Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Nov 15;90(22):10444–10448. doi: 10.1073/pnas.90.22.10444

Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface.

J A Francisco 1, R Campbell 1, B L Iverson 1, G Georgiou 1
PMCID: PMC47793  PMID: 8248129

Abstract

We have expressed a single chain Fv (scFv) antibody fragment, consisting of the variable heavy and variable light domains from two separate anti-digoxin monoclonal antibodies, on the external surface of Escherichia coli by fusing it to an Lpp-OmpA hybrid previously shown to direct heterologous proteins to the cell surface. This scFv fusion was expressed at a high level and was shown to bind the hapten with high affinity and specificity. Whole cell ELISAs, fluorescence microscopy, protease sensitivity, and flow cytometry all confirmed that the scFv was anchored on the outer membrane and was accessible on the surface. Utilizing fluorescence-activated cell sorting, we were able to specifically enrich scFv-producing cells from a 10(5)-fold excess of control cells in only two steps. The expression of antibody fragments on the surface of E. coli is being evaluated as an attractive method for the in vitro production and selection of useful antibody fragments.

Full text

PDF
10444

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbas C. F., 3rd, Bain J. D., Hoekstra D. M., Lerner R. A. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4457–4461. doi: 10.1073/pnas.89.10.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbas C. F., 3rd, Kang A. S., Lerner R. A., Benkovic S. J. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7978–7982. doi: 10.1073/pnas.88.18.7978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bass S., Greene R., Wells J. A. Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins. 1990;8(4):309–314. doi: 10.1002/prot.340080405. [DOI] [PubMed] [Google Scholar]
  4. Chiswell D. J., McCafferty J. Phage antibodies: will new 'coliclonal' antibodies replace monoclonal antibodies? Trends Biotechnol. 1992 Mar;10(3):80–84. doi: 10.1016/0167-7799(92)90178-x. [DOI] [PubMed] [Google Scholar]
  5. Clackson T., Hoogenboom H. R., Griffiths A. D., Winter G. Making antibody fragments using phage display libraries. Nature. 1991 Aug 15;352(6336):624–628. doi: 10.1038/352624a0. [DOI] [PubMed] [Google Scholar]
  6. Collet T. A., Roben P., O'Kennedy R., Barbas C. F., 3rd, Burton D. R., Lerner R. A. A binary plasmid system for shuffling combinatorial antibody libraries. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10026–10030. doi: 10.1073/pnas.89.21.10026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cull M. G., Miller J. F., Schatz P. J. Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac repressor. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1865–1869. doi: 10.1073/pnas.89.5.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devlin J. J., Panganiban L. C., Devlin P. E. Random peptide libraries: a source of specific protein binding molecules. Science. 1990 Jul 27;249(4967):404–406. doi: 10.1126/science.2143033. [DOI] [PubMed] [Google Scholar]
  9. Francisco J. A., Earhart C. F., Georgiou G. Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2713–2717. doi: 10.1073/pnas.89.7.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Francisco J. A., Stathopoulos C., Warren R. A., Kilburn D. G., Georgiou G. Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Biotechnology (N Y) 1993 Apr;11(4):491–495. doi: 10.1038/nbt0493-491. [DOI] [PubMed] [Google Scholar]
  11. Fuchs P., Breitling F., Dübel S., Seehaus T., Little M. Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Biotechnology (N Y) 1991 Dec;9(12):1369–1372. doi: 10.1038/nbt1291-1369. [DOI] [PubMed] [Google Scholar]
  12. Garrard L. J., Yang M., O'Connell M. P., Kelley R. F., Henner D. J. Fab assembly and enrichment in a monovalent phage display system. Biotechnology (N Y) 1991 Dec;9(12):1373–1377. doi: 10.1038/nbt1291-1373. [DOI] [PubMed] [Google Scholar]
  13. Geisow M. J. Improved selection systems for man-made antibodies. Trends Biotechnol. 1992 Mar;10(3):75–76. doi: 10.1016/0167-7799(92)90175-u. [DOI] [PubMed] [Google Scholar]
  14. Huston J. S., Levinson D., Mudgett-Hunter M., Tai M. S., Novotný J., Margolies M. N., Ridge R. J., Bruccoleri R. E., Haber E., Crea R. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5879–5883. doi: 10.1073/pnas.85.16.5879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kornacker M. G., Pugsley A. P. The normally periplasmic enzyme beta-lactamase is specifically and efficiently translocated through the Escherichia coli outer membrane when it is fused to the cell-surface enzyme pullulanase. Mol Microbiol. 1990 Jul;4(7):1101–1109. doi: 10.1111/j.1365-2958.1990.tb00684.x. [DOI] [PubMed] [Google Scholar]
  16. Laukkanen M. L., Teeri T. T., Keinänen K. Lipid-tagged antibodies: bacterial expression and characterization of a lipoprotein-single-chain antibody fusion protein. Protein Eng. 1993 Jun;6(4):449–454. doi: 10.1093/protein/6.4.449. [DOI] [PubMed] [Google Scholar]
  17. Little M., Fuchs P., Breitling F., Dübel S. Bacterial surface presentation of proteins and peptides: an alternative to phage technology? Trends Biotechnol. 1993 Jan;11(1):3–5. doi: 10.1016/0167-7799(93)90067-J. [DOI] [PubMed] [Google Scholar]
  18. Lugtenberg B., Van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta. 1983 Mar 21;737(1):51–115. doi: 10.1016/0304-4157(83)90014-x. [DOI] [PubMed] [Google Scholar]
  19. Marks J. D., Hoogenboom H. R., Bonnert T. P., McCafferty J., Griffiths A. D., Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol. 1991 Dec 5;222(3):581–597. doi: 10.1016/0022-2836(91)90498-u. [DOI] [PubMed] [Google Scholar]
  20. McCafferty J., Griffiths A. D., Winter G., Chiswell D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990 Dec 6;348(6301):552–554. doi: 10.1038/348552a0. [DOI] [PubMed] [Google Scholar]
  21. Scott J. K., Smith G. P. Searching for peptide ligands with an epitope library. Science. 1990 Jul 27;249(4967):386–390. doi: 10.1126/science.1696028. [DOI] [PubMed] [Google Scholar]
  22. Tanke H. J., van der Keur M. Selection of defined cell types by flow-cytometric cell sorting. Trends Biotechnol. 1993 Feb;11(2):55–62. doi: 10.1016/0167-7799(93)90123-Q. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES