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Abstract

High-speed coherent Raman scattering imaging is opening a new avenue to unveiling the cellular 

machinery by visualizing the spatio-temporal dynamics of target molecules or intracellular 

organelles. By extracting signals from the laser at MHz modulation frequency, current stimulated 

Raman scattering (SRS) microscopy has reached shot noise limited detection sensitivity. The 

laser-based local oscillator in SRS microscopy not only generates high levels of signal, but also 

delivers a large shot noise which degrades image quality and spectral fidelity. Here, we 

demonstrate a denoising algorithm that removes the noise in both spatial and spectral domains by 

total variation minimization. The signal-to-noise ratio of SRS spectroscopic images was improved 

by up to 57 times for diluted dimethyl sulfoxide solutions and by 15 times for biological tissues. 

Weak Raman peaks of target molecules originally buried in the noise were unraveled. Coupling 

the denoising algorithm with multivariate curve resolution allowed discrimination of fat stores 

from protein-rich organelles in C. elegans. Together, our method significantly improved detection 

sensitivity without frame averaging, which can be useful for in vivo spectroscopic imaging.

*corresponding authors. Stanley H. Chan: phone: +1-765-496-0230, fax: +1-765-494-3544, stanleychan@purdue.edu, Ji-Xin Cheng: 
phone: +1-765-494-4335, fax: +1-765-494-1193, jcheng@purdue.edu.
#equal contributions

ASSOCIATED CONTENT
Supporting Information
Detail of noise estimation by STV denoising algorithm.
All raw and denoised spectroscopic images in the main text. This material is available free of charge via the Internet at http://
pubs.acs.org

The authors declare no competing financial interests.

HHS Public Access
Author manuscript
J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2016 March 
05.

Published in final edited form as:
J Phys Chem C Nanomater Interfaces. 2015 August 20; 119(33): 19397–19403. doi:10.1021/acs.jpcc.
5b06980.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org
http://pubs.acs.org


Keywords

Imaging processing; Non-linear microscopy; Label-free microscopy; Raman spectroscopy

1. INTRODUCTION

Coherent Raman scattering microscopy is an emerging platform for compositional and/or 

dynamic analysis of living cells or tissues. Single-color coherent Raman techniques, 

including coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering 

(SRS), have reached video rate imaging speed1–2 and allowed mapping of known species3–5. 

CARS and SRS spectroscopic imaging enabled by multiplex excitation/detection6–12 and 

Raman shift sweeping13–18 acquires a vibrational spectrum at each pixel within milliseconds 

or microseconds, thus allowing compositional analysis of a living system. While CARS 

microscopy requires further spectral retrieval process to extract the Raman signal from the 

non-resonant background, SRS microscopy generates vibrational spectra that reproduce 

spontaneous Raman spectral profiles. Current SRS detection schemes modulate one laser at 

MHz frequency and demodulate the tiny intensity change in the other laser (defined as the 

local oscillator), usually on the order of 0.01% or smaller, by a lock-in amplifier19 or 

resonant circuit20. The strong local oscillator, usually several mW on a photodiode, not only 

boosts the signal level, but also contributes a significant amount of shot noise that degrades 

the image quality and the spectral fidelity. Longer integration time per pixel or frame 

averaging could increase the signal-to-noise ratio (SNR), but at the price of sacrificing the 

imaging speed. In this work, we demonstrate a post-processing algorithm that effectively 

reduces the noise in both spectral and spatial dimensions, while preserving the SRS signal.

Denoising is a well-studied subject in the image processing literature. Over the past decades, 

numerous algorithms have been proposed, e.g., bilateral filter21, non-local (NL) means22, 

3D block matching (BM3D)23, and others24–25. Most denoising algorithms were designed 

for 2D images. For higher dimensional data, e.g., videos, the consistency along the third 

dimension is a challenge. To resolve this issue, Chan et al. reported a space-time total 

variation method to ensure the temporal consistency of a video26. By assuming a constant 

noise level across all frames, the algorithm used a global parameter to regulate the least-

squares objective function and the total variation regularization.

In this study, we generalize the space-time total variation method by Chan et al. to a space-

wavelength total variation method for denoising SRS spectroscopic images. The challenge is 

that for SRS spectroscopic images the constant noise assumption made in space-time total 

variation26 no longer holds since the shot noise of each spectral channel is proportional to 

the square root of the laser power. We overcome the problem by developing a spectrally 

varying total-variation denoising algorithm. The new algorithm, called spectral total 

variation (STV), estimates the noise of each frame automatically, and puts a novel 

regularization according to the noise levels. We show that STV is able to increase the SNR 

of an SRS image by up to 57 times, and spectrally unravel the weak Raman peak from the 

target molecules which is originally buried in the noise. Compared to other denoising 
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methods, including the benchmark singular value decomposition (SVD)27–28, STV shows 

significantly better performance.

2. THEORY OF SPECTRAL TOTAL VARIATION

The concept of our STV algorithm is based on the spatial-spectral correlation of the signals 

and the statistical independence of the noise. The flow chart of the overall denoising 

algorithm is shown in Figure 1. Details of each building block are discussed as the 

following: Section 2.1 reviews the principle of total variation denoising; Section 2.2 presents 

our STV algorithm in detail; and Section 2.3 illustrates the approach of STV algorithm using 

the alternating direction method of multipliers.

2.1 Total Variation Denoising

First we introduce a brief review of the space-time total variation method reported by Chan 

et al. This method is a numerical optimization algorithm to solve the problem

(1)

Here g is a vector of the observed (noisy) image, and f is a vector of the desired (clean) 

image. The goal of the optimization is to find a minimizer of the objective function in 

Equation (1). The objective function consists of two terms: (i) a quadratic term for the 

residue between the observed image and the solution; (ii) a total variation term for the 

solution. The relative emphasis of each term is balanced by the parameter μ which has been 

discussed in previous image processing literature29. Generally for a large μ, the total 

variation term exhibits insignificant influence and then the solution is dominated by the 

quadratic term. The quadratic term is considered as the data fidelity because of the 

continuity and differentiability in calculus. The total variation term is regarded as the 

statistical prior distribution of the clean image. Here we adapt the 3-dimensional anisotropic 

total variation defined as

(2)

where Dx, Dy and Dλ are matrices representing the first-order forward finite-difference 

operators along the horizontal, vertical and wavelength directions, respectively. The results 

of multiplying the matrices Dx, Dy and Dλ to a vector f are

(3a)

(3b)

(3c)

The total variation defined in Equation (2) is the sum of the absolute gradients of the image. 

If a pixel consists of pure noise, the total variation of that pixel is dominated by the noise. 

However, if a pixel lies on an edge of an object, the total variation is dominated by the edge. 
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Since signals from edges are typically stronger than noise in magnitude, by calculating the 

total variation we can differentiate these two.

We further define the operator D in Equation (2) as

(4)

where the relative emphasis of Dx, Dy and Dλ. are determined by parameters βx, βy, and βλ, 

respectively. ‖f‖TV can be rewritten as ‖Df‖1, the vector 1-norm on the gradient Df. 
Therefore, the total variation problem in Equation (1) can be rewritten as

(5)

Equation (5) is the minimization problem reported by Chan et al.26 for video denoising.

2.2 Spectral Total Variation

The original space-time total variation is limited to homogeneous noise over the entire time 

dimension. For SRS spectroscopic images, we introduce a vector w = (w1, …, wn) to address 

individual noise levels along the spectral dimension. First we scale the objective function in 

Equation (5) by a constant

(6a)

(6b)

(6c)

Then we relax the assumption that μ is a fixed constant for all spectral frames, and replace 

 in Equation (6c), which is also , by a sum of individual terms 

. Consequently by replacing , with wi, Equation (6c) can be written as

(7a)

(7b)
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(7c)

where the first equality holds since μi > 0. Because the elements of w are w1, …, wn, 

Equation (7c) can be represented as

(8)

where ⊙ denotes an element-wise multiplication. Equation (8) is a generalized term 

compared with Equation (5) since it allows different parameters for individual frames. This 

is the key for our STV algorithm, which is capable of denoising spectrally varying noise in 

SRS spectroscopic images.

The determination of parameter w = (w1, …, wn) is important to the performance of our 

denoising algorithm. We know that for single image denoising, the parameter μ is a function 

depending on the noise level σ. An image with a large noise level requires more smoothing, 

and therefore μ should be small. The relationship between μ and σ can be determined 

empirically, and we found a reciprocal relation

(9)

with power constant 1 ≤ α ≤ 1.2. As a result, the estimation of the noise level σ determines 

the optimization parameter μ, and thus w. The noise level σ can be estimated by measuring 

the noise variance within a small neighborhood of a background region. A graphic-user 

interface was created to facilitate this process by allowing users to choose the neighborhood 

and estimate the noise level in MATLAB (The Mathworks, Inc., Natick, MA). Letting K be 

the region selected by the user, we can compute the noise level as

(10)

where f̄ is the mean of the pixels in Ω. The validation of our noise estimation is shown in 

Figure S1. Based on the estimated noise levels of all frames, σ1, …, σk, we determine the 

corresponding parameters μ1, … μK and define the matrix w as

(11)

where each submatrix has the same dimension as each frame of the spectroscopic images.

Finally the parameters of βx, βy, and βλ in operator D in Equation (2) can be determined by 

the spatial and spectral dimensions of the input images. In our SRS spectroscopic images, 

the lateral spatial resolution of ~0.5 µm corresponded to 1.28 pixels in x and y directions. 
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The spectral resolution of ~12 cm−1 corresponded to 3.3 frames. Therefore, (βx, βy, βλ) 

equals (1.28, 1.28, 3.3) in our case.

2.3 The Alternating Direction Method of Multipliers (ADMM)

We solve Equation (6) using the ADMM which is also called the augmented Lagrangian 

method30–31. The augmented Lagrangian method has been used to solve an equality-

constrained optimization problem in convex analysis32. To apply ADMM in our case, we 

first modify Equation (6) using an intermediate variable u to generate an equality 

constrained problem

(12)

To note that introducing the intermediate variable does not change the optimization solution 

because at optimum the constraint must be satisfied. Then the augmented Lagrangian 

method introduces an augmented Lagrangian function

(13)

where the vector y is the Lagrange multiplier associated with the constraint u = Df, and ρ is 

a regularization parameter to control the rate of convergence33. The ADMM algorithm 

approaches the solution of Equation (13) by iteratively solving three subproblems of f, u, 

and y, respectively. Each subproblem is an optimization problem with respect to one 

variable, and the algorithm proceeds as the following

for k=1, 2, …

(14a)

(14b)

(14c)

end for

Equation (14a)–(14c) can be further rewritten as

(15a)
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(15b)

(15c)

Equation (15a) is a quadratic minimization problem which can be solved by the following 

solution

(16)

, where I is an identity matrix. Equation (15b) is a shrinkage minimization problem with a 

solution given by30

(17)

3. RESULT AND DISCUSSION

3.1 Denoising SRS spectroscopic images of diluted dimethyl sulfoxide solution

We first evaluated the performance of our algorithm by denoising spectroscopic SRS images 

of a diluted dimethyl sulfoxide (DMSO) solution. The images were collected by our SRS 

spectroscopic microscope at close to shot noise limited detection sensitivity in C-H 

stretching region (2800 – 3000 cm−1)34. The DMSO molecules show Raman peaks at 2912 

and 2999 cm−1 while water exhibits a tail at 3000 cm−1 (Figure S2a, Supporting 

Information). The raw spectral images of 0.2% DMSO solution (Figure S3, Supporting 

Information) showed a SNR of ~2.3 at 2912 cm−1 (Figure 2a–b). Via our denoising 

algorithm, we reduced the noise levels of all frames (Figure S4, Supporting Information), 

and improved the SNR by 57 times at 2912 cm−1 (Figure 2c–d). The noise in the spectral 

domain was also significantly suppressed. Figure 2e showed the raw SRS spectra of 0.2% 

DMSO solution and pure water measured from a single pixel. The Raman signal of DMSO 

molecules in the 0.2% solution was completely buried in the noise. After denoising, the 

2912 cm−1 Raman peak from DMSO molecules was clearly distinguished from water 

(Figure 2f). These data collectively showed that our algorithm is capable of improving the 

SNR in both spatial and spectral domains.

3.2 Denoising SRS spectroscopic images of C. elegans

We further studied whether our denoising algorithm is applicable to real biological 

specimens. We performed spectroscopic imaging of living C. elegans in C-H bending region 

using our multiplex SRS microscope that has reached close to shot noise limited detection 

sensitivity12. The raw images showed organelles inside C. elegans exhibiting C-H bending 

Raman signal around 1445 cm−1 with a SNR of 13 (Figure 3a–b and Figure S5, Supporting 

Information). After denoising, these organelles became clearly visible with a SNR of ~200 

and no reduction of spatial resolution (Figure 3c–d and Figure S6, Supporting Information). 

In the spectral domain, two selected compartments A and B containing 9 pixels had 
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undistinguishable spectral profiles with big standard deviations (Figure 3e). After denoising, 

these two spectral profiles can be distinguished (Figure 3f). The spectra from compartments 

A and B highly reproduced the spontaneous Raman spectra of triglyceride (rich in CH2) and 

bovine serum albumin (rich in CH3), respectively (Figure S2b, Supporting Information). 

Therefore, compartment A was assigned to the fat store, while compartment B was assigned 

to the protein-rich organelle. This result was consistent to our previous study in which frame 

averaging was necessary in order to improve the SNR and spectral fidelity12. Here, with the 

aid of STV denoising, we improved the SNR by 15 times, and therefore these intracellular 

compartments can be distinguished without the need of averaging.

3.3 Comparison of STV with state of the art denoising methods

3.3.1 Comparison with singular value decomposition—Singular value 

decomposition has been widely used for noise reduction in spectroscopic images35–37. This 

method first factorizes the data matrix D into three matrix factors, D = USVT, where the 

unitary matrix U corresponds to an array of spectral vectors, S is a diagonal matrix 

composed of singular values, and V corresponds to an array of spatial vectors. Then the 

number of significant singular values in S are objectively determined, and the rest of the 

singular values are considered to be noise-dominated and set to zeros to generate a new 

diagonal matrix S'. The noise-reduced data D' can be reconstructed using D' = US'VT. 

Several criteria have been reported to determine the number of significant singular values, 

including the decline in the slope of singular values, the first-order autocorrelation function 

of spectral and spatial matrices, and the randomness of residual plots for the difference 

between the original and reconstructed spectroscopic image data27, 38. To compare the 

performance of STV to SVD, we first performed SVD on the SRS spectroscopic images of 

0.2% and 0% DMSO solutions using MATLAB. The singular values were shown in Figure 

S7a–b (Supporting information). In our case, the slope decline from the 3rd to the 4th 

singular value was more than 80% (Figure S7c–d, Supporting Information). Therefore, we 

assumed that the singular values from 4th to the 50th corresponded to noise and replaced 

these values with zeros. The reconstructed spectroscopic images showed 5 times SNR 

improvement compared with the raw images (Figure 4a–c and Figure S8, Supporting 

Information). In comparison, our STV algorithm improved the SNR by up to 57 times.

We further compared STV and SVD for samples with spatially varying spectral feature such 

as C. elegans. The singular values and the corresponding derivative of the SRS 

spectroscopic images of C. elegans were shown in Figure S7e–f (Supporting Information), 

in which 4 major singular values were distinguished from the total of 32 values. Therefore 

we replaced the singular values from 5th to 32th with zeros and reconstructed the 

spectroscopic images. The image at 1445 cm−1 showed a 1.4 times SNR improvement by 

SVD (Figure 4d–f and Figure S9, Supporting Information). In comparison, our STV 

improved the SNR by 15 times (Figure 3e). Collectively, these results suggested that our 

algorithm is able to denoise spectroscopic images and improve the SNR better than the SVD 

denoising approach by one order of magnitude.

3.3.2 Comparison with other denoising methods used for single images and 
videos—To further compare our STV denoising algorithm with other existing methods, we 
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denoised the hypersepectral SRS images of 100% DMSO solution, in which two different 

synthetic spectrally varying noise patterns (Figure S1a–b, Supporting information) were 

added, by our STV algorithm and the following video and image denoising algorithms: (1) 

the original space-time total variation proposed by Chan et al.26; (2) the video version of 3D 

block matching39; (3) the original 3D block matching23; (4) non-local means22. For each 

method, we compared the peak signal-to-noise ratio (PSNR) between the denoised image 

and the ground truth. PSNR, a common metric to compare image quality in image 

processing, is defined as the logarithm of the standard mean-squared error (MSE): PSNR = 

10log10 (1/MSE). Typically an image with a PSNR higher than 40 dB is quite close to the 

ground truth. Experiment 1 in Table 1 summarized the PSNR of the denoised SRS 

spectroscopic images in which the synthetic noise pattern shown in Figure S1a (Supporting 

information) was added. The PSNR of the denoised result in Experiment 2 of Table 1 

corresponded to the synthetic noise pattern in Figure S1b (Supporting information). Table 1 

suggested that STV consistently provided higher PSNR than the other methods. Moreover, 

the performance was tremendously improved when the fluctuation of the noise level was 

significant, e.g., in Experiment 2 where the noise level fluctuated up to 25% of the peak 

signal magnitude.

We also measured the runtimes by our STV and the abovementioned methods in Table 2. 

While original TV and VBM3D are “video” methods which denoise the entire spectroscopic 

images simultaneously, BM3D and NL means are “image” methods that denoise each frame 

individually. Since the image methods calculated the runtimes for one frame, it is needed to 

multiply the runtimes by the number of frames (in our case the frame number was 50) for 

the “image” methods. As shown in Table 2, we found that the runtime of our STV algorithm 

was on the same level as other denoising methods. We remark that our STV method 

supersedes the original TV and inherits the distributive properties. This property enables 

parallel implementation on graphics processing units (GPU). The GPU runtime of the 

original TV has achieved 30 frames per second on a 320×240 video26. Therefore with 

sufficient implementations, we expect our STV algorithm can be speeded up for real-time 

computation.

3.4 STV-aided multivariate curve resolution analysis

SRS spectroscopic images can be decomposed into chemical maps of major components by 

methods including linear unmixing8, multivariate curve resolution (MCR)17, independent 

component analysis18 and spectral phasor analysis40. For images suffering from low SNR, 

these methods might lead to false spectral results. To examine whether the employment of 

our denoising algorithm before the unmixing analysis could improve the spectral fidelity, we 

analyzed the raw and denoised images by MCR and compared the results. For the raw 

images, two initial spectra estimations of compartments A and B shown in Figure 3e were 

used. MCR analysis assigned every compartment to component 1, while component 2 was 

mainly contributed by the background noise (Figure 5a). The output spectrum of component 

2 shown in Figure 5b provided no physical meaning. In comparison, by denoising the 

spectral images and then performing MCR analysis with two initial spectra estimations of 

compartments A and B (Figure 3f), we were able to distinguish fat stores from protein-rich 

organelles (Figure 5c) with their output spectra highly reproduced the spontaneous Raman 
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spectra of CH2 and CH3 groups (Figure 5d). These results show that our algorithm is 

capable of improving the spectral fidelity of the unmixing analysis.

4. CONCLUSION

In summary, by STV minimization, our denoising algorithm suppressed the noise in both 

spatial and spectral domains, which improved the SNR of SRS spectroscopic images by up 

to 57 times, and unraveled the weak Raman peaks of target molecules originally buried in 

the noise. These advantages allowed us to analyze in vivo spectroscopic imaging data and 

distinguish fat stores from protein-rich organelles in live C. elegans. Furthermore, our 

algorithm effectively improved the spectral fidelity of MCR analysis. Collectively, we have 

demonstrated a numerical method that denoises a spectroscopic image without sacrificing 

the imaging speed. We expect its wide use for spectroscopic analysis of living systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart of the denoising algorithm.

Liao et al. Page 13

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2016 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Denoising SRS images in spatial and spectral domains by STV. (a) Raw spectroscopic 

image at 2912 cm−1. (b) Intensity cross-section indicated in (a). (c) Denoised spectroscopic 

image by STV algorithm. (d) Intensity cross-section indicated in (c). (e) Raw SRS spectra of 

0.2% and 0% DMSO solutions. (f) Denoised SRS spectra by STV. Scale bar: 10 µm
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Figure 3. 
Denoising SRS spectroscopic images of C. elegans by STV. (a) Raw spectroscopic image at 

1445 cm−1. (b) Intensity cross-section indicated in (a). (c) Denoised spectroscopic image by 

STV. (d) Intensity cross-section indicated in (c). (e) Raw SRS spectra of locations indicated 

in (a). The spectra were averaged from 9 pixels. (f) Denoised SRS spectra by STV indicated 

in (c). Scale bar: 10 µm.
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Figure 4. 
Denoising SRS spectroscopic images of 0.2% DMSO solution and C. elegans by SVD. (a) 

Denoised SRS spectroscopic image of 0.2% DMSO solution by SVD. (b) Intensity cross-

section indicated in (a). (c) Denoised SRS spectra by SVD. (d) Denoised SRS spectroscopic 

image of C. elegans at 1445 cm−1 by SVD. (e) Intensity cross-section indicated in (d). (f) 

Denoised SRS spectra by STV indicated in (d).
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Figure 5. 
Denoising-aided MCR analysis. (a) MCR analysis of raw spectroscopic images outputs 

concentration maps of components 1 (red) and 2 (green). (b) MCR spectra of components 1 

and 2. (c) MCR outputs of denoised spectroscopic images. (d) Denoised MCR spectra. Scale 

bar: 10 µm.
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