudo K, Pautot F, Sasaki M. Bayesian hemodynamic parameter estimation by bolus 
tracking perfusion weighted imaging. Medical Imaging, IEEE Transactions on. 2012; 31(7):1381–
1395.

19. Fang R, Chen T, Sanelli PC. Sparsity-based deconvolution of low-dose brain perfusion CT in 
subarachnoid hemorrhage patients. Biomedical Imaging (ISBI), 2012 9th IEEE International 
Symposium on. IEEE. 2012:872–875.

20. Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated 
variational problems. Communications on pure and applied mathematics. 1989; 42(5):577–685.

21. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow 
and volume. Journal of applied physiology. 1954; 6(12):731–744. [PubMed: 13174454] 

22. Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, Miyasaka K. Quantitative cerebral blood 
flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: 
comparison with h215o positron emission tomography. American Journal of Neuroradiology. 
2003; 24(3):419–426. [PubMed: 12637292] 

23. Britten A, Crotty M, Kiremidjian H, Grundy A, Adam E. The addition of computer simulated noise 
to investigate radiation dose and image quality in images with spatial correlation of statistical 
noise: an example application to X-ray CT of the brain. British journal of radiology. 2004; 
77(916):323–328. [PubMed: 15107323] 

24. Juluru K, Shih J, Raj A, Comunale J, Delaney H, Greenberg E, Hermann C, Liu Y, Hoelscher A, 
Al-Khori N, et al. Effects of increased image noise on image quality and quantitative interpretation 
in brain CT perfusion. American Journal of Neuroradiology. 2013

25. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement 
of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach 
and statistical analysis. Magnetic Resonance in Medicine. 1996; 36(5):715–725. [PubMed: 
8916022] 

26. Hoeffner E, Case I, Jain R, Gujar S, Shah G, Deveikis J, Carlos R, Thompson B, Harrigan M, 
Mukherji S. Cerebral perfusion CT: Technique and clinical applications1. Radiology. 2004; 
231(3):632–644. [PubMed: 15118110] 

27. Fieselmann A, Kowarschik M, Ganguly A, Hornegger J, Fahrig R. Deconvolution-based CT and 
MR brain perfusion measurement: theoretical model revisited and practical implementation details. 
Journal of Biomedical Imaging. 2011; 2011:14.

28. Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-
insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value 
decomposition with a block-circulant deconvolution matrix. Magnetic Resonance in Medicine. 
2003; 50(1):164–174. [PubMed: 12815691] 

29. Beck A, Teboulle M. Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE 
International Conference on. IEEE; 2009. A fast iterative shrinkage-thresholding algorithm with 
application to wavelet-based image deblurring; 693–696. 

30. Sullivan BJ, Chang H-C. Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 
International Conference on. IEEE; 1991. A generalized landweber iteration for ill-conditioned 
signal restoration; 1729–1732. 

31. Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, Ogasawara K. 
Differences in CT perfusion maps generated by different commercial software: Quantitative 
analysis by using identical source data of acute stroke patients1. Radiology. 2010; 254(1):200–
209. [PubMed: 20032153] 

32. Sanelli P, Ougorets I, Johnson C, Riina H, Biondi A. Seminars in Ultrasound, CT and MRI. Vol. 
27. Elsevier; 2006. Using ct in the diagnosis and management of patients with cerebral vasospasm; 
194–206. 

33. Golub GH, Van Loan CF. Matrix computations. Vol. 3. JHU Press; 2012. 

34. Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution 
measurement of cerebral blood flow using intravascular tracer bolus passages. Part II. 

Fang et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experimental comparison and preliminary results. Magnetic Resonance in Medicine. 1996; 36(5):
726–736. [PubMed: 8916023] 

35. Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S. Bayesian estimation of 
cerebral perfusion using a physiological model of microvasculature. NeuroImage. 2006; 33(2):
570–579. [PubMed: 16971140] 

36. Calamante F, Gadian D, Connelly A. Quantification of bolus-tracking MRI: Improved 
characterization of the tissue residue function using Tikhonov regularization. Magnetic resonance 
in medicine. 2003; 50(6):1237–1247. [PubMed: 14648572] 

37. Wintermark M, Maeder P, Thiran J-P, Schnyder P, Meuli R. Quantitative assessment of regional 
cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the 
underlying theoretical models. European Radiology. 2001; 11(7):1220–1230. [PubMed: 
11471616] 

Fang et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Framework of perfusion map estimation in CT perfusion.
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Fig. 2. 
(a) Convergence of cost function over iterations using TTV initialized with zeros, solution of 

bSVD and TIPS+TTV. (b) Enlarged convergence curve of first five iterations.
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Fig. 3. 
The Noise power spectrum and the recovered residue functions by baseline methods and 

TTV. (a) The noise power spectrum is of the scanned phantom image at 10 mAs and 

simulated statistical correlated Gaussian noise at 10 mA. (b)–(f) The parameters used for 

residue function recovery are the simulation is CBV = 4 mL/100 g, CBF = 20 mL/100 g/

min, PSNR=25. SPD is not included since it optimizes the perfusion maps directly.
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Fig. 4. 
Visual comparison in a uniform region of perfusion parameter (CBF, CBV, MTT, TTP) 

estimation using baseline methods and TTV. The ideal variation is 0. The reference is the 

ground truth at CBV = 4 mL/100 g, CBF = 15 mL/100 g/min, MTT = 16 s, TTP = 12 s, 

PSNR = 15.
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Fig. 5. 
Comparison of the accuracy in estimating CBF and MTT by sSVD, bSVD, Tikhonov and 

TTV deconvolution methods. True CBV = 4 mL/100 g. The error bar denotes the standard 

deviation. (a) Estimated CBF values at different true with PSNR=15. (b) Estimated MTT 

values at different true MTT with PNSR=15. (c) Estimated CBF values at different PSNRs 

with true CBF=15 mL/100 g/min. (d) Estimated MTT values at different PSNRs with true 

MTT = 16 s.
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Fig. 6. 
Comparisons of reducing variations over homogeneous region of (a) CBF at different CBF 

values with PSNR = 15. (b) MTT at different true MTT values with PSNR = 15. (c) CBF at 

different PSNR values with true CBF = 15 mL/100 g/min. (d) MTT at different PSNR values 

with true MTT = 16 s.
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Fig. 7. 
Comparisons of perfusion maps (CBF, CBV, MTT, TTP) estimated by the different 

deconvolution algorithms in preserving edges between two adjacent regions at PCNR=1 and 

0.2. True CBF is 70 and 20 mL/100 g/min on the left and right halves of the region. True 

CBV is 4 mL/100 g and 2 mL/100 g respectively. True MTT is 3.43 s and 6 s on the left and 

right halves. True TTP is 6 s and 8 s on two haves. Temporal resolution is 1 sec and total 

duration of 60 sec.
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Fig. 8. 
The digital brain perfusion phantom with user-delineated infarct core - severely reduced 

blood flow (orange) and ischemic penumbra - reduced blood flow (yellow) regions.
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Fig. 9. 
Perfusion maps of the digital brain perfusion phantom with infarct core and ischemic 

penumbra region by annotation. CBF in unit of mL/100 g/min, CBF in mL/100 g, MTT and 

TTP in sec. (Color image)
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Fig. 10. 
The CBF (in mL/100 g/min) maps with zoomed ROI regions of a patient with acute stroke 

(ID 6) calculated using different deconvolution algorithms at tube current of 30, 15 and 10 

mAs with normal sampling rate. Baseline methods sSVD, bSVD, Tikhonov and SPD 

overestimate CBF values, while TTV agrees with the reference. TTP does not help to 

improve the accuracy. As the tube current decreases and the radiation level reduces, the over-

estimation of CBF values using baseline methods becomes more apparent. (Color image)
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Fig. 11. 
The CBF (in mL/100 g/min) maps with zoomed ROI regions of a patients (ID 3) calculated 

using different deconvolution algorithms at tube current of 30, 15 and 10 mAs with normal 

sampling rate. Baseline methods sSVD, bSVD, Tikhonov and SPD overestimate CBF 

values, while TTV corresponds with the reference. As the tube current decreases and the 

radiation level reduces, the over-estimation of CBF values using baseline methods becomes 

more apparent. (Color image)
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Fig. 12. 
Comparisons of PSNR and Lin’s CCC on 12 clinical subjects using the competing methods. 

TTV is our proposed method, and TIPS+TTV is preprocessed with TIPS bilateral filtering. 

The notch marks the 95% confidence interval for the medians.
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Fig. 13. 
Performace in terms of root-mean-square-error (RMSE) for different parameters (a) γ and 

(b) ratio γt/γs.
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