Skip to main content
. Author manuscript; available in PMC: 2016 Aug 20.
Published in final edited form as: IEEE Trans Med Imaging. 2015 Feb 20;34(7):1533–1548. doi: 10.1109/TMI.2015.2405015

Algorithm 1.

The framework of TTV algorithm.

Input: Regularization parameters γi, i = t, x, y, z
Output: Flow-scaled residue functions K ∈ ℝT × N1 × N2 × N3.
K0 = 0
t1 = r1 = K0
for n = 1, 2, …, N do
  1. Steepest gradient descent
    Kg=rn+sn+1AT(CArn)
    where sn+1=vec(Q)Tvec(Q)vec(AQ)Tvec(AQ), QAT (ArnC)
  2. Proximal map:
    Kn=proxγ(2KTV)(foldt(Kg))
    where proxρ(g)(x)arg min u{g(u)+12ρux2}
  3. Update t, r
    tn+1=(1+1+4(tn)2)/2
    rn+1=Kn+((tn1)/tn+1)(KnKn1)
end for