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Abstract

Opioids produce antinociception by activation of G protein signaling linked to the mu-opioid 

receptor (MOPr). However, opioid binding to the MOPr also activates β-arrestin signaling. 

Opioids such as DAMGO and fentanyl differ in their relative efficacy for activation of these 

signaling cascades, but the behavioral consequences of this differential signaling are not known. 

The purpose of this study was to evaluate the behavioral significance of G protein and 

internalization dependent signaling within ventrolateral periaqueductal gray (vlPAG). 

Antinociception induced by microinjecting DAMGO into the vlPAG was attenuated by blocking 

Gαi/o protein signaling with administration of pertussis toxin (PTX), preventing internalization 

with administration of dynamin dominant-negative inhibitory peptide (dyn-DN) or direct 

inhibition of ERK1/2 with administration of the MEK inhibitor, U0126. In contrast, the 

antinociceptive effect of microinjecting fentanyl into the vlPAG was not altered by administration 

of PTX or U0126, and was enhanced by administration of dyn-DN. Microinjection of DAMGO, 

but not fentanyl, into the vlPAG induced phosphorylation of ERK1/2, which was blocked by 

inhibiting receptor internalization with administration of dyn-DN, but not by inhibition of Gαi/o 

proteins. ERK1/2 inhibition also prevented the development and expression of tolerance to 

repeated DAMGO microinjections, but had no effect on fentanyl tolerance. These data reveal that 

ERK1/2 activation following MOPr internalization contributes to the antinociceptive effect of 
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some (e.g., DAMGO), but not all opioids (e.g., fentanyl) despite the known similarities for these 

agonists to induce β-arrestin recruitment and internalization.
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1. Introduction

Mu opioid receptor (MOPr) agonists activate and inhibit a number of different intracellular 

signaling pathways. G protein signaling and the subsequent inhibition of downstream 

effectors, such as adenylyl cyclase, has been the most thoroughly characterized. In contrast 

much less is known about β-arrestin signaling following opioid binding. MOPr 

phosphorylation terminates G protein signaling and recruits β-arrestin to the receptor. β-

arrestin binding leads to receptor internalization and activation of a distinct group of 

signaling proteins such as extracellular signal-regulated kinase (ERK1/2), which is well 

characterized in adrenergic receptors compared to opioid receptors (Lefkowitz and Shenoy, 

2005, Shenoy and Lefkowitz, 2005, Drake et al., 2008). Recent studies have shown that 

some MOPr agonists such as fentanyl and [D-Ala2, N-MePhe4, Gly-ol]-enkephalin 

(DAMGO) have high efficacy to recruit β-arrestin and activate of G proteins, whereas other 

opioids such as morphine are biased toward G protein signaling (McPherson et al., 2010, 

Molinari et al., 2010, Kelly, 2013, Thompson et al., 2014).

Ligands with high efficacy for receptor internalization correlate inversely with susceptibility 

to tolerance (Madia et al., 2009) suggesting that β-arrestin signaling contributes to 

antinociception by preventing the development of tolerance (Finn and Whistler, 2001). 

Morphine produces limited β-arrestin recruitment and MOPr internalization compared to 

other opioids such as fentanyl or DAMGO (Williams et al., 2001, Christie, 2008, Williams 

et al., 2013), but maximal tolerance (He et al., 2002). Although tolerance is observed 

following administration of morphine, fentanyl, or DAMGO, the signaling proteins 

underlying tolerance appear to vary. Blockade of G protein associated signaling proteins (c-

Jun N-terminal kinase or protein kinase C) prevents tolerance to morphine, but not DAMGO 

or fentanyl. Conversely, blockade of internalization-dependent signaling pathway prevents 

tolerance to fentanyl and DAMGO, but not morphine (Hull et al., 2010, Melief et al., 2010, 

Morgan et al., 2014).

Microinjection of morphine, fentanyl, or DAMGO into the ventrolateral periaqueductal gray 

(vlPAG) produces antinociception, and repeated administration leads to the development of 

tolerance (Morgan et al., 2006, Meyer et al., 2007, Bobeck et al., 2012). Although G protein 

signaling is known to contribute to the antinociceptive effect of opioids, the objective of the 

present study was to determine whether G protein independent (i.e. β-arrestin and ERK1/2) 

signaling following administration of these different opioids also contributes to 

antinociception. Despite minimal activation of ERK1/2 in vitro or in vivo following acute 

morphine administration, inhibition of ERK1/2 has been shown to prevent or enhance the 

development of morphine tolerance depending on the site of administration (Macey et al., 
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2009, Wang et al., 2010, Macey et al., 2014). Given that DAMGO and fentanyl activate 

ERK1/2 in vitro, we hypothesized that ERK1/2 is activated following DAMGO and fentanyl 

administration into the vlPAG, and inhibition of this signaling pathway prevents the 

development of tolerance.

2. Materials and Methods

2.1. Subjects

Male Sprague-Dawley rats (n = 220) weighing 220 – 360 g from Harlan Laboratories 

(Livermore, CA) were used. Rats were anesthetized with pentobarbital (60 mg/kg, i.p.) and 

implanted with a guide cannula (23 gauge; 9 mm long) aimed at the vlPAG using stereotaxic 

techniques (AP: +1.7 mm, ML: −0.6 mm, DV: −4.6 mm from lambda). Two screws were 

used to anchor the cannula to the skull with dental cement. A 9 mm stylet was inserted into 

the guide cannula following surgery. Rats were handled daily and allowed to recover for 1 

week before testing. Rats were housed in groups of 2 – 5 until surgery and were housed 

individually on a reverse light cycle (lights off at 7:00 AM) after surgery. Food and water 

were available at all times except during experimental testing. All procedures were approved 

by the Washington State University Animal Care and Use Committee and conducted in 

accordance with the guidelines for animal use described by the International Association for 

the Study of Pain.

2.2. Behavioral testing

Drugs were administered through a 31-gauge injection cannula extending 2 mm beyond the 

guide cannula. One day prior to testing, the injector was inserted into the guide cannula 

without drug administration to habituate the rat to the microinjection procedure. To assess 

the role of Gαi/o protein signaling, receptor internalization-related signaling, or ERK1/2 

activation, different groups of rats were microinjected into the vlPAG with G protein 

inhibitor pertussis toxin (PTX; 5 or 50 ng/0.4 µL), a myristoylated dominant negative 

dynamin inhibitory peptide (dyn-DN; 2 µg/0.4 µL) to block formation of the endosome, or a 

MEK1/2 inhibitor (U0126; 100 ng/0.5 µL) prior to administration of DAMGO or fentanyl. 

PTX or saline was administered one day prior to opioid administration, whereas U0126, 

20% DMSO vehicle, dyn-DN, or the scrambled control peptide (dyn-scr, 2 µg/0.4 µL) were 

injected 20 minutes prior to opioid administration based on previous studies showing peak 

effects with microinjections into the vlPAG (Bodnar et al., 1990, Macey et al., 2009, Macey 

et al., 2010). In preliminary studies 24 hour pretreatment of 5 ng/0.5 µL was sufficient to 

attenuate morphine induced antinociception within the vlPAG (F(1,92) = 3.95, p < 0.05). 

Dyn-DN was injected into the vlPAG to disrupt MOPr internalization as we have reported 

previously using the fluorescent opioid peptide, dermorphin-A594 (Macey et al., 2010). In 

addition, a higher dose was needed to assure all internalization was blocked and preliminary 

data showed that dyn-DN (2 µg/0.4 µL) did not alter morphine antinociception (F(1, 98) = 

1.88, p = 0.17).

A cumulative dosing procedure was used to assess the antinociceptive effects of DAMGO 

and fentanyl. Increasing doses of DAMGO were administered every 12 min resulting in 

third log doses of 0.046, 0.1, 0.22, 0.46, & 1 µg/0.4 µL. Nociception was assessed with the 
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hot plate test 10 min after each injection. Fentanyl has a fast time course of action so was 

microinjected every 4 min resulting in third log doses of 0.46, 1, 2.2, 4.6, 10 µg/0.4 µL. The 

hot plate test was conducted 2 min after each injection. Our previous data show clear dose-

dependent antinociception using this procedure (Bobeck et al., 2009).

Tolerance was induced in a separate group of rats by twice daily microinjections of 

DAMGO (0.5 µg/0.4 µL) or fentanyl (3 µg/0.4 µL) for two consecutive days. On Trial 1, the 

hot plate test was conducted 20 min after the DAMGO microinjection and 3 min after the 

fentanyl microinjection. To evaluate the role of ERK1/2 on the development of tolerance, a 

subset of rats received U0126 or vehicle (20% DMSO in saline, 0.5 µL) 20 min prior to each 

opioid injection on Trials 1 – 4. Tolerance was assessed on Trial 5 using the cumulative 

dosing procedure described above. To evaluate the expression of tolerance, a subset of rats 

received U0126 or vehicle 20 min prior to the cumulative dosing procedure in rats 

previously treated with twice daily microinjections of DAMGO or fentanyl for two days. 

We have shown previously that tolerance develops to vlPAG microinjections of DAMGO or 

fentanyl using this procedure (Meyer et al., 2007, Bobeck et al., 2012).

2.3 Histology and Data Analysis

Following testing, rats received a lethal dose of halothane. Brains were removed and stored 

in formalin (10%) and sliced coronally (100 µm) at least 2 days later to determine the 

injection site (Paxinos and Watson, 2005). Only those injection sites in or adjacent to the 

vlPAG were included in data analysis. Dose-response curves were plotted and the half 

maximal antinociceptive effect (D50) was calculated for each group using GraphPad (Prism 

6). A unique control group was tested alongside the experimental groups for each 

experiment to control for variability between experiments. All comparisons were made with 

the control group within each experiment. Significance (α < 0.05) was determined using 

ANOVA or t-test where appropriate. Bonferroni posthoc analyses were used to compare 

means when necessary. Data are presented as mean ± SEM unless otherwise stated. To 

assess the homogeneity of variance the Brown-Forsythe test was used.

2.4. Drugs

All drugs were purchased from Tocris Bioscience except fentanyl citrate and U0126 (Sigma-

Aldrich). DAMGO, fentanyl citrate, PTX, dyn-DN, and scr-dyn, were dissolved in sterile 

saline. U0126 was dissolved in 20% DMSO.

2.5. ERK1/2 Immunohistochemistry

A separate group of rats were deeply anesthetized with pentobarbital (150 mg/kg, i.p.) 20 

min after opioid injection and then perfused transcardially through the ascending aorta with 

10 mL heparinized saline followed by 400–600 mL of 4% paraformaldehyde in 0.1M 

phosphate buffer (PB). Brains were postfixed in 4% paraformaldehyde for 30 min and then 

stored in 0.1M PB for up to 15 hours. Immunohistochemistry was performed on coronal 

brain slices (40 µm) containing the vlPAG. Sections were incubated in 1% sodium 

borohydride in 0.1M PB for 30 min followed by another 30 min incubation with 0.3% H2O2 

in 0.1M PB. The blocking reagent was then used: 0.5% bovine serum albumin in 0.1M Tris 

buffered saline for 30 min. The tissue was incubated in primary rabbit antibody against 
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phospho-p44/42 MAPK (ERK 1/2) (1:400; Cell signaling, Beverly, MA) in 0.1M Tris 

buffered saline containing 0.1% bovine serum albumin and 0.25% TritonX-100, for 42 hours 

at 4°C. Bound ERK1/2 antibody was visualized with a diaminobenzidine hydrogen 

peroxidase (DAB-H2O2) reaction. Tissue was incubated in biotinylated goat-anti rabbit IgG 

secondary antibody (1:400 Vector Laboratories, Burlingame, CA) for 30 min. This was 

followed by incubation in Avidin-Biotin (Elite Vectastain ABC kit; Vector Laboratories) for 

30 min and then DAB-H2O2 for 3 min. Brain slices were mounted, dehydrated and then 

coverslipped with DPX mounting medium (Sigma-Aldrich, St. Louis, MO). Sections 

containing the injection site were quantified within a 300 × 300 µm2 region. Depending on 

the location of the injection, up to 3 separate boxes were used to equal 90,000 µm2 area. To 

avoid damaged tissue, a region 50 µm away from injection site was chosen. Images were 

taken with an Olympus DP71 digital camera mounted on an Olympus BX51 microscope. 

The number of pERK-positive cells was assessed using ImageJ particle analysis to count cell 

bodies that were larger than 60 pixels2 (National Institutes of Health; Bethesda, MA).

3. Results

3.1. Inhibition of G proteins or internalization differentially alters DAMGO and fentanyl-
induced antinociception

To investigate the mechanism of DAMGO and fentanyl induced antinociception, rats were 

pretreated with either G protein or internalization inhibitors prior to opioid microinjection 

into the vlPAG. There was no significant difference in baseline hot plate latencies prior to 

PTX or dyn-DN pretreatment (F(4, 72) = 0.24; p = 0.91) or between opioids (F(1,72) = 0.48; p 

= 0.49). Mean baseline hot plate latencies for these groups ranged from 14.8 ± 0.9 to 18.4 ± 

1.4 s. Treatment with 5 or 50 ng PTX (15.8 ± 2.5 s, 13.37 ± 0.2 s, respectively) did not alter 

nociception compared to saline controls (15.7 ± 0.9 s; F(2, 49) = 0.54; p = 0.59). Similarly 

hot plate latencies following dyn-DN (14.9 ± 1.0 s) did not differ from scr-dyn controls 

(17.3 ± 3.1 s; (t(31) = 1.07; p = 0.29).

Administration of PTX significantly attenuated the antinociceptive effect of DAMGO, but 

not fentanyl. PTX caused a rightward shift in the DAMGO dose-response curve (Figure 1A; 

F(2, 150) = 9.09; p < 0.05), but only the high dose (50 ng) produced a statistically significant 

difference from saline pretreated rats. Pretreatment with PTX caused a small non-significant 

rightward shift in the fentanyl dose-response curve (Figure 1B; F(2, 138) = 2.15; p = 0.12).

Pretreatment with dyn-DN also had opposite effects on DAMGO and fentanyl-induced 

antinociception. Administration of dyn-DN reduced DAMGO potency as evident by a 

rightward shift in the dose-response curve (Figure 2A; F(1,85) = 6.52; p < 0.05). In contrast, 

administration of dyn-DN enhanced fentanyl antinociception as evident by a leftward shift 

in the dose-response curve (Figure 2B; F(1, 98) = 13.48; p < 0.05).

3.2. DAMGO, but not fentanyl, activates ERK1/2 in a dynamin dependent manner

In vitro studies have shown that ERK1/2 can be activated following opioid exposure via G 

protein or β-arrestin signaling depending on the opioid (Belcheva et al., 2005, Macey et al., 

2006, Zheng et al., 2008). To assess whether opioids induce ERK1/2 phosphorylation in 
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vivo, DAMGO or fentanyl were microinjected into the vlPAG followed by 

immunohistochemical analysis of pERK1/2. DAMGO (n = 3) caused an increase in 

pERK1/2 immunoreactivity compared to saline (Figure 3A–D: F(3, 11) = 4.62; p < 0.05; n = 

7). Microinjection of PTX (n=2) prior to DAMGO into the vlPAG also caused an increase in 

pERK positive cells compared to saline treated rats (Bonferroni, p < 0.05). In contrast, rats 

injected with dyn-DN (n = 3) 20 min prior to DAMGO showed a similar number of 

pERK1/2 positive cells as saline treated rats (Bonferroni, n.s.). The variance in each drug 

treated group was similar (F(3, 11) = 0.81, p = 0.51).

Microinjection of fentanyl (n = 4) into the vlPAG produced a slight increase in the number 

of pERK1/2 positive cells compared to saline controls (n = 7), but this increase failed to 

reach significance, and this lack of an effect was not altered by pretreatment with PTX or 

dyn-DN (F(3, 14) = 1.24; p = 0.33, n = 3–4). The variance in each drug treated was similar 

(F(3, 14)= 1.22, p = 0.34).

3.3. ERK1/2 inhibition attenuates DAMGO antinociception and tolerance

The finding above that DAMGO activation of ERK1/2 is prevented by administration of 

dyn-DN indicates that DAMGO activates ERK1/2 as a result of MOPr internalization. 

Moreover, these data raise the possibility that ERK1/2 activation also contributes to 

DAMGO antinociception and tolerance. This hypothesis was tested by microinjecting the 

ERK1/2 inhibitor U0126 (100 ng/0.5 µL) into the vlPAG. Administration of U0126 in the 

absence of an opioid had no effect on nociception compared to vehicle controls (t(45) = 0.97; 

p = 0.34), but attenuated the antinociceptive effect of DAMGO as indicated by a rightward 

shift in the DAMGO dose-response curve (Figure 4A; F(1, 98) = 34.10; p < 0.05). In contrast, 

administration of U0126 had no effect on the fentanyl dose-response curve (Figure 4B; 

F(1, 128) = .044; p = 0.834).

To assess the role of ERK1/2 on the expression of tolerance, U0126 was administered 20 

min prior to administration of cumulative doses of DAMGO or fentanyl in rats tolerant to 

vlPAG microinjections of either opioid. Repeated DAMGO microinjections caused a 

rightward shift in the DAMGO dose-response curve compared to saline-treated controls. 

Tolerance to DAMGO was reversed by administration of U0126 prior to testing on Trial 5 

(Figure 5A; F(2, 138) = 13.19; p < 0.05). Repeated microinjections of fentanyl also caused a 

rightward shift in the fentanyl dose response curve (e.g., tolerance) compared to saline 

treated controls, but microinjection of U0126 prior to fentanyl administration on Trial 5 had 

no effect on this shift (Figure 5B; F(2, 174) 8.03; p < 0.05).

Furthermore, pretreatment with U0126 20 min prior to each DAMGO injection during 

tolerance induction prevented the development of tolerance to DAMGO (Figure 6A; F(3, 214) 

= 10.41; p < 0.05). Similar to what was found with a single injection of U0126, four 

injections of U0126 caused a rightward shift in the DAMGO dose-response curve in 

DAMGO-naïve rats injected repeatedly with saline as a control. The rightward shift in the 

fentanyl dose-response curve that occurred with repeated fentanyl microinjections (Figure 

6B; F(3, 226) = 4.86; p < 0.05) was attenuated by administration of U0126 prior to each 

injection, but this shift in the dose response curve did not reach statistical significance. D50 

values are shown in Table 1.
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4. Discussion

The current study found ligand-biased differences in opioid signaling underlying 

antinociception and tolerance mediated by the vlPAG. The antinociceptive effect of 

microinjecting DAMGO into the vlPAG was attenuated by blockade of G proteins, MOPr 

internalization, and ERK1/2 signaling. Blocking dynamin also blocked DAMGO-induced 

ERK1/2 activation suggesting that ERK1/2 signaling occurs following MOPr 

internalization. Furthermore, inhibition of ERK1/2 was associated with a reduction in both 

the expression and development of tolerance to DAMGO. In contrast, these molecular 

signaling pathways do not appear to contribute to fentanyl antinociception or tolerance. The 

antinociceptive effect of fentanyl in the vlPAG was enhanced by blocking MOPr 

internalization and was not dependent on G protein or ERK1/2 signaling. Likewise, ERK1/2 

signaling does not appear to contribute to either the development or expression of fentanyl 

tolerance.

The antinociceptive effect of DAMGO in the vlPAG was attenuated by administration of 50, 

but not 5 ng of PTX. In contrast, PTX had no significant effect on fentanyl antinociception 

regardless of dose. A previous study found that 5 ng of PTX was sufficient to attenuate 

morphine antinociception (Bodnar et al., 1990). Taken together these results within the 

vlPAG are consistent with previous studies evaluating the role of Gαi/o proteins on 

antinociception using intracerebroventricular administration. Blockade of Gαi/o proteins 

with PTX or antisense oligodeoxynucleotides produced a ligand biased attenuation of 

antinociception in the order of morphine > DAMGO > sufentanil (a fentanyl analog) (Raffa 

et al., 1994, Goode and Raffa, 1997), which inversely correlated with agonist efficacy to 

induce antinociception as measured with irreversible antagonists or using a [35S]GTPγS 

assay (Mjanger and Yaksh, 1991, Ammer and Schulz, 1993, Traynor and Nahorski, 1995, 

Goode and Raffa, 1997, McPherson et al., 2010, Madia et al., 2012). It is possible that 

fentanyl-induced antinociception is differentially mediated through a different MOPr splice 

variant, Gα protein subtype, or even heterodimers (i.e. MOPr/DOPr). Fentanyl analogs have 

been shown to produce antinociception via Gαs proteins (Goode and Raffa, 1997, Sanchez-

Blazquez et al., 2001). In addition fentanyl, but not morphine, antinociception is blocked 

following deletion of a particular exon on the MOPr, suggesting that certain agonists 

preferentially activate certain receptor variants (Oldfield et al., 2008, Pan et al., 2009, Xu et 

al., 2014). It is unknown what variants are present in the vlPAG. It is also possible that 

certain agonists activate heterodimers (such as MOPr/DOPr) that preferentially signal via 

ERK1/2 (Rozenfeld and Devi, 2007, Costantino et al., 2012).

It is well established that certain agonists cause robust MOPr phosphorylation and 

internalization. In particular, morphine is very weak at inducing MOPr internalization 

compared to other agonists such as DAMGO and fentanyl (Whistler et al., 1999, Borgland et 

al., 2003, Celver et al., 2004, McPherson et al., 2010, Melief et al., 2010). Given that both 

DAMGO and fentanyl produce rapid MOPr internalization, it is surprising that 

administration of dyn-DN, a GTPase that prevents the formation of endosomes (Herskovits 

et al., 1993), would have opposite effects. One explanation is that fentanyl is similar to 

morphine, an opioid that does not induce MOPr internalization, when microinjected into the 

vlPAG. The antinociceptive efficacy of fentanyl is similar to morphine when microinjected 
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into the vlPAG (Bobeck et al., 2012), whereas its efficacy is much greater than morphine 

when administered systemically (Madia et al., 2009). We have shown previously that dyn-

DN has no effect on morphine antinociception (Macey et al., 2014), whereas in the present 

study administration of dyn-DN potentiated fentanyl antinociception. Fentanyl produces a 

rapid (3 min) and short-lived (< 30 min) peak effect in comparison to morphine, DAMGO, 

and dermorphin, which show peak antinociception at 15–30 min and persists for more than 

one hour following vlPAG administration (Bobeck et al., 2009, Macey et al., 2010). 

Blocking MOPr internalization may potentiate fentanyl antinociception by prolonging 

signaling from the plasma membrane. In contrast, administration of dyn-DN to block MOPr 

internalization had the opposite effect on DAMGO antinociception. DAMGO-induced 

antinociception was attenuated by inhibiting dynamin suggesting that MOPr signaling 

following internalization contributes to antinociception. Although this would indicate a 

novel signaling mechanism for the MOPr, microinjection of dyn-DN into the vlPAG also 

attenuated the antinociceptive effect of injecting the high efficacy MOPr agonist dermorphin 

(Macey et al., 2010). Internalization of the MOPr could contribute to antinociception via β-

arrestin signaling from the endosome or by rapid recycling of the receptor to the plasma 

membrane for additional signaling. Our findings that DAMGO activates ERK1/2 signaling 

in a dynamin dependent manner and inhibition of ERK1/2 activation attenuates DAMGO 

antinociception and tolerance indicates that MOPr signaling occurring after internalization 

contributes to antinociception.

Previous research has shown that ERK1/2 is activated following acute administration of 

fentanyl or DAMGO, but not morphine (Macey et al., 2006, Zheng et al., 2011, Duraffourd 

et al., 2014, Macey et al., 2014). Our current data show that fentanyl in the vlPAG caused a 

small increase in ERK1/2 activation, but this increase was less than that produced by 

DAMGO and was not attenuated by PTX or dyn-DN administration. It is possible that 

fentanyl does not activate ERK1/2 in the vlPAG even though fentanyl has this effect in 

heterologous cell systems and cultured striatal neurons (Macey et al., 2006, Zheng et al., 

2008). Morphine has been shown to induce ERK1/2 activation in a brain-region specific 

manner: an increase in ERK1/2 activation has been reported in the anterior cingulate and 

locus coeruleus, whereas a decrease occurs in the nucleus accumbens and central amygdala 

(Eitan et al., 2003). Prolonged, but not acute, morphine treatment showed an increase in 

pERK1/2 within the vlPAG, but a decrease in a heterologous cell system (Bilecki et al., 

2005, Macey et al., 2009, Macey et al., 2014).

Although ERK1/2 is typically considered to be activated in a β-arrestin dependent manner, 

some agonists such as morphine may activate ERK1/2 via a different signaling mechanism. 

For example, morphine activates ERK1/2 in a PKC and/or calmodulin dependent 

mechanism, whereas DAMGO and fentanyl use a dynamin or β-arrestin dependent pathway 

(Belcheva et al., 2005, Zheng et al., 2011, Duraffourd et al., 2014). The current study using 

PTX and dyn-DN confirmed that DAMGO activates ERK1/2 via a dynamin dependent 

mechanism within the vlPAG.

Studies investigating the role of ERK1/2 on morphine tolerance have found mixed results 

depending on injection site. Co-administration of intrathecal morphine with a MEK inhibitor 

attenuated the development of tolerance to morphine (Wang et al., 2010), whereas morphine 
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tolerance was not altered by ERK1/2 inhibition following systemic administration 

(Mouledous, 2007). Inhibition of ERK1/2 activation enhances both the expression and 

development of tolerance to morphine within the vlPAG (Macey et al., 2009) revealing that 

activation of ERK1/2 may counteract tolerance. Taken together with the present study, ERK 

has distinct effects on tolerance within the vlPAG depending on the opioid injected: ERK1/2 

activation counteracts (morphine), enhances (DAMGO), or has no effect (fentanyl) on 

tolerance to MOPr agonists. The previous finding that acute tolerance to DAMGO, but not 

morphine or fentanyl, was prevented by GRK inhibition (Hull et al., 2010) is consistent with 

our data given that ERK1/2 is thought to be downstream of GRK/β-arrestin signaling 

(Macey et al., 2006, Shenoy et al., 2006). The current study is the first to examine the role of 

ERK1/2 in tolerance to these other MOPr agonists.

It is unclear how phosphorylated ERK1/2 alters opioid function to contribute to DAMGO 

tolerance. ERK1/2 is known to alter several epigenetic markers and transcription factors 

including c-fos, brain-derived neurotrophic factor, and cAMP response element binding 

proteins (CREB) in several brain regions following opioid withdrawal (Wang et al., 2012, 

Ciccarelli et al., 2013). The adenylyl cyclase-cAMP-CREB pathway is upregulated 

following prolonged opioid exposure (Cao et al., 2010). ERK1/2 activation may contribute 

to this upregulation by activation of PKC, although the exact mechanism is unclear (Martin 

et al., 2011). ERK1/2 also has been found to directly increase synaptic vesicle exocytosis via 

calcium channels (Subramanian and Morozov, 2011). Given that opioids in the vlPAG 

produce antinociception by inhibiting GABA release (Depaulis et al., 1987, Morgan et al., 

2003, Heinricher et al., 2009), an increase in GABA release via ERK1/2 inhibition would 

require a higher opioid dose to produce antinociception.

5. Conclusions

The present study shows that both G protein and dynamin/ERK1/2 related signaling 

contribute to MOPr mediated antinociception in a ligand-biased manner. DAMGO engages 

both G protein and β-arrestin signaling pathways within the vlPAG to facilitate 

antinociception and tolerance. DAMGO antinociception and tolerance is dependent on 

activation of ERK1/2, while fentanyl antinociception and tolerance is not. This adds to the 

growing body of research on ligand-biased signaling at the MOPr by revealing a distinct role 

for ERK1/2 using a behavioral approach.
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dyn-DN dominant negative dynamin inhibitory peptide

ERK1/2 extracellular signal-regulated kinase 1 and 2
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PTX pertussis toxin

scr-dyn scrambled control peptide

vlPAG ventrolateral periaqueductal gray
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Highlights

• Opioid induced antinociception is regulated by G protein dependent and 

independent signaling.

• Extracellular signal-regulated kinase 1/2 is activated in a ligand-biased manner 

within the periaqueductal gray.

• Antinociceptive tolerance to DAMGO, but not fentanyl, is attenuated by 

inhibition of ERK1/2.
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Figure 1. Differential alteration in antinociception following G protein inhibition
Pretreatment with PTX for 24 hours alters antinociception following vlPAG microinjections 

of DAMGO (A), but not fentanyl (B). Following pretreatment with 50 ng PTX, the 

DAMGO D50 (0.75 ± 0.45 µg; n = 8) was significantly different from saline treated rats 

(0.15 ± 0.07 µg; n = 10), however 5 ng PTX (0.26 ± 0.12 µg; n = 8) was not statistically 

different than saline controls. Pretreatment with PTX caused a slight rightward shift in the 

fentanyl D50 values following 5 ng (1.62 ± 0.53 µg; n = 8) and 50 ng (1.81 ± 0.67 µg; n = 8) 
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of PTX compared to saline treated rats (1.10 ± 0.32 µg; n = 8), but it did not reach statistical 

significance.
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Figure 2. Ligand-biased effects on antinociception following inhibition of internalization
Pretreatment with dyn-DN (2 µg/0.5 µL) 20 min prior to opioid dose-response decreased 

DAMGO-induced antinociception (A), and enhanced fentanyl-induced antinociception (B) 

compared to scr-dyn (2 µg/0.5 µL). Pretreatment with dyn-DN shifted the DAMGO D50 to 

0.14 ± 0.07 µg (n = 7) compared to pretreatment with scr-dyn (0.046 ± 0.02 µg; n = 8). 

Conversely, pretreatment with dyn-DN caused a leftward shift in the fentanyl D50 (0.77 ± 

0.12 µg; n = 8) compared to saline controls (1.81 ± 0.73 µg; n = 10).
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Figure 3. ERK1/2 activation in vlPAG following opioid microinjections
Representative photomicrographs (A) of pERK1/2 immunoreactivity in vlPAG following 

pretreatment of saline, DAMGO, DAMGO+dyn-DN and DAMGO+PTX. Arrow designates 

a typical pERK1/2 positive cell. Scale bar = 100 µm. Quantification of pERK1/2 

immunoreactivity 20 min following microinjection 0.5 µg/0.4 µL DAMGO (B), and 3 µg/0.4 

µL fentanyl (C) into the vlPAG. A subset of rats were pretreated with dyn-DN (2 µg/0.5 µL) 

20 min prior or PTX (50 ng/0.5 µL) 24 hours prior to opioid pretreatment. DAMGO, but not 

fentanyl, caused a significant increase in pERK1/2, which was prevented by pretreatment 

with dyn-DN. *-statistically different from saline.
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Figure 4. ERK1/2 inhibition decreases DAMGO-induced antinociception
Rats were pretreated with 0.4 µL saline twice daily for two days. On Day 3, rats received an 

injection of vehicle (20% DMSO) or U0126 (100 ng/0.5 µL) 20 min prior to DAMGO (A) 

or fentanyl (B) dose-response. ERK inhibition caused a decrease in DAMGO-induced 

antinociception, but had no effect on fentanyl-induced antinociception.
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Figure 5. ERK1/2 inhibition reverses the expression of DAMGO tolerance but does not alter 
fentanyl tolerance
Rats were pretreated with 0.4 µL saline, 0.5 µg/0.4 µL DAMGO, or 3 µg/0.4 µL fentanyl 

twice daily for two days. On Day 3, rats received an injection of vehicle (20% DMSO) or 

U0126 (100 ng/0.5 µL) 20 min prior to DAMGO (A) or fentanyl (B) dose-response. The 

expression of DAMGO, but not fentanyl, tolerance was not reversed by ERK1/2 inhibition.
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Figure 6. ERK1/2 inhibition prevents the development of tolerance to DAMGO, but not fentanyl
Rats were pretreated with twice daily microinjections of saline (0.4 µL), DAMGO (0.5 

µg/0.4 µL) or fentanyl (3 µg/0.4 µL). A subset of rats received a microinjection of U0126 20 

min prior to each DAMGO or fentanyl microinjection. On Day 3, all rats recieved 

cumulative doses of DAMGO (A) or fentanyl (B). ERK1/2 inhibition in combination with 

DAMGO prevented the development of tolerance to DAMGO, but had no effect on the 

development of fentanyl tolerance.
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Table 1

Comparison of D50 values following ERK1/2 inhibition

Pretreatment DAMGO D50 ± C.I. (n) Fentanyl D50 ± C.I. (n)

Saline 0.087 ± 0.033 (9) 2.16 ± 0.44 (11)

Opioid 0.340 ± 0.125 (8)* 3.42 ± 0.90 (10)*

U0126+Saline 0.530 ± 0.252 (10)* 1.79 ± 0.48 (8)

U0126+Opioid 0.152 ± 0.064 (10)# 2.62 ± 0.52 (10)

Saline+T5 U0126 0.482 ± 0.178 (8)* 2.24 ± 0.58 (11)

Opioid+T5 U0126 0.196 ± 0.044 (7)# 3.96 ± 0.82 (9)*

Notes:

*
statistically different from saline (p < 0.05)

#
statistically different from opioid (p < 0.05)
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