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Genetic Variation in Toll-Interacting Protein Is Associated
With Leprosy Susceptibility and Cutaneous Expression of
Interleukin 1 Receptor Antagonist
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Leprosy is a chronic disease characterized by skin and peripheral nerve pathology and immune responses that fail to control Myco-
bacterium leprae. Toll-interacting protein (TOLLIP) regulates Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) signaling
against mycobacteria. We analyzed messenger RNA (mRNA) expression of candidate immune genes in skin biopsy specimens from
85 individuals with leprosy. TOLLIP mRNAwas highly and specifically correlated with IL-1R antagonist (IL-1Ra). In a case-control
gene-association study with 477 cases and 1021 controls in Nepal, TOLLIP single-nucleotide polymorphism rs3793964 TT genotype
was associated with increased susceptibility to leprosy (recessive, P = 1.4 × 10−3) and with increased skin expression of TOLLIP and
IL-1Ra. Stimulation of TOLLIP-deficient monocytes with M. leprae produced significantly less IL-1Ra (P < .001), compared with
control. These data suggest that M. leprae upregulates IL-1Ra by a TOLLIP-dependent mechanism. Inhibition of TOLLIP may
decrease an individual’s susceptibility to leprosy and offer a novel therapeutic target for IL-1–dependent diseases.
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Leprosy is one of the world’s oldest recorded diseases yet re-
mains a public health problem, with >200 000 new cases in
2013 [1, 2].Development of new therapeutics to shorten the du-
ration of treatment and reduce inflammatory side effects in-
volved in neuropathology could help accomplish these goals
and significantly reduce morbidity. The immune pathogenesis
of leprosy remains poorly understood, partly owing to experi-
mental challenges [3, 4], including slow mycobacterial growth,
challenging bacterial culture protocols, and limitations within
animal models [5, 6].

Leprosy is characterized by a range of clinical and immune
responses that depend upon host genetics and environmental
factors. Histologic features of these lesions are classified into 5
categories: tuberculoid, borderline tuberculoid, borderline, bor-
derline lepromatous, and lepromatous [7]. Classically, tubercu-
loid and borderline tuberculoid leprosy (hereafter, “tuberculoid
leprosy”) skin lesions are immunologically characterized with
elevated T-helper type 1 (TH1) memory responses, with well-
circumscribed granulomatous inflammation and few bacilli

detectable. Borderline lepromatous and lepromatous (hereafter,
“lepromatous leprosy”) skin lesions demonstrate TH2 immune
responses, with ill-defined granulomas and many bacilli within
dermal foamy macrophages.

One of the defining characteristics of M. leprae as an infec-
tious pathogen is its ability to evade host immunity. M. leprae
can persist subclinically for decades, evading both innate and
antigen-specific immunity. To avoid immune detection, M. lep-
rae inhibits activation and maturation of dendritic cells, induces
microRNAs that downregulate host immunity, and encodes cell
wall lipids that impair immune responses [8–11].Cell wall lipids
in M. leprae further suppress T-cell differentiation and activa-
tion [12]. Additionally, M. leprae acts to inhibit apoptosis in
myeloid cells by manipulating multiple critical transcription
factors [13]. However, the complete range of factors that permit
leprosy to remain quiescent within the skin for years are still
under investigation.

Host genetics play a critical role in the pathogenesis of lepro-
sy, with most people demonstrating innate resistance to M. lep-
rae infection [14–17]. Multiple lines of evidence support this
hypothesis, including twin [18], linkage [19], and gene associa-
tion studies [16, 20]. A recent genome-wide association study
found several major leprosy susceptibility loci within genes re-
lated to induction of inflammasomes and interleukin 1 (IL-1)
signaling [21, 22]. Evasion of IL-1 may improve M. leprae sur-
vival in macrophages and nerves. IL-1 protects the host during
the initial stages of Mycobacterium tuberculosis infection and
correlates with pulmonary tuberculosis severity [23]. IL-1
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signaling is tightly regulated at multiple levels, including by IL-1
receptor antagonist (IL-1Ra; also abbreviated “IL1RN,” by the
Human Genome Organisation), which binds IL-1 receptor
(IL-1R) without inducing signaling [24, 25]. Unlike IL-1β,
which is induced primarily via inflammasomes, IL-1Ra is in-
duced by varied stimuli, including lipopolysaccharide (LPS),
immunoglobulin G complexes, and IL-1 itself [26, 27].M. leprae
may preferentially induce antiinflammatory cytokines [28–30],
and a better understanding of how IL-1 alters leprosy pathogen-
esis may illuminate novel host-directed therapeutic strategies.

Toll-interacting protein (TOLLIP) regulates Toll-like recep-
tor (TLR) and IL-1R signaling in a complex fashion that is
only partially understood [31, 32]. TOLLIP regulates an antiin-
flammatory bias in the cytokine response after TLR2 and TLR4
signaling, characterized by increased interleukin 10 (IL-10) and
decreased interleukin 6 expression in peripheral blood mono-
cytes [33]. We discovered that TOLLIP genetic variants are
strongly associated with pulmonary and meningeal tuberculosis
in an adult Vietnamese population [33].Although previous data
suggest that TOLLIP regulates IL-1R signaling by altering its lo-
cation within endosomes [34], the specific mechanism by which
it mediates risk against mycobacteria is unclear.

In this article, we demonstrate that TOLLIP and IL-1Ra ex-
pression are highly correlated in skin leprosy lesions and show
that genetic variation in TOLLIP is associated with leprosy sus-
ceptibility, TOLLIP messenger RNA (mRNA) expression, and
IL-1Ra expression. We also describe that M. leprae induces
IL-1Ra via a TOLLIP-dependent mechanism. Together, these
data define a novel mechanism for M. leprae immune evasion
by selective induction of IL-1Ra, increasing the dose of IL-1 re-
quired to induce potent antimycobacterial immunity in the
skin.

MATERIALS AND METHODS

Ethics Statement
All human subjects gave their informed consent to participate
in the studies. No children were enrolled in this study. Informed
consent was obtained orally, as well as via written communica-
tion, owing to the high rates of illiteracy in the populations stud-
ied. Subjects who were unable to read and write provided a
thumbprint as a proof of consent, while those who could read
and write provided a signature. The Nepal Health Research
Council and the University of Washington institutional review
boards approved all informed consent documents and proce-
dures, according to Department of Health and Human Services
guidelines.

Study Population
Peripheral blood and skin biopsy specimens were obtained from
patients at Anandaban Hospital in Kathmandu, Nepal. The
cases comprised individuals of 8 different ethnic and religious
groups, including Vaishya, Chhetri, Brahmin, and Sudra. A

total of 477 healthy adult controls were compared to 1021 indi-
viduals with leprosy in the candidate gene case-control study.
Unrelated controls were recruited from the same ethnic popu-
lation and geographic region of Nepal. Controls were healthy
individuals who had never had tuberculosis, had no history of
leprosy in the family, and were living in a leprosy-endemic area.
Leprosy diagnosis and classification were determined after a
comprehensive clinical examination, slit skin smear, and skin
biopsy assessment, using the Ridley–Jopling classification sys-
tem [7]. We also evaluated cutaneous immune responses in
85 prospectively enrolled subjects with leprosy. This cohort in-
cluded 38 individuals with tuberculoid leprosy, 3 with border-
line leprosy, and 44 with lepromatous leprosy. Thirty-six
patients had a type 1 immune reaction, and 9, all with leproma-
tous leprosy, had a type II immune reaction at the time of biop-
sy. Bacillary index was measured and correlated strongly with
clinical polarity of leprosy presentation (Supplementary
Table 1). Although BCG vaccination for the participants was
not recorded, many individuals in Nepal have received this vac-
cine. One of the biopsy samples was used for histological diag-
nosis and immunohistochemical analysis, and the other was
used for mRNA isolation. Biopsy specimens were fixed, mount-
ed in paraffin, and stained with Fite stain, hematoxylin, and
eosin for light microscopy viewing by experienced leprosy
pathologists at the Research and Leprosy Centre, Schieffelin In-
stitute of Health (Karigiri, India).

Genotyping and SNP Selection
DNA from subjects in Nepal was obtained by extraction from
whole blood, using Nucleon BACC2 Genomic DNA (Amer-
sham Lifesciences) and Roche High-Pure PCR template extrac-
tion kits. We identified haplotype-tagging SNPs from Han
Chinese in Beijing populations from the International HapMap
Project (available at: http://www.hapmap.org) and the Genome
Variation Server. We searched a region on chromosome
11p15.5, 10 kb upstream and downstream of TOLLIP, for
tagged SNPs with an R2 linkage disequilibrium of >0.8 and
minor allele frequency of >0.05. Genotyping was performed
with Sequenom’s MassARRAY. Selected SNPs were confirmed
using Taqman genotyping technology (Applied Biosystems).
The Stata/Intercooled, version 13.0, software program PWLD
(StataCorp) was used to calculate R2 linkage disequilibrium be-
tween the polymorphisms. SNPs were excluded from further
analysis if Hardy–Weinberg equilibrium in control samples
had a P value of < .001.

Statistics
For cutaneous expression correlation, the nonparametric Spear-
man rank correlation test statistic (ρ) was used for a correlation
coefficient and was generated using R, version 3.0.1. Hierarchi-
cal clustering of the Spearman ρ statistics was performed using
the complete-linkage method, which clusters results of individ-
ual tests on the basis of the maximum distance between test
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results. The Mann–Whitney U test was used to make compar-
isons of the cytokine and mRNA responses between groups of
individuals, as small sample sizes prevented the assumption of a
normal distribution. It was also used to compare cytokine
mRNA levels between genotypes. A P value of <.05 was consid-
ered significant in the initial analysis. Thresholds for achieving
statistical significance were adjusted using a Bonferroni correc-
tion for multiple comparisons. Comparisons between cytokine
responses in cell lines were made using 2-sided Student t tests.

Supplemental Methods
For further description of molecular materials and methods,
please see the Supplementary Materials and Methods.

RESULTS

Correlation of TOLLIP and IL-1Ra Expression in Leprosy Skin Biopsy
Specimens
To examine the TOLLIP-dependent immune response in hu-
mans, we examined whether cutaneous mRNA levels of TOLL-
IP were associated with expression of other immune molecules

in 85 Nepalese patients with leprosy in a range of clinical states
(38 with tuberculoid leprosy and 47 with borderline or leproma-
tous leprosy; Supplementary Table 1). These molecules includ-
ed cytokines, chemokines, and lineage markers of T cells,
monocytes, and macrophages that are important for mycobac-
terial control, as described recently [35]. Using hierarchical
clustering, we found that TOLLIP expression most strongly cor-
related with IL-1RN (IL-1Ra; ρ = 0.934) and IL-18 (ρ = 0.18;
Figure 1A–C). TOLLIP expression was not associated with
IL1B (Figure 1D) or any other gene transcripts that were present
in independent clusters, including (1) FOXP3, NLRC4, CCL18,
CD209, CD14, and IL10; (2) IL1B, IL6, CD22, IL23A, IL12B,
TNF, CD3D, and CIITA; (3) IFNA1, IFNA8, IFNB1, and
CCL17; (4) IL13, IL22, IL29, and IL4; (5) IL17A and IL21;
and (6) IL27, IFNG, and IL12A. Because the degree of correla-
tion of TOLLIP with IL-1Ra was much greater than that of
TOLLIP with IL18, we declined to further evaluate the role of
TOLLIP expression on IL18. We did not observe any statistically
significant association between TOLLIP or IL-1Ra mRNA

Figure 1. Hierarchical clustering of Toll-interacting protein (TOLLIP) with cytokines in leprosy skin biopsy specimens. Heat map of 32 immune genes and TOLLIP in skin biopsy
specimens from individuals with leprosy. Correlation was performed in 85 skin biopsy specimens from individuals with leprosy encompassing all categories of disease and including
those with immune reactions. Statistical analyses were performed using a nonparametric Spearman rank correlation test. A, TOLLIP formed a cluster with interleukin 1 receptor
antagonist (IL-1Ra; ρ = 0.93) and interleukin 18 (IL-18; ρ = 0.18). Heat map values extend from red to blue, with the reddest values denoting a ρ of −1, indicating a strong negative
correlation between expression levels, and the bluest values representing a ρ of 1, indicating a strong positive correlation between expression values. B, Correlation scatterplot of
messenger RNA (mRNA) expression of TOLLIP and IL-1Ra. C, Correlation scatterplot of mRNA expression of TOLLIP and IL-18, which was not as strong as that for IL-1Ra.
D, Correlation scatterplot of TOLLIP with IL-1β, which was not clustered with TOLLIP. mRNA expression is shown in log10 scale after normalization with GAPDH. This figure is
available in black and white in print and in color online.

TOLLIP, IL-1Ra, and Cutaneous Immunity to Leprosy • JID 2016:213 (1 April) • 1191

http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv570/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv570/-/DC1


expression levels and leprosy polarity. We performed immuno-
histochemical analysis to examine IL-1Ra and TOLLIP protein
expression in 50 skin biopsy specimens, taken to represent the
full range of clinical disease seen. Both TOLLIP and IL-1Ra
staining were found predominantly in the cytoplasm of dermal
histiocytes. TOLLIP and IL-1Ra protein staining intensity cor-
related significantly with mRNA (Figure 2A–F, which includes
representative samples with high [Figure 2A] and low [Fig-
ure 2B] protein staining; P = .0031 and < .0001, by linear re-
gression, for IL-1Ra and TOLLIP correlation, respectively;
Figure 2C and 2D). Protein expression of TOLLIP and IL-1Ra
were correlated significantly (P = .0446, by linear regression;
data not shown). Negative controls demonstrated no back-
ground staining (Supplementary Figure 1). Together, these
data suggest that TOLLIP and IL-1Ra expression are highly
correlated in cutaneous leprosy lesions.

TOLLIP Variant rs3793964 Is Associated With Leprosy Susceptibility
To assess the role of TOLLIP genetic variation in cutaneous im-
mune responses and susceptibility to leprosy, we performed a
candidate gene case-control study. We examined whether 6
haplotype-tagging TOLLIP SNPs were associated with suscept-
ibility to leprosy in 1021 leprosy cases and 477 healthy controls
(Figure 3A and 3B, Supplementary Table 2, and Table 1). Three

polymorphisms were associated with susceptibility to leprosy
(rs5743942, rs3793964, and rs3829223; P = .02, .000022, and
.005, respectively, by the allelic trend test). These SNPs had
low levels of linkage disequilibrium between each other (R2,
0.02–0.11). The association of rs3793964 with leprosy remained
significant after a conservative Bonferroni correction (adjusted
P = .000132). SNP rs3793964 and leprosy susceptibility best fit a
recessive model, with genotype TT associated with an increased
risk of leprosy, compared with genotypes CC/TC (odds ratio
[OR], 1.76; 95% confidence interval [CI], 1.23–2.55; P = .0014;
Table 1). The association of SNP of rs3793964 remained statisti-
cally significant when corrected for age, sex, and ethnicity (OR,
1.40; 95% CI, 1.18–1.66) by logistic regression. Using publicly
available data from a leprosy genome-wide association study,
we attempted to validate our genetic findings [22]. We found
that TOLLIP SNP rs3793964 was associated with an increased
risk for developing leprosy in a concordant fashion with our dis-
covery cohort (allelic OR, 1.186; 95% CI, 1.006–1.397; P = .0389,
by the allelic trend test; data available at the National Center for
Biotechnology Information Database of Genotypes and Pheno-
types [accession number pha002872]). As secondary analyses,
we found that TOLLIP variants were not associated with leprosy
polarity (tuberculoid leprosy vs borderline or lepromatous lepro-
sy), type 1 immune reaction (reversal reaction), or type 2 immune

Figure 2. Toll-interacting protein (TOLLIP) and interleukin 1 receptor antagonist (IL-1Ra) immunohistochemical findings. Skin biopsy specimens were obtained from lesions in
individuals with leprosy and stained for TOLLIP and IL-1Ra. A and B, A skin biopsy specimen from a representative individual with 3+ TOLLIP and 3+ IL-1Ra staining (A) and 1+
TOLLIP and 1+ IL-1Ra staining (B). C, Plot of the IL-1Ra messenger RNA level, normalized to GAPDH, compared to the IL-1Ra immunohistochemical grade staining score (1+–3+).
IL-Ra protein expression and mRNA expression were correlated by linear regression. *P = .0031. D, The TOLLIP mRNA level, normalized to GAPDH, was compared to the TOLLIP
immunohistochemical grade staining score (1+–3+). TOLLIP protein expression and mRNA expression were correlated by linear regression. **P < .0001.
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Figure 3. Toll-interacting protein (TOLLIP) variants, linkage disequilibrium, and association with skin messenger RNA (mRNA) expression. Haplotype-tagging TOLLIP single-
nucleotide polymorphisms (SNPs) studied were selected from the Chinese Han (CHB) population in HapMap. A, TOLLIP gene chromosomal location and SNP map. B, Linkage
disequilibrium of selected haplotype-tagging SNPs in the study population. Shaded boxes describe minor allele frequency of SNP and open boxes show R2 linkage disequi-
librium values. C, Log10 interleukin 1 receptor antagonist (IL-1Ra) skin mRNA expression, stratified by TOLLIP SNP rs3793964 genotype. D, Log10 TOLLIP skin mRNA expression,
stratified by TOLLIP SNP rs3793964 genotype. Statistical significance was determined via a generalized linear model. Lines represent median values of each sample. *P = .018
and **P = .022.

Table 1. Association of Toll-Interacting Protein (TOLLIP) Polymorphisms With Leprosy Susceptibility

SNP (Allelea), Group
AA

(Frequency)
Aa

(Frequency)
aa

(Frequency)
Trend
P Dom P OR (95% CI)

Rec
P OR (95% CI)

HWE
P

rs5743867 (C/T)

Leprosy cases 649 (0.72) 234 (0.26) 21 (0.02) .123 .12 1.24 (0.94–1.62) .89 1.16 (0.51–2.91) .566

Controls 412 (0.76) 120 (0.22) 10 (0.02) . . . . . .

rs5743890 (A/G)

Leprosy cases 812 (0.92) 70 (0.08) 1 (0.001) .800 .914 1.04 (0.66–1.64) . . . .398

Controls 490 (0.93) 39 (0.07) 1 (0.002) . . . . . .

rs5743899 (A/G)

Leprosy cases 493 (0.56) 331 (0.38) 53 (0.06) .936 .99 0.99 (0.78–1.26) .90 1.07 (0.64–1.82) .608

Controls 303 (0.57) 197 (0.37) 28 (0.05) . . . . . .

rs5743942 (C/T)

Leprosy cases 373 (0.44) 361 (0.42) 118 (0.14) .0186 .01 0.72 (0.57–0.92) .32 0.85 (0.61–1.19) .962

Controls 198 (0.37) 249 (0.47) 82 (0.16) . . . . . .

rs3793964 (C/T)

Leprosy cases 331 (0.38) 381 (0.44) 152 (0.18) .000022 .0002 1.55 (1.22–1.98) .0014 1.76 (1.23–2.55) .198

Controls 249 (0.47) 219 (0.42) 57 (0.11) . . . . . .

rs3829223 (C/T)

Leprosy cases 299 (0.34) 417 (0.48) 160 (0.18) .00549 .034 0.76 (0.58–0.98) .017 0.71 (0.53–0.95) .361

Controls 147 (0.27) 262 (0.49) 122 (0.23) . . . . . .

Abbreviations: CI, confidence interval; Dom, dominant genetic model; HWE, Hardy–Weinberg equilibrium; OR, odds ratio; Rec, recessive genetic model; SNP, single-nucleotide polymorphism;
Trend, allelic trend test.
a The first allele is the major allele (A), and the second is the minor allele (a).
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reaction (erythema nodosum leprosum; Supplementary Tables 4–
6). Together, these data suggest that the TOLLIP SNP rs3793964
is associated with susceptibility to leprosy in Nepal and China.

TOLLIP SNP rs3793964 Is Associated With TOLLIP and IL-1Ra Cutaneous
mRNA Expression
To examine the pattern of inheritance of the genetic association
between TOLLIP SNP rs3793964 and leprosy, we stratified our
skin biopsy samples by genotype and compared TOLLIP and
IL-1Ra mRNA expression, using a genotypic model. The pres-
ence of the T allele of rs3793964 was significantly associated
with increased TOLLIP mRNA and IL-1Ra mRNA (P = .018
and P = .022, respectively, by a generalized linear model). Fur-
thermore, the data were most consistent with a recessive model;
the genotype TT of rs3793964 was associated with higher levels
of skin TOLLIP mRNA than genotypes CC/CT (median num-
ber of copies, 28 249 for TT vs 5714 for CC/CT; P = .011, by
the Mann–Whitney test; Figure 3C). Similarly, the TOLLIP
rs3793964 TT genotype was associated with higher IL-1Ra
mRNA levels than the CC/TC genotype in a recessive model
(median number of copies, 141 579 for TT vs 50 118 for CC/
CT; P = .060, by the Mann–Whitney test; Figure 3D). These
data suggest that genotype TT of rs3793964 is associated with
increased TOLLIP and IL-1Ra mRNA in skin tissue.

M. leprae Selectively Induces IL-1Ra via a TOLLIP-Dependent
Mechanism
We next evaluated potential mechanisms by which TOLLIP reg-
ulates IL-1Ra in monocytes. We stimulated human peripheral
blood monocytes and THP-1 cells with 20 µg/mL whole irradi-
ated M. leprae (iMLep) and found that IL-1Ra was strongly in-
duced (Figure 4A and Supplementary Figure 2). Interestingly,
this induction was partially selective, as iMLep did not induce
several other proinflammatory cytokines, including IL-1β, IL-6,
and TNF (Figure 4A). By contrast, stimulation with 10 ng/mL
LPS was less selective and induced a different pattern of cyto-
kines, with increased IL-6 and TNF levels but a decreased IL-
1Ra level, compared with iMLep (Figure 4A). IL-1β was only
weakly induced by either stimulus. We found similar patterns
of cytokine secretion in 20 µg iMLep-stimulated THP-1 cells
(Supplementary Figure 2). This observation is consistent with
data from prior studies [28].

To examine TOLLIP’s role in IL-1Ra induction, we created a
TOLLIP-deficient THP-1 cell line (TOLLIP-KO), using CRISPR/
Cas9 gene editing. We confirmed knockout by sequencing and
Western blot analyses (Supplementary Figure 3; sequencing
data not shown). After stimulation with iMLep, TOLLIP-KO
monocytes produced less IL-1Ra as compared to control cells
transfected with an empty vector (P = .0024; Figure 4B).

Figure 4. Toll-interacting protein (TOLLIP) regulation of interleukin 1 receptor antagonist (IL-1Ra) expression after Mycobacterium leprae monocyte stimulation. Cytokine
responses in peripheral blood monocytes from a healthy volunteer after stimulation with lipopolysaccharide (LPS) and whole irradiated M. leprae (iMLep). A, Interleukin 1
receptor antagonist (IL-1Ra), IL-1β, interleukin 6 (IL-6), tumor necrosis factor (TNF), and interleukin 8 (IL-8) cytokine production after 20 µg/mL iMLep and 10 ng/mL LPS stim-
ulation of 2 × 105 human peripheral blood mononuclear cells from a healthy donor. Data are representative of 2 experiments. B–D, 105 TOLLIP-deficient (TOLLIP-KO) or empty
vector (EV) THP-1 monocytes were stimulated with medium, 20 µg/mL iMLep, or 250 ng/mL PAM2 CysKKKK (TLR2/6 ligand) for 24 hours, followed by measurement of IL-1Ra
(B), TNF (C), and IL-8 (D) production. Error bars show standard errors of the mean for 3 technical replicates from this experiment, and these data are representative of 2
independent experiments. *P < .05 and **P < .001, by the 2-sided Student t test.
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TOLLIP-KOmonocytes stimulated with iMLep had no difference
in TNF levels, compared with control cells (Figure 4C). Consis-
tent with TOLLIP’s effect as a TLR2 regulator, stimulation of
TOLLIP-KO monocytes with PAM2CysKKKK (250 ng/mL;
TLR2/6) led to significantly increased TNF and IL-8 levels
(P = .043 and <.0001, respectively; Figure 4C and 4D).

To determine whether the effect of TOLLIP on IL-1Ra ex-
pression was due to TLR or IL-1R activation by M. leprae, we
stimulated EV and TOLLIP-KO THP-1 monocytes with sever-
al pure TLR agonists (PAM2, PAM3, LPS, and FliC) and IL-1β
and measured cytokine responses after 24 hours of stimula-
tion. Stimulation of TOLLIP-KO cells with PAM2, PAM3,
and LPS led to similar secretion of IL-1Ra and significantly in-
creased TNF in TOLLIP-KO, compared with findings for EV
cells (P < .05; Figure 5A and 5B). Next, we determined whether
specific fractions of M. leprae stimulated TOLLIP-dependent
induction of IL-1Ra. We compared iMLep, M. leprae cytosol
(MLSA), M. leprae cell membrane (MLMA), M. leprae cell
membranewith lipoarabinomannan removed (MLMA–LAM),

PGL-1 conjugated to human serum albumin, M. leprae cell
wall (MLCWa), andM. leprae cell wall core (MLCWc). In con-
trast to iMLep, different fractions of M. leprae induced higher
IL-1Ra secretion in TOLLIP-KO cells, compared with EV
(P < .0001; Figure 5C). Further, TOLLIP-KO and EV cells
stimulated with iMLep induced similar amounts of TNF, but
multiple fractional preparations of M. leprae–stimulated
TOLLIP cells induced increased TNF levels, compared with
control (iMlep, P = .98; MLMA, MLMA – LAM, MLCWa,
and MLCWc, P < .05; Supplementary Figure 4). Last, we in-
fected our EV and TOLLIP-KO cells with live M. leprae and
incubated them overnight at 33°C. TOLLIP deficiency was sig-
nificantly associated with decreased IL-1Ra levels (P = .04; Fig-
ure 5D). Key findings were replicated using a second primer
sequence to knock out TOLLIP gene function (data not
shown). Together, these data suggest that whole M. leprae
but not other TLR ligands or fractions of M. leprae induces
IL-1Ra secretion in monocytes by a TOLLIP-dependent
mechanism.

Figure 5. Toll-interacting protein (TOLLIP)–dependent interleukin 1 receptor antagonist (IL-1Ra) secretion in monocytes requires wholeMycobacterium leprae. TOLLIP and empty
vector (EV) control THP-1 cells were stimulated for 24 hours, followed by collection of supernatants and measurement of cytokine concentrations by enzyme-linked immunosorbent
assay. A and B, Secreted IL-1Ra (A) and tumor necrosis factor (TNF; B) concentrations after stimulating 105 TOLLIP or EV monocytes with 80 µg/mL whole irradiated M. leprae
(iMLep), 250 ng/mL PAM2, 250 ng/mL PAM3, 10 ng/mL LPS, 50 ng/mL Salmonella typhimurium flagellin FliC, or 100 ng/mL recombinant IL-1β for 24 hours. C, Secreted IL-1Ra
concentrations after stimulating 105 TOLLIP or EV THP-1 monocytes with 80 µg/mL of the following M. leprae cellular fractions: iMLep, phenolic glycolipid 1 conjugated to human
serum albumin (PGL1), M. leprae cytosolic fractions (MLSA), M. leprae cell membrane (MLMA), M. leprae cell membrane with lipoarabinomannan removed (MLSA – LAM), M.
leprae cell wall (MLCWa), or M. leprae cell wall core (MLCWc). D, Secreted IL-1Ra concentrations after stimulating 105 TOLLIP-deficient THP-1 cell line (TOLLIP-KO) or EV THP-1
monocytes with iMLep or live M. leprae (multiplicity of infection, 10) derived from footpads of nude mice and incubated overnight at 33°C. Error bars show standard errors of the
mean of 3 technical replicates from this experiment, which is representative of 2 independent experiments. *P < .05 and **P < .001, by the 2-sided Student t test.
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DISCUSSION

In this study, we demonstrated that TOLLIP and IL-1Ra expres-
sion were highly correlated in leprosy skin biopsy specimens.
TOLLIP polymorphisms were associated with increased TOLL-
IP and IL-1Ra skin expression and increased susceptibility to
leprosy. Finally, M. leprae induced IL-1Ra in monocytes by a
TOLLIP-dependent mechanism. Together, these observations
suggest a strategy by which M. leprae evades host immunity
in tissues through TOLLIP-dependent upregulation of IL-1Ra.

TOLLIP may influence one or more of several mechanisms
that M. leprae uses to evade host antimicrobial responses [36].
M. leprae is a poor inducer of several classic proinflammatory
cytokines, including IL-6, TNF, and IL-1β [29, 37]. By contrast,
M. leprae is a strong inducer of antiinflammatory cytokines in-
cluding IL-1Ra [28, 38, 39]. We previously found that TOLLIP
negatively regulates proinflammatory IL-6 and TNF while pos-
itively regulating antiinflammatory IL-10 after TLR2 stimula-
tion in peripheral blood monocytes [33]. Our current study
links TOLLIP to M. leprae’s ability to induce IL-1Ra, another
potent antiinflammatory cytokine, in cutaneous tissue. These
data are consistent with a model in which M. leprae induces
IL-1Ra and thereby inhibits activation of IL-1R signaling in my-
eloid cells. Individuals with genetically regulated increased
TOLLIP expression induce more cutaneous IL-1Ra, which is as-
sociated with increased susceptibility to leprosy (Supplementary
Figure 4). Interestingly, there was no association of TOLLIP
with disease polarity, despite the fact that the lepromatous
and tuberculoid poles have different cytokine profiles. Our find-
ings suggest that TOLLIP may regulate early steps in leprosy
pathogenesis, whereas other pathways regulate polarization.

Although wholeM. leprae induces TOLLIP-dependent IL-1Ra
in monocytes, fractional preparations ofM. leprae do not. One or
more potential mechanisms may explain our observation.M. lep-
raemay secrete a soluble factor likeMycobacterium ulceransmy-
colactone, which inhibits production of cytokine mRNA in
macrophages by preventing protein translocation into the endo-
plasmic reticulum [40, 41]. TOLLIP promotes trafficking of pro-
teins through the endoplasmic reticulum and alters cytokine
production via a posttranslational mechanism, suggesting that a
similar factor may play a role in altering immune responses toM.
leprae, absent in our fractions [42]. Alternately, whole M. leprae
may activate PI3 kinase signaling via the phagolysosome and in-
duce IL-1Ra secretion. Previous studies indicate that PI3K path-
way activation may mediate IL-1Ra upregulation after M. leprae
infection of monocytes [28]. Furthermore, recent work suggests
that IRAK-1 activates and TOLLIP inhibits PI3K pathways
after LPS stimulation, depending upon the dose administered
[43]. Finally, TOLLIP regulates autophagy through its LC3-bind-
ing and CUE ubiquitin-binding domains [44]. Taken together,
these observations suggest possible mechanisms by which TOLL-
IP selectively influences IL-1Ra activity in the skin.

Our study has several limitations. First, we examined leprosy
skin biopsy specimens that were in a chronic disease state not nec-
essarily reflective of the early postinfection period. Therefore, our
findings may be biased toward measurement of chronic inflamma-
tory markers, rather than toward the factors that may be most crit-
ical immediately after infection. However, we demonstrated a
critical early finding in vitro: TOLLIP activates IL-1Ra preferential-
ly afterM. leprae infects monocytes. Our data also demonstrate that
M. leprae detectably influences host immune responses during the
chronic stages of infection and in vitro, even if M. leprae is dead.
Residual M. leprae can remain as persistent antigen in host tissues
for years after effective multidrug therapy, placing skin and nerves
at increased risk for development of leprosy reactions, neuropathy,
and disability. Second, our genetic association data may have biases
due to ethnic heterogeneity within the case-control cohorts. Can-
didate gene association studies are subject to confounding due to
population substructure [45].We adjusted our analysis for ethnicity
and sex by logistic regression and found no significant effects on
our findings. We validated the association between rs3793964T al-
lele and leprosy in an ethnically distinct cohort, using publicly
available data. As a consequence of the haplotype-tagging SNP
method to assess for genetic associations in TOLLIP, our findings
may be due to genes adjacent to TOLLIP. One such gene, MUC5B,
has been associated with idiopathic pulmonary fibrosis but does
not have any known function in skin and is not expressed in der-
mal, adipose, or lymph tissue [46]. We hypothesize that the SNPs
associated with outcomes in our study are in linkage disequilibrium
with a functionally active causal variant in the TOLLIP gene that
alters its tissue mRNA expression by altering promoter, transcrip-
tion factor, or microRNA binding.

The abilityofTOLLIP to induce IL-1Ra andblock IL-1 signaling
is a potential therapeutic target in infectious and inflammatory
disease. Recent data suggest that IL-1 and inflammasome-related
genes may be major susceptibility genes for leprosy [21, 22, 16].
Further studies inM. tuberculosismodels suggest that IL-1 has an
important role in the initial control of disease but that excessive
levels can lead to increased susceptibility and tuberculosis severity
[23, 47]. An inhibitor of TOLLIP may reduce IL-1Ra levels and
increase killing ofM. leprae during the initial stages of infection.
This host-directed therapeutic medication could be used to pre-
vent leprosy transmission, treat early disease, or be used in con-
junction with current therapies to reduce leprosy treatment time.
Alternately, activation of TOLLIP, administration of recombinant
IL-1Ra, or blockade of genes downstream of TOLLIP may reduce
harmful immune reactions and leprosy neuropathology [48, 49].
This work may be generalizable to modulating immunity in other
infections, autoimmune diseases, or cancers in which IL-1 or
control of IL-1 is critical for optimal immune responses.

Supplementary Data
Supplementary materials are available at http://jid.oxfordjournals.org. Con-
sisting of data provided by the author to benefit the reader, the posted
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materials are not copyedited and are the sole responsibility of the author, so
questions or comments should be addressed to the author.
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