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Abstract

Gap junctions are highly ordered plasma membrane domains that are constantly assembled, 

remodeled and turned over due to the short half-life of connexins, the integral membrane proteins 

that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is 

phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for 

exquisite cellular control over gap junctional communication. This is evident during epidermal 

wounding where spatiotemporal changes in connexin expression occur as cells are instructed 

whether to die, proliferate or migrate to promote repair. Early gap junctional communication is 

required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for 

proper wound healing at later stages. These events are controlled via a "kinase program" where 

sequential phosphorylation of Cx43 leads to reductions in Cx43’s half-life and significant 

depletion of gap junctions from the plasma membrane within several hours. The complex 

regulation of gap junction assembly and turnover affords several steps where intervention might 

speed wound healing.
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1. Introduction

1.1. Gap junctions play diverse and essential roles in cells of different tissues

Vertebrate gap junctions are composed of proteins from the 21 gene connexin gene family 

[1–6]. These collections of intercellular channels, termed gap junction plaques, permit 

passage of metabolites of less than approximately 1000 Da between cells while 

macromolecules are excluded (although small RNAs may pass) [7, 8]. Many cell processes 

effectively require gap junctionalcommunication including control of cell proliferation, 
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embryonic development, cell differentiation and the coordinated contraction of heart and 

smooth muscle [2, 3, 9–12]. Connexins have been implicated by genetic linkage analysis in 

at least 14 human diseases - many of which can be recapitulated in mutant connexin mouse 

models with common forms of hereditary deafness being the most prevalent in humans [12]. 

Connexins are expressed in a tissue specific manner allowing them to fulfill a variety of 

physiological roles. Cx43, the focus of this review, is by far the most abundantly and widely 

expressed gap junction protein (> 34 tissues and 46 cell types [5]). Cx43 knockout mice die 

within hours of birth [13]. Oculodentodigital dysplasia is caused by many different 

mutations in the Cx43 gene and exhibits a variety of different symptoms including small 

eyes, underdeveloped teeth, syndactyly and palmoplantar keratoderma – a skin disease that 

can be caused by frame shift mutations [14] that result in loss of the C-terminal region 

where Cx43 is phosphorylated. Wounding of the epidermis leads to significant changes in 

Cx43 expression that faciliate healing. These changes are, at least in part, a result of altered 

Cx43 phosphorylation.

1.2 Connexin Phosphorylation

Many connexins (e.g., Cx31, 32, 37, 40, 43, 45, 46, and 50) have multiple phosphorylation 

sites – with Cx43 being the most prevalent in both tissues and cultured cells. Connexins 

have 4 transmembrane domains with the N- and C-termini on the cytoplasmic side. Many 

reports, both in vivo and in cell culture, indicate that Cx43 has a half-life in the range of 1–3 

h [5, 15–25] - much faster than typical integral membrane proteins (17–100h) [26, 27]. At 

least nineteen of the twenty-six serines and 2 of the 6 tyrosines in the C-terminal region of 

Cx43 have been identified as phosphorylation sites present in cells or tissue, and there has 

been some progress in the characterization of the network of kinases that phosphorylate 

Cx43 (Table 1). Cx43 that lacks the last ~140 residues of the C-terminal portion can form 

gap junctions but the resulting gap junctions have different permeability/

electrophysiological properties [28–30]. A “knock-in” mouse expressing Cx43 lacking this 

C-terminal region developed rigid skin with a defective epidermal layer that readily peels 

off. Almost all homozygote mutant mice died shortly after birth due to dehydration and 

Cx43 was found mis-localized throughout the stratified layers of the epidermis rather than 

restricted to the basal cells [31].

2. Cx43 assembly into gap junctions and turnover

2.1. Cx43 lifecycle is dynamic and complex

Cx43 is characterized by a short half-life and extensive regulation that allows the cell to 

exquisitely control gap junctional communication. This is evident through biochemical 

analyses, where Cx43 phosphorylation has been shown to regulate protein localization and 

behavior in a rapid and coordinated manner. Recently developed live cell imaging 

modalities have been particularly useful for visualizing dynamic interactions of Cx43 with 

the cytoskeleton and events at the gap junction. An understanding of how different 

subcellular pools of Cx43 are regulated and feedback on each other is critical to 

understanding gap junction biology. While intercellular transfer of molecules is a major 

function of the gap junction plaque, the sheer number of molecules that interact with Cx43 

and are found at the gap junction plaque certainly argue for an important role in cell 
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signaling. Gap junction plaques have been suggested to provide a type of "nexus" for 

coordinating subcellular events [32]. In the subsequent sections of this review, we will 

follow Cx43 through its lifecycle with a particular emphasis on how its coordinated 

interactions with kinases appears to regulate and potentially provides feedback to tightly 

control gap junction assembly and disassembly.

2.2.1. Gap junction assembly—As an integral membrane protein, Cx43 is synthesized 

and traffics through the endoplasmic reticulum. It lacks a canonical membrane signal 

sequence and delays oligomerization into a hexameric hemi-channel or “connexon” until 

reaching the trans-Golgi network [33]. This delay may provide a quality control step and 

allows feedback control as GJ assembly can be downregulated through Endoplasmic 

Reticulum Associated Degradation (ERAD) during conditions of cellular stress [34, 35]. 

Live cell and other imaging modalities show that Cx43 can traffic to the plasma membrane 

via multiple mechanisms including the secretory pathway or microtubule based vesicle 

targeting and there is evidence that these pathways can be differentially utilized under 

different conditions [25, 36, 37]. Cx43 typically moves from the plasma membrane into the 

periphery of the plaque, thus plaques "grow" from the outside in and the oldest proteins are 

found in the center of the plaque where they get selectively turned over [38].

2.2.2. Gap junction assembly and Cx43 phosphorylation—Cx43 phosphorylation 

events can occur within 15 min of synthesis [16] and several kinases appear to affect the 

assembly of gap junctions. Cx43 migrates as multiple bands in SDS-PAGE with many cell 

types displaying prominent bands often labeled P0, P1 and P2 which represent sequential 

stages of Cx43 processing from the plasma membrane to the gap junction in untreated cells. 

These SDS stable conformational changes in Cx43 structure have been shown to be due to 

sequential phosphorylation first on S365 then some combination of residues S325/328/330. 

S365 phosphorylation was found to be present in the P1 and P2 phosphoisoforms and occurs 

during the transition from the cytoplasm to the plasma membrane [39, 40]; see Fig. 1. 

Furthermore, phosphorylation at S365 plays a “gatekeeper” role by preventing 

downregulation of gap junctional communication by subsequent Cx43 phosphorylation at 

S368 [39]. Conversely, prior phosphorylation at S368 due to PKC activation could decrease 

gap junction assembly. Activation of cAMP-dependent protein kinase (PKA) can increase 

Cx43 phosphorylation at S364 and S365 and stimulate trafficking to the plasma membrane 

resulting in enhanced gap junction assembly (see Fig. 1 and Table 1). Casein kinase 1 (CK1) 

phosphorylates Cx43 on S325/328/330 during the transition of Cx43 from the plasma 

membrane into the gap junction – staining with an antibody to these phosphorylated residues 

exclusively recognizes the P2 form of Cx43 in SDS-PAGE and only Cx43 present in the gap 

junction [41]. Phosphorylation of serine 373 by Akt allows gap junctions to grow in size 

(see Fig. 1) but is an event that can be linked to gap junction disassembly (discussed further 

below). Activation of PKC can halt assembly of new junctions through an unknown 

mechanism [17]. Thus, the process of gap junction assembly is regulated by a succession of 

kinases that constitute a “kinase program” with multiple built-in checkpoints.
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2.3 Cx43 and gap junction turnover

The regulation of connexin turnover and gap junction turnover are still not well understood. 

This is, in part, due to the fact that while the turnover of connexin molecules is fairly 

consistent across cell types and conditions, the stability of individual gap junction plaques 

can be highly variable [42]. This is presumably due to altered kinetics of connexin assembly 

into and removal from a given plaque, as described in section 2.2.1. What is known is that 

inhibition of lysosomal degradation can prolong the half-life of Cx43 protein but not 

necessarily gap junctions while proteasomal inhibition increases and stabilizes Cx43 present 

in gap junctions in most cell types. In some situations, plaques can remain stable for many 

hours, presumably through equilibrium of protein moving in and out of the gap junction, 

while at other times a single plaque can be rapidly and wholly disassembled. As an example, 

Fig. 2A and the associated movie show a time lapse series of Cx43-green fluorescent protein 

(GFP) fusion where one gap junction breaks up and is internalized (white arrow) while 

another gap junction remains relatively stable (white arrowhead) throughout the 30 min 

movie (frames taken at 20 second intervals). Lysosomes are visualized in red (via 

LysoTracker) and appear to be partially co-labeling with the gap junction throughout the 

disassembly process in the time lapse movie. To illustrate the dynamic nature of this 

interaction, Fig. 2B shows a time lapse series taken at 2 second intervals showing co-

labeling of lysosomes with membranes containing Cx43-GFP. The dynamic interactions 

observed in these types of images suggest that lysosomes may be involved in more than 

simply engulfing and degrading already internalized membranes containing Cx43.

We also do not understand the range of potential cellular machinery involved in connexin 

and gap junction turnover. There is good evidence that a gap junction can be internalized in 

its entirety via formation of a double membrane structure termed an annular junction or 

connexisome [5, 43–50] (see mode 1, Fig. 3). Annular junctions have a distinct structure that 

is recognizable by electron microscopy, and are increased during the process of autophagy 

where they co-localize with the clathrin adapter proteins Dab2 [49], Atg14 and 9 [51] and 

the autophagosome membrane protein LC3 [44, 52, 53]. These structures are generally 

accepted to be precursors to lysosomal degradation. Whether annular junction formation is 

the exclusive way gap junctions are turned over and the process is just upregulated during 

autophagy is less clear. Given that annular junctions appear to vary widely in their 

prevalence within different cell types and cellular treatments while the half-life of Cx43 

appears to be consistently short leads us to hypothesize that annular junction formation may 

be a mechanism utilized specifically during enhanced turnover, such as reduced nutrient 

triggered autophagy and growth factor induced gap junction turnover.

Another potential mechanism would posit that gap junctions can be turned over via loss of 

extracellular Cx interactions (i.e., “unzippering” of the gap junction) followed by 

endocytosis from a single membrane (see mode 2, Fig. 3). At first glance such a mechanism 

seems unlikely given the stability of isolated gap junctions to relatively harsh conditions and 

a lack of direct evidence, but time-lapse movies of Cx43-GFP present in gap junctions make 

it clear that there are dynamic interactions occurring within and around gap junctional 

plaques as shown in the Fig. 2. It is also clear that kinases and phosphatases regulate the 

assembly and stability of gap junctions which is, at least, consistent with the idea of an 
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intracellular pathway controlling extracellular disassembly. Finally, a third mechanism for 

loss of gap junctions would simply result from blockage of new gap junction formation 

while existing gap junctions are turned over. We would predict that further studies will show 

that these and perhaps other mechanisms of internalization will be utilized by cells in a 

context specific manner.

2.4 Cx43 turnover and the role of ubiquitinylation

Cx43 has been reported to undergo ERAD [34, 35] but the process was found to be 

independent of Cx43 ubiquitinylation as another protein, CIP75, regulated its degradation by 

the proteasome [34]. Cx43 contains 2 putative tyrosine-based sorting signals (Yxxϕ; where 

ϕ=hydrophobic) [54] including a key one involving residues 286–289 as Cx43 with a 

V289D mutation had a 3-fold increase in protein half-life [55]. However, this sorting signal 

was reported not to regulate ubiquitin-mediated Cx43 internalization [56]. Furthermore, gap 

junctional stability can be dramatically reduced in response to growth factors and phorbol 

esters [17, 57–64]. Many different reagents that can efficiently inhibit lysosomal or 

proteasomal protein degradation partially affect gap junction and Cx43 turnover but do not 

have complete effects. These and earlier results [65, 66] have led several groups to propose 

multiple and alternative pathways involving the proteasome and lysosome in Cx43 and gap 

junction degradation. There are many studies that have shown that if cells are treated with a 

proteasomal inhibitor and then Cx43 is immunoprecipitated and immunobloted with an 

antibody to ubiquitin, one sees multiple bands at higher molecular sizes implying poly-

ubiquitination [65–67] or multiple instances of mono-ubiquitination [64, 68]. In addition, a 

recent study indicated that a deubiqutinase plays a key role in regulating gap junction 

turnover [67] and non-directed screens for ubiquitinated proteins have identified Cx43 [69]. 

However, we are not aware of reports where inhibition of the proteasome or other factors 

potentially involved in Cx43 degradation show significant accumulation of Cx43 at higher 

molecular sizes consistent with addition of ubiquitin when compared to total Cx43 levels 

with an antibody to Cx43, so it seems that the level of any Cx43 ubiquitination even in the 

presence of inhibitors is very low. One study that tried to estimate the level of ubiquitinated 

Cx43 found that it was less than 1% [70] and in another, the putative ubiquitinated species 

appeared to be even lower [64, 68]. Furthermore, conversion of all 27 of the lysines in Cx43 

to arginines did not eliminate the increase in Cx43 in gap junctions in response to 

proteasomal inhibitors [71] nor did it affect Cx43 turnover due to ERAD [34]. One of the 

main issues with these inhibitors is that their effects can impact many different pathways. In 

fact, an indirect role for proteasomal inhibition on Cx43 has been shown where blocking the 

proteasomal degradation of activated Akt allows it to phosphorylate Cx43 on S373 and 

eliminates Cx43:ZO-1 interactions thus, resulting in larger junctions [60]. Thus, it seems 

that direct ubiquitination of Cx43 does not play a very significant role in proteasomal 

degradation of Cx43, though there may be specific conditions (e.g., autophagy) and cell 

types where it is important.

2.5. Regulation of Cx43 and gap junction turnover by Cx43 phosphorylation

A variety of stimuli including epidermal growth factor (EGF), TPA (12-O-

Tetradecanoylphorbol acetate), src activation, wounding and extracellular ATP [57–62] 

cause spatiotemporal changes in Cx43 phosphorylation and loss of gap junctions. Many of 
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these treatments result in Cx43 phosphorylation on S368 via PKC and on S255, S279, S282 

via MAPK (see Table 1). Phosphorylation at these residues has been shown to affect gap 

junction channel gating properties and/or is associated with decreased gap junction assembly 

and increased gap junction turnover. Furthermore, TPA prevents assembly of new gap 

junctions and reduced the half-life of Cx43 [17]. Transformation of cells by v-Src has also 

been shown to downregulate gap junctional communication coincident with an increase in 

tyrosine phosphorylation on Cx43 [16, 72]. Using LA25 cells that express temperature-

sensitive v-Src showed that Y247, Y265, S255, S262, S279/282 and S368 are all 

phosphorylated in response to v-Src activity indicating co-activation of MAPK and PKC 

[73]. Interestingly, immunofluorescence studies indicated that phosphorylated Y247 

appeared to be preferentially present in “larger” gap junction plaques [74]. This distinct 

pY247 staining could potentially "mark" a portion of the gap junction for internalization, 

possibly through stimulating interaction with components of the endocytic system.

Recently, we found that if cells are treated with TPA, one also sees a rapid increase in 

phosphorylation at S373 via Akt [60]. This was somewhat surprising as we also found that 

phosphorylation at S373 dramatically increased apparent gap junction size and gap 

junctional communication in a similar manner to proteasomal inhibitor treatment [71]. 

Results from Gourdie and colleagues have shown that ZO-1 interaction with the C-terminal 

region of Cx43 near S373 causes a reduction in gap junction size and conversely, 

elimination of the ZO-1 interaction leads to larger gap junctions [75, 76]. Consistent with 

this, we found that Akt phosphorylation of Cx43 could regulate ZO-1 interaction, providing 

a mechanistic explanation for changes in gap junction size during proteasomal inhibition. By 

mutating Akt phosphorylation sites we found that cells expressing wild type Cx43, 

S365/369/373A or S373D mutants showed intermediate, extensive and no co-

immunoprecipitation of ZO-1 and intermediate, very limited and large gap junctions, 

respectively. Also extensive Cx43-ZO-1 co-localization was lost in cells expressing the 

S373D mutant [60].

Thus, at least 4 kinases potentially play a role in the regulation of gap junction turnover – 

Akt [60], PKC [17, 77, 78], MAPK [79] and Src [73]. Treatment of cells with reagents, such 

as TPA or EGF, provide a model system to examine spatiotemporal changes in Cx43 

phosphorylation during this “activated” or “acute” turnover process. Figure 4 shows that in 

TPA treated cells, Cx43 phosphorylation at the Akt site is maximal at 5 minutes, shown both 

by immunoblot, and immunofluorescence, where colocalization of pS373 (red) and total 

Cx43 (green) antibodies appear as yellow. Phosphorylation at S279/282 follows, peaking at 

15–30 min after treatment (Fig. 4). Phosphorylation at S368 (Fig. 4) and Y247 (not shown) 

show a more gradual and steady increase, perhaps due to effects on newly synthesized Cx43 

or protein en route to the plasma membrane.

Thus, Cx43 is sequentially phosphorylated by Akt, MAPK, Src and PKC in response to 

growth factors, wounding and other stimuli which induce acute gap junction turnover. In 

Fig. 5, we present a model for gap junction turnover that incorporates these phosphorylation 

events. It seems paradoxical that an initiating signal for gap junction turnover is an Akt-

mediated transient increase in gap junction size. However, formation of larger gap junctions 

could facilitate rapid clearance of Cx43 from the plasma membrane in 2 ways: 1) depletion 
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of the incoming pool of Cx43 by rapid incorporation into a gap junction, and/or 2) to reduce 

the energetics of annular junction formation/internalization by requiring less membrane 

curvature during internalization. Once Cx43 is concentrated into the gap junction, the 

channels are closed via MAPK and PKC phosphorylation (Fig. 5). In keratinocytes, Cx43 is 

subsequently phosphorylated by Src. We hypothesize that Src phosphorylation of Cx43 at 

Y247 initiates recruitment of the gap junction internalization machinery (Fig. 5). Inhibition 

of Src activity via the src kinase inhibitor PP2 blocks growth factor-induced gap junction 

turnover [80, 81]. Glycyrrhetinic acid-related gap junctional communication inhibitors 

remodel gap junctions into a looser packing arrangement [82] in a process that involves Src 

binding [83] and leads to disruption of Cx43-ZO-1 interaction [80]. Src can directly interact 

with ZO-1 and compete for binding to the C-terminal region of Cx43 [80, 84, 85]. Clearly, 

Src plays a role in gap junction turnover, but it is not yet clear whether Src phosphorylation 

of Cx43 plays a direct role. Src phosphorylation of the NMDA receptor, GluN3A [86] has 

been shown to trigger its endocytosis, so one possibility is that Src similarly stimulates Cx43 

internalization. Src phosphorylation of Cx43 may, in fact, direct the endocytic route of 

internalization through annular gap junction formation (mode 1, Fig. 3) or by “unzippering” 

gap junctions via loss of extracellular interactions followed by endocytosis and degradation 

of each connexon within the same cell where it was synthesized (mode 2, Fig. 3). The 

formation of double membrane endocytic vesicles (i.e., annular junctions) appears to be 

fairly specific to gap junctions though there are a few reports of “transendocytosis” 

occurring in dendritic cells [87] and in response to receptor ligand complex formation during 

neural (Eph:Ephrin [88]) and Drosophila development (Notch:Delta [89], Hedgehog:Patched 

[90] and Boss:Sevenless [91]).

3. Regulation of wound repair by Cx43 expression and phosphorylation

3.1. Cx43 expression regulates wound repair

Cx43 is abundantly expressed in skin and is known to play a key regulatory role during 

different stages of the repair process [92–95] via its expression and phosphorylation status 

changes [78, 96, 97]. Proliferation continually occurs in the basal layer of the epidermis to 

replace dead keratinocytes and is upregulated dramatically during wounding to provide a 

source of cells for wound repair. Wounding of the epidermis activates changes in gap 

junctional communication that synchronize keratinocyte migration across the wound bed 

[92, 93, 95]. Both rodent [92] and human skin [93] show decreased connexin expression at 

the edge of a wound within a day and a return to homeostatic levels upon wound closure 

[92, 98]; see Fig. 6. Many (up to 9) connexins can be detected in epidermis, but Cx43 is the 

predominant one in vivo and in cultures of human keratinocytes [99]. Cx43 regulation may 

play the primary role during early stages of wound healing as modulation of Cx43 

expression directly affects wound repair [78, 92, 100–106]. Specifically, immediately after 

wounding there is a requirement for gap junctional communication to initiate efficient 

migration [78] but a reduction in intercellular communication between cells at the leading 

edge of the wound rapidly follows. Several results implicate Cx43 as a key regulator of 

repair. Diabetic mice that display high levels of Cx43 expression [106] or mice with Cx43 

overexpression [107] have delayed wound closure. Conversely, mice with reduced 
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epidermal Cx43 can show more rapid healing [104], and Cx43 antisense application 

accelerated keratinocyte migration and wound repair resulting in less scarring [105].

3.2. A model to explain gap junctional upregulation and turnover in response to injury

In response to wounding, we find that Cx43 is sequentially phosphorylated at specific sites 

by (a) Akt at 5–30 min [60, 71], (b) PKC [78] and MAPK [79] at 15–60 min (Fig. 6), and (c) 

Src at 30 min–24h. These events are coincident with changes in gap junction localization 

and function including a transient increase in gap junction size and gap junctional 

communication followed by gap junction internalization. We hypothesize that this sequence 

of events represents a wound induced spatiotemporally-regulated “kinase program” that 

provides a mechanism to promote increased gap junctional communication and signals for 

keratinocyte activation prior to rapid gap junction internalization. As described above for 

EGF and TPA and in Fig. 5, the first step is characterized by the increase in gap junction 

size and gap junctional communication observed early upon activation of Akt [60]. We 

suggest that this provides the robust gap junctional communication that seems to initiate the 

changes necessary for cells to adopt a more migratory or proliferative phenotype. Figuring 

out the role of this first step is potentially important since results with reagents (i.e., 

potential drugs) that affect Cx43 expression appear to have disparate effects. For example, 

treatment of wounds with Cx43 antisense results in less inflammation and faster wound 

healing [108]. However, treatment of diabetic wounds with ACT1 peptide, which mimics 

the C-terminus (residues 374–382) resulting in increased gap junction size and 

communication, speeds healing [109]. Part of the issue may be related to timing, as the 

ACT1 peptide is short-lived and may facilitate early signaling events that promote healing 

while allowing normal gap junction closure via MAPK and src. Connexin downregulation 

appears to be important after this early phase so reagents that reduce Cx43 might be helpful 

at later stages. Another explanation might be related to the target – i.e., whether the reagent 

is affecting Cx43 connexons (hemichannels) or gap junctions. In either case, it is clear that 

early events after wounding are dramatically affected by Cx43.

There is strong evidence that a reduction in Cx43 expression and gap junctional 

communication can be beneficial to wound healing. This evidence includes the observation 

of what happens to Cx43 during a healthy wound response [93, 94, 101] and how that 

process is disrupted by Cx43 overexpression or sped by Cx43 downregulation [78, 101, 

105–107, 110]. The benefit from reduced Cx43 might be related to the promotion of 

proliferation and migration or a reduction in inflammatory response. The activation of 

MAPK and Cx43 phosphorylation at S279 and S282 observed at 15–30 min post wounding 

would lead to gap junction channel closure [111]. Activation of PKC leads to inhibition of 

new gap junction assembly [17]. Activation of Src and phosphorylation of Cx43 on Y247 

from 30 min to several hours could lead to internalization of gap junctions from the plasma 

membrane (Fig. 5) [73]. This sequence of Cx43 phosphorylation events during wounding is 

consistent with what we observe during growth factor treatment. Thus, consistent with the 

model we propose in Fig. 5, we hypothesize that wound induced gap junction disassembly is 

driven by a kinase program that regulates the accumulation of Cx43 into gap junctions in 

preparation for disassembly and “marking” of specific plaque domains for internalization via 

Cx43 phosphorylation at specific residues by at least 3 kinases. Our model predicts pS373 
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first promotes Cx43 accumulation into larger gap junctions with increased gap junctional 

communication. This step also effectively “clears” the plasma membrane of connexons that 

may exhibit hemichannel activity. Larger junctions could promote annular junction 

formation through decreased membrane and energy restraints compared to that needed for 

smaller vesicles. Next, pS279/282 rapidly closes the gap junction and then pY247 initiates 

accumulation of the internalization machinery – a timeline consistent with the observed 

kinetics of phosphorylation at these sites during wounding and in response to EGF or TPA, 

as shown in the previous sections (Fig. 5).

4. Summary and Perspective

Gap junction biology affects several fundamental cell processes including wound repair. 

This review mainly discussed the short terms effects of Cx43 phosphorylation on the wound 

healing process but Cx43 is dynamically regulated for at least 72 h after wounding [78, 92, 

93, 101] so those effects warrant further investigation. For example, wound-dependent 

phosphorylation at the PKC site S368 at 24 hours creates specialized communication 

boundaries within the basal cells of the epidermis [78]. In addition our discussion has only 

considered a few Cx43 interacting proteins, but CASK and CADM1 directly interact with 

hypo-phosphorylated Cx43 one hour post-wounding in human keratinocytes to apparently 

regulate activation and migration [96]. So at this point, we are left with a number of 

questions related to the role of Cx43 in wound healing: i) What is the role of the increased 

gap junctional communication early after wounding?; ii) How long is gap junctional 

communication necessary after the initial wounding event to maximize wound healing?; iii) 

Can we effectively target specific cells such as migratory or proliferative cells with connexin 

reagents?; iv) Can we target specific subcellular pools of Cx43 to induce the desired results?

Obviously, a more complete understanding of Cx43 biology in the epidermis would allow 

for more targeted and rational drug design to facilitate wound repair. Some of our 

understanding of the regulation of Cx43 assembly and disassembly has been affected by the 

use of broad specificity reagents that might be affecting the expression of many different 

Cx43 interacting and regulating proteins. Through the use of more targeted reagents such as 

phosphospecific antibodies, mutant versions of the protein and targeted knockdown of the 

connexin interacting protein, the field is starting to, at least, identify the important steps and 

players if not to fully grasp their implications. Furthermore, drugs based on that knowledge 

could target Cx43, the kinase important at a particular step, important interacting proteins or 

other key actors. Given the extensive pharmaceutical development of kinase inhibitors, we 

believe it will be important to test whether kinase or gap junction activators/inhibitors could 

be topically applied in a manner dictated by the wound status (i.e., fresh, ulcerated, diabetic, 

etc.) to yield better healing and reduce the need for amputations. For example, we envision 

speeding up the wound healing process via the use of different “band aids” embedded with 

distinct gap junction or kinase inhibitors/activators. One would utilize a specific bandage on 

a fresh wound (i.e., applied within 0–30 min of wounding and kept on for 4 hours) and then 

change to a second type of bandage that might be applied 4–24 hours post wounding and a 

third that would be good until healing is complete and might be specifically designed to 

reduce scarring. In this way, development of a clear spatiotemporal map of Cx43 
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phosphorylation and activation of its cognate kinases during pathogenic processes could 

yield real clinical value.
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Abbreviations

Da daltons

cAMP cyclic adenosine monophosphate

cGMP cyclic guanosine monophosphate

Cx43 Connexin 43

SDS sodium dodecyl sulfate

PAGE polyacrylamide gel electrophoresis

EGF epidermal growth factor

TPA 12-O-Tetradecanoylphorbol acetate

ERAD Endoplasmic Reticulum Associated Degradation

PKA cAMP-dependent protein kinase

PKC protein kinase C

CK1 casein kinase 1

MAPK mitogen-activated protein kinase

ZO-1 zonula occludens-1

GFP green fluorescent protein
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Fig. 1. 
Model of the steps in gap junction assembly regulated by Cx43 phosphorylation. Our model 

first shows how activation of PKA causes increased trafficking of Cx43 vesicles to the 

plasma membrane. Cx43 in the plasma membrane then gets phosphorylated first at S365 

(shown in orange) and subsequently at S325/328/330 (via CK1, shown in green). ZO-1 can 

associate with Cx43 and when it is present it keeps junctions small. Phosphorylation of 

Cx43 at S373 by Akt eliminates ZO-1 interaction and allows Cx43 accumulation into larger 

gap junctions with increased intercellular communication.
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Fig. 2. 
Images from time lapse series visualizing Cx43-GFP and LysoTracker Red. A) Arrow 

indicates a large gap junction that breaks apart and disappears, while the arrowhead points to 

a gap junction, in the same cell, that remains stable throughout the time course. In the 

associated movie, images were collected at 20 second intervals for 30 minutes. Lysosomes 

are seen in close proximity to the gap junctions throughout the disassembly process. 

Bar=10µm. B) Magnified view of interactions between Cx43-GFP and lysosomes. In the 

associated movie, images were collected at 2 second intervals. There appears to be a 

complex interplay in the membranes between Cx43-GFP and lysosomal compartments. 

Bar=1µm.
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Fig. 3. 
Cartoon of two potential modes of gap junction (GJ) turnover. Mode 1 proceeds through 

formation of a double membrane structure that will become an annular junction. Mode 2 

involves opening of the gap between the two membranes by changes in phosphorylation or 

ubiquitinylation that destabilize the junction followed by conventional endocytosis.
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Fig. 4. 
(A) Immunofluorescence staining with antibodies to total Cx43 (green) and phosphoS373 

Cx43 (red) 0, 5 and 45 min after 50nM TPA treatment. Nuclei were labeled with DAPI 

(blue). Bar=25µm. Note the very rapid accumulation of Cx43 into large gap junctions upon 

Akt activation and phosphorylation at S373. (B) Immunoblot analysis of total Cx43, 

phosphoS373 (pS373), phosphoS279/282 (pS279) and phospho368 (pS368) levels at 0, 5, 

15, 30 and 45 min after TPA treatment
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Fig. 5. 
Model of the steps in gap junction turnover regulated by Cx43 phosphorylation. Our model 

predicts that phosphoS373 (via Akt, shown in blue) first promotes Cx43 accumulation into 

larger GJs with increased gap junctional communication. Larger junctions could promote 

annular junction formation through decreased membrane and energy restraints compared to 

that needed for smaller vesicles. Next, phosphoS279/282 (via MAPK, shown in red) closes 

the gap junction and then phosphoY247 (via Src, shown in purple) initiates recruitment of 

the internalization machinery – a timeline consistent with the observed kinetics of 

phosphorylation at these sites in response to EGF, TPA or wounding.
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Fig. 6. 
Immunofluorescence of human skin stained with antibodies to total Cx43 (green) and 

phospho279/282 Cx43 (red). Nuclei were labeled with DAPI (blue). Note the high level of 

phospho279/282 in suprabasal cells adjacent to the wound edge (noted by red arrowhead). 

An accompanying cartoon illustrates the changes in phospho279/282 and total Cx43 in basal 

and suprabasal keratinocytes.

Solan and Lampe Page 23

Semin Cell Dev Biol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solan and Lampe Page 24

TABLE 1

Cx43 residues phosphorylated, the kinases involved and their consequences.

Assembly residues Kinases References

S325/328/330 CK1, ?? [41]

S364 ?? [112, 113]

S365 ?? [39, 114]

S373 Akt [60, 114–116]

Gating residues

S255 MAPK [117]

S262 p34cdc2, MAPK [118–120]

S279/282 MAPK [117]

S306 ?? [121, 122]

S368 PKC [116, 121, 123]

Dissassembly

Y247 Src [124]

S368 PKC [116, 121, 123]

Unknown

Y265 Src [124]

S296 ?? [121]

S297 ?? [121]

Y313 ?? [125, 126]

S369 Akt,?? [113–115]

S372 ?? [114–116]
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