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Abstract

More than one-third of adults in the United States are obese, and obesity-related disease accounts 

for some of the leading causes of preventable death. Mid-life obesity may be a strong predictor of 

physical function impairment later in life regardless of body mass index (BMI) in older age, 

highlighting the benefits of obesity prevention on health throughout the lifespan. Adipose tissue 

disturbances including lipodystrophy and obesity are prevalent in the setting of treated and 

untreated HIV infection. This article will review current knowledge on fat disturbances in HIV-

infected persons, including therapeutic options and future directions.
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Introduction

More than one-third of adults in the United States are obese, and obesity-related disease 

accounts for some of the leading causes of preventable death [1]. Longitudinal studies 

suggest that mid-life obesity may be a strong predictor of physical function impairment later 

in life regardless of body mass index (BMI) in older age [2, 3], highlighting the benefits of 

obesity prevention on health throughout the lifespan. Adipose tissue disturbances including 

lipodystrophy and generalized obesity are prevalent in the setting of treated and untreated 

HIV infection. This article will review current knowledge on fat disturbances in HIV-

infected persons, including therapeutic options and future directions.
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Discussion

Clinical Implications of Obesity and Body Fat Changes in HIV

The prevalence of obesity is increasing among HIV-infected persons, with up to 65% 

classified as overweight or obese [4-7]. ART initiation is often associated with weight gain 

partially attributed to a “return to health” phenomenon, with greater increases in weight seen 

in persons with the highest pre-ART HIV-1 RNA or lowest CD4+ T lymphocyte counts [8, 

9]. In an AIDS Clinical Trial Group (ACTG) study (A5175) of ART initiation in resource-

diverse settings, more than 25% of participants were overweight or obese at entry, and 

approximately 40% of participants were overweight or obese by week 144 [10]. These 

findings are consistent with prior observational studies on anthropomorphic changes in both 

resource-limited and resource-plentiful settings [11-13].

Weight gain following ART initiation has been associated with both beneficial and 

detrimental outcomes. While some weight gain may be beneficial particularly in wasted 

persons, there is likely a “tipping point” where weight gain begins to have a negative impact. 

For example, weight gain among underweight persons has been associated with a decline in 

high-sensitivity C-reactive protein (hs-CRP)levels, while weight gain among overweight or 

obese individuals has been associated with a significant increase in soluble CD14 (sCD14) 

levels (2015 Conference on Retroviruses and Opportunistic Infections, Seattle, WA; 

Erlandson, et al. Abstract 778). Similarly, a recent Veterans Aging Cohort Study analysis 

observed improved survival with weight gain in the first year of ART among underweight or 

normal weight but not overweight or obese participants [14]. Furthermore, overweight or 

obese HIV-infected individuals have a ≥67% prevalence of multi-morbidity [15]. In 

contrast, weight loss or failure to gain weight following ART initiation may be a poor 

prognostic sign or marker of concomitant infection or severe wasting [16].

Obesity is associated with hormone and cytokine imbalances, and chronic inflammation, all 

of which may contribute to its detrimental effects on multiple systems, including muscle 

[17]. Obesity and the metabolic syndrome are well-established risk factors for the 

development of physical function impairment or frailty among geriatric HIV-uninfected 

populations [18] and middle-aged or older HIV-infected adults [19-21]. Similarly, obesity is 

a known risk factor for diabetes mellitus and cardiovascular disease (CVD), and increased 

CVD risk has been described among obese and lipohypertrophic, HIV-infected adults [22].

While overall changes in body weight can have significant negative health impacts, the 

location of weight change may be of even greater importance. Adipose tissue accumulation 

in the trunk and viscera (lipohypertrophy) is well described following ART initiation. Up to 

70% of HIV-infected individuals on ART may have abdominal or visceral obesity [8, 

23-25], with changes not limited to older ART regimens. Indeed, in the recently completed 

ACTG study A5260, participants randomized to raltegravir or ritonavir-boosted darunavir or 

atazanavir with a backbone of tenofovir/emtricitabine had a mean visceral adipose tissue 

(VAT) gain of >30% after 96 weeks of therapy (2015 Conference on Retroviruses and 

Opportunistic Infections, Seattle, WA; McComsey, et al. Abstract 140). Discernment of 

lipohypertrophy in persons who are overweight or obese may be challenging, but a diagnosis 

of lipohypertrophy imparts important consequences and management considerations. In 
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particular, changes in VAT of as little as 5% are believed to affect metabolic syndrome risk 

[26], and a large study of body composition and HIV in the US demonstrated that increased 

central fat was associated with greater five-year mortality [27].

In addition to metabolic and inflammatory consequences, body fat changes are stigmatizing 

and may impact self-esteem and overall health perception. These negative perceptions can 

impact ART adherence and quality of life [28-31]. In one study, two-thirds of HIV-infected 

participants reported that they would be willing to trade a year of life not to have 

lipodystrophy [32].

Finally, given associations between chronic inflammation and the development of comorbid 

disease [33-35], there is an urgent need to better understand the causes of and develop 

interventions to attenuate the effects of chronic inflammation and immune activation in 

people living with treated HIV infection, including addressing adipose tissue and obesity-

associated inflammation.

How Adipose Tissue Contributes to Inflammation

In the setting of weight gain, adipocytes may increase in number (hyperplasia) or volume 

(hypertrophy). Large, hypertrophied adipocytes may become hypoxic or accumulate toxic 

ceramides or other lipids; hypertrophied adipocytes also recruit pro-inflammatory immune 

cells, primarily activated macrophages, and cell death may result [36-38]. Activated 

macrophages stimulate a type 1 immune response leading to the production of tumor 

necrosis factor (TNF)-α and interferon (IFN)-γ; activated macrophages also lose the ability 

to store iron, which is then deposited in adipose tissue and associated with reactive oxygen 

species production and mitochondrial dysfunction [39]. Ultimately, adipocyte hypertrophy is 

associated with higher systemic levels of pro-inflammatory cytokines including TNF-α, 

interleukin (IL)-6, IL-8, IFN-γ, and lower levels of the anti-inflammatory cytokine IL-10.

Imbalance in the production of adipokines (adiponectin and leptin) and infiltration of 

immune cells into adipose tissue exacerbate the pro-inflammatory environment. Adipocyte 

hypertrophy and VAT accumulation suppress adiponectin, stimulate transforming growth 

factor (TGF)-β production [40] and trigger pro-fibrotic processes. Pericellular fibrosis limits 

adipocyte size (particularly in omental adipose tissue) in an attempt to curb further adipose 

tissue expansion [41]. While adipose tissue fibrosis is a normal, compensatory response to 

fat gain, it has unintended consequences. First, adipose tissue fibrosis does not reverse with 

weight loss [41], making prevention key. Second, while fibrosis limits adipocyte 

hypertrophy, when overfeeding continues and adipocytes cannot expand, ectopic fat 

deposition into sites such as the viscera and skeletal muscle occur. Ectopic fat deposition is 

associated with additional inflammation and metabolic dysregulation. Awareness of adipose 

tissue as an inflammatory and endocrine organ has improved understanding of the role of 

adipose tissue dysfunction and the development of diseases of inflammation, including 

insulin resistance and CVD [42].

Data on adipose tissue disturbances in HIV-infected persons are limited and generally 

restricted to lipodystrophy rather than generalized obesity. Central lipohypertrophy is 

associated with increased adipose tissue inflammation and apoptosis [43], while 
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dorsocervical lipohypertrophy is associated with adipose tissue fibrosis without 

inflammation, increased small adipocyte numbers and decreased vascularity [44]. A brown 

fat phenotype has been observed in dorsocervical subcutaneous adipose tissue (SAT) in 

association with protease inhibitor (PI) use and lipohypertrophy [44]. The shift to a brown 

fat phenotype, which is more metabolically active, may be an adaptive response to prevent 

further VAT expansion [45, 46], a hypothesis that is supported by the relative lack of 

inflammation in dorsocervical vs abdominal SAT in ART-treated patients irrespective of 

lipodystrophy status [47].

The known effects of specific antiretroviral agents on adipocytes are summarized in Table 1.

Cumulatively, these data support the hypothesis that adipose tissue physiology in HIV 

infection varies by fat type, anatomic location, and ART use rather than lipodystrophy status 

or fat volume alone. Impaired adipocyte differentiation has been reported with the older PIs 

(ritonavir, saquinavir) and the non-nucleoside reverse transcriptase inhibitors (NNRTIs, 

efavirenz, rilpivirine, and nevirapine) while newer therapies (including darunavir, maraviroc 

and raltegravir) appear to have minimal impact on adipogenesis or mitochondria. Growing 

evidence suggests depletion of mitochondrial DNA (mtDNA) in the adipose tissue of ART-

treated and -untreated HIV-infected persons [47, 56, 57, 60-64]. Among ART-treated 

persons with lipodystrophy, mtDNA is depleted in both VAT and SAT, metabolism and 

adipogenesis markers are decreased in SAT, and less pro-inflammatory gene expression 

occurs in VAT, potentially protecting it from depletion [62]. Finally, SAT pro-inflammatory 

cytokines increase more with efavirenz (vs lopinavir-ritonavir) in combination with 

tenofovir and emtricitabine [59].

HIV-1-specific factors may also contribute to adipose tissue inflammation. The HIV 

accessory protein viral protein R (Vpr) may induce adipose tissue dysfunction by inhibiting 

peroxisome proliferator-activated receptor (PPAR)-γ and activating glucocorticoid genes, 

leading to lipolysis, macrophage infiltration into adipose tissue, loss of white adipose depots 

and hepatic steatosis [65]. Additionally, adipose tissue may serve as a reservoir for HIV 

[66], and longer duration of both HIV and ART use were positively associated with higher 

levels of TNF-α, caspase-3 and TGF-β [43].

Gut mucosal destruction following HIV infection and subsequent persistent microbial 

translocation are well described. Drainage of microbial products to the liver may cause local 

inflammation, increased synthesis of triglycerides and fat droplet accumulation in 

hepatocytes, contributing to visceral adiposity [67, 68]. Additionally, both HIV infection and 

obesity are independently associated with gut microbiome alterations and increased 

intestinal permeability that further promote local and systemic inflammation [69-75]. 

Although a recent study demonstrated higher levels of monocyte activation and systemic 

inflammation in obese vs non-obese HIV-infected persons, additional research is needed to 

determine whether HIV and obesity have a synergistic effect on the burden of inflammation-

related metabolic disease.

Finally, the pro-inflammatory, pro-atherogenic and pro-thrombotic renin angiotensin system 

may be activated in HIV infection and/or by ART [76, 77]. Renin angiotensin activity 
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increases with VAT volume irrespective of HIV serostatus [76], but studies have been 

inconclusive as to whether renin angiotensin system inhibition may have beneficial effects 

on VAT or inflammation in HIV [78-80].

Implications of Ectopic Fat

Ectopic fat deposition is associated with inflammation and adverse metabolic impact beyond 

that seen with generalized obesity [81]. Associations between intra-abdominal VAT and 

increased metabolic disease risk (including CVD) are well described both in cross-sectional 

and longitudinal studies [81, 82]. In a cross-sectional study of nearly 600 HIV-infected men 

on stable ART, greater VAT, liver fat, and epicardial fat were independently associated with 

CVD after adjusting for traditional CVD risk factors [83]. HIV-infected participants in the 

CHARTER study with increased visceral adiposity (estimated by waist circumference ≥88 

cm in women or ≥102 cm in men) had significantly worse neurocognitive function. 

Furthermore, an association between higher interleukin (IL)-6 levels and poorer 

neurocognitive function was found only among those with the largest waist circumferences, 

supporting a link between visceral adiposity, inflammation, and neurocognitive function in 

HIV-infected persons [84].

Similar adverse outcomes are found in other ectopic fat sites: in an older, HIV-uninfected 

population, skeletal muscle lipid content was a better predictor of insulin resistance than 

BMI, waist-to-hip ratio, or total body fat [85, 86]. Similarly, computed tomography (CT)-

estimated paraspinal fat was a significant predictor of metabolic syndrome in women after 

adjustment for BMI and VAT [87]. Furthermore, skeletal muscle fat had functional 

consequences: greater thigh skeletal muscle fat was independently associated with lower 

muscle strength, slower chair rise time, and slower gait speed [88-90]; and fatty infiltration 

of the trunk muscles has been cross-sectionally and longitudinally associated with impaired 

physical function [91]. Surprisingly, HIV-infected participants in the Fat Redistribution and 

Metabolic Change in HIV Infection (FRAM) Study had significantly lower intermuscular 

adipose tissue (by magnetic resonance imaging) compared to HIV-uninfected controls, a 

finding that was attenuated but persisted in multivariate analyses [92]. In contrast, a greater 

amount of mid-thigh muscle bundle fatty infiltration (estimated by CT scan) was found 

among middle-aged, HIV-infected vs HIV-uninfected men after multivariable adjustment 

including VAT and SAT. Furthermore, the fatty infiltration increased over time among HIV-

infected compared to HIV-uninfected men (2015 Annual Meeting of the Endocrine Society; 

San Diego, CA; Natsag et al. Abstract FRI-229). Among younger, HIV-infected persons 

with lipodystrophy syndrome, greater CT-estimated fatty infiltration of the psoas muscle but 

not BMI, SAT, lean body mass, or ART, was associated with insulin resistance [93]. These 

findings suggest that skeletal muscle may be a clinically relevant ectopic fat location in 

HIV-infected persons, impacting both metabolic and physical function outcomes. In 

summary, fat location may be a better marker of metabolic risk than overall adiposity, but 

further studies are needed to compare deposition sites among HIV-infected individuals with 

and without lipodystrophy.
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Adipose Tissue Quality vs Quantity

Normal, healthy adipocytes are small, well differentiated and contain a modest lipid droplet. 

During weight gain, adipocytes become larger, less well differentiated and engorged with 

lipids [94, 95], making them less dense. During wasting, adipocytes become smaller and 

contain fewer lipids [96, 97], increasing density. Thus, changes in adipose tissue health 

appear to relate to changes in adipose tissue density; however, a direct comparison of (CT-

quantified) adipose tissue density and histopathology has only been reported in non-human 

primates to date. In that study, denser VAT was associated with smaller adipocytes, lower 

serum leptin, and higher adiponectin levels, but not with levels of monocyte chemoattractant 

protein (MCP)-1, IL-6, CRP or T lymphocyte or monocyte gene expression [98].

Adipose tissue health has important implications: First, fat is an active immune and 

endocrine organ, and adipocyte dysfunction has been linked to pro-inflammatory cytokine 

expression and inflammatory diseases including insulin resistance and CVD [99]. Second, 

determination of adipose tissue health may aid understanding of physiologic phenomena 

such as metabolically healthy obesity (described below). Third, HIV-associated and ART-

associated adipose tissue dysfunction are well documented and contribute to comorbid 

disease. Adipose tissue health in HIV remains understudied; however, ongoing ACTG and 

Multicenter AIDS Cohort Study investigations may help clarify how best to assess adipose 

tissue quality and its potential clinical implications in HIV-infected persons.

Is Fat Always Bad? Metabolically Healthy Obesity and Obesity in Older Age

Although obesity is generally associated with the development of metabolic disorders, a 

state of obesity without overt cardiometabolic disease, “metabolically healthy obesity”, has 

been described. Metabolically healthy obesity has been variably-defined in differing 

populations [100-102], leading to prevalence estimates ranging from 6-40% [103]. The 

existence of metabolically healthy obesity is controversial, but supported by the fact that 

metabolic dysregulation is a heterogeneous process that also occurs in the absence of 

obesity. Persons with metabolically healthy obesity may have less VAT and systemic 

inflammation and more favorable immune profiles than the metabolically unhealthy obese 

[104-106], further supporting a spectrum of metabolic health within obesity. In contrast, 

some studies have suggested increased mortality, increased CVD risk, and differences in 

body composition and fat distribution in HIV-uninfected persons meeting criteria for 

metabolically healthy obesity, suggesting that this state is not entirely benign [103, 

107-112]. It is unknown whether metabolically healthy obesity exists in HIV-infected 

persons. Given the prevalence of metabolic syndrome in HIV (up to 45% vs 25% in the 

general population [113]), the metabolic effects of HIV and ART, and the persistent immune 

activation and inflammation associated with even virologically-suppressed HIV, it is 

possible that metabolically healthy obesity may not exist in HIV-infected persons, and/or 

that metabolic health in this population must be defined differently (2015 International 

Workshop on Co-morbidities and Adverse Drug Reactions in HIV; Barcelona, Spain; Lake 

et al. Abstract ADRLH-33).

Another paradox is that an overweight or obese body weight among older adults is 

associated with improved survival, and weight loss late in life can portend a poor prognosis. 
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A strong association between mortality and weight loss has been well-described among 

older, HIV-uninfected adults independent of underlying disease or comorbid illnesses 

[114-117]. One longitudinal study observed an increased risk of death among older adults 

(mean age 73) who experienced any appreciable weight loss after the age of 21 and among 

underweight older adults in the 3rd-8th decades of life [115]. Reports among HIV-infected 

adults are more limited but similar in implication: in the Nutrition for Healthy Living cohort, 

weight loss from baseline and weight loss ≥5% over a 6-month period were significant 

predictors of mortality [118, 119].

Interventions to Modify Adipose Tissue in HIV

ART selection—ART initiation is associated with a gain in overall body weight that may 

contribute to VAT gains or lipohypertrophy [8, 23, 120-122]. Therefore, initiation of or 

switch to more “fat friendly” regimens is an appealing option, but should not be based upon 

changes in body weight only (see Implications of Ectopic Fat). For example, in ACTG study 

A5175, participants were randomized to efavirenz with either FTC/TDF or 3TC/ZDV. The 

FTC/TDF arm had significantly greater increases in overall weight as well as waist, hip, 

mid-arm, and mid-thigh circumferences. However, all cases of lipoatrophy occurred in the 

3TC/ZDV arm, which also had greater gains in waist-hip ratio (suggestive of subtle hip 

lipoatrophy with relative VAT gain). Among more contemporary regimens, these 

differences are less apparent [10]. In ACTG study A5224s, participants randomized to 

ATV/r had a small but significantly greater increase in body weight than participants 

randomized to EFV-based therapy [123], with no significant differences seen by NRTI 

backbone (ABC/3TC or TDF/FTC). Although integrase inhibitors have generally been 

associated with smaller changes in weight and fat distribution, ACTG study A5260 observed 

no significant differences between raltegravir and two contemporary ritonavir-boosted PIs, 

darunavir or atazanavir, all with an FTC/TDF backbone (2015 Conference on Retroviruses 

and Opportunistic Infections; Seattle, WA; McComsey, et al. Abstract 140).

Similarly, switching ART may not reverse VAT accumulation [124-127]: HIV-infected 

women with central adiposity on ART switched to raltegravir from PI or NNRTI-based 

therapy had no significant changes in SAT or VAT area but did have significant reductions 

in sCD14 [126]. In the SPIRAL-LIP sub-study, participants randomized to switch from a 

boosted PI to raltegravir had no significant change in total adipose tissue or VAT, whereas 

those continuing boosted PI therapy for 48 weeks had significant increases in both [124]. In 

the SPIRAL parent study, switch to raltegravir was associated with significant reductions in 

hs-CRP, monocyte chemotactic protein (MCP)-1, IL-6, and TNF-α but not IL-10 or 

adiponectin, and it is not clear to what extent changes in adipose tissue explain the changes 

in inflammatory markers [128]. In contrast, a switch to raltegravir from stavudine therapy 

among lipodystrophic individuals resulted in improvements in whole body and limb fat 

quantity, trunk/limb fat ratio and fat mass index, with restoration of mtDNA and adiponectin 

levels [52].

Growth hormone (GH) axis therapies—Adiposity significantly reduces both GH 

secretion and pulsatility [129], thus, therapies targeting the GH axis have been of interest for 

obesity and lipodystrophy. Although GH has effectively decreased VAT in HIV-uninfected 

Erlandson and Lake Page 7

Curr HIV/AIDS Rep. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and -infected populations, with some studies also reporting a simultaneous reduction in 

CRP, reduction in VAT was at the expense of insulin resistance, multiple side effects, and 

loss of SAT. Thus the clinical utility of GH for obesity treatment has been limited. Of note, 

many initial studies administered supra-physiologic doses of continuous GH, and subsequent 

trials have attempted to more closely mimic physiologic levels or the pulsatile nature of GH. 

A subsequent, low-dose GH trial in HIV titrated doses to achieve insulin-like GH levels 

within the normal range, and resulted in marginally but significantly improved VAT and 

worsened glucose tolerance [130]. A GH releasing hormone analogue, tesamorelin, was 

FDA approved in 2010 after clinical trials demonstrated significant reductions in VAT with 

less impact on insulin resistance and no significant difference in side effects vs placebo 

outside of injection site reactions and edema. In contrast to the low-dose GH study where no 

significant changes in adiponectin or other cytokines were observed, tesamorelin use has 

been associated with significant improvements in adiponectin, tissue plasminogen activator 

(tPA) and plasminogen activator inhibitor (PAI-1) that corresponded to reductions in VAT 

[131, 132]. Recently, tesamorelin has also been shown to reduce VAT in obese, HIV-

uninfected persons [133].

Exercise—In epidemiologic studies, regular physical activity is associated with reduced 

risk of inflammation-associated disease, including dementia, cancer, CVD, and insulin 

resistance. In contrast, prolonged physical inactivity is associated with VAT accumulation 

and elevation of multiple pro-inflammatory cytokine levels. Some of the benefit of exercise 

may be explained through alteration in systemic cytokines [134, 135], however, few recent 

studies have explored the impact of exercise on markers of inflammation or immune 

activation in HIV-infected adults, particularly in regards to body composition changes. A 

systemic review published in 2010 summarized the effects of exercise in HIV-infected 

adults, with prior studies primarily focused on wasting or lipodystrophy: aerobic exercise 

generally led to improvements in BMI, triceps SAT, waist circumference, and waist-to-hip 

ratio [136]. Since then, a factorial intervention of lifestyle modification with or without 

metformin among HIV-infected adults with the metabolic syndrome observed a trend 

towards greater VAT reductions (without SAT loss) in the metformin group, and 

significantly greater reductions in intra-myocellular lipid content and hs-CRP in the lifestyle 

modification group [137]. In a small study of 18 HIV-infected participants with 

lipodystrophy randomized to 16 weeks of strength or endurance training, significantly 

greater decreases in total and limb fat mass were seen in the strength training group, while 

significantly greater reductions in systemic inflammation (hs-CRP, IL-6, TNF-α, and IL-18) 

were observed in the endurance group, suggesting that the reduction in inflammation was 

not due to changes in fat mass alone [138]. Thirty-five older adults completing a 12-week 

intervention of endurance with or without strength training demonstrated significant 

decreases in IL-6, hs-CRP, d-dimer, and IL-18 (2014 Conference on Retroviruses and 

Opportunistic Infections; Boston, MA; Longo, et al. Abstract 763). Finally, strength training 

led to decreases in trunk fat and triglyceride levels, but neither strength nor cardiovascular 

exercise decreased lipopolysaccharide levels (a marker of microbial translocation) [139].

Other interventions—Recently, nutritional interventions, including those targeting the 

intestinal microbiome, have gained traction as potential therapies for adipose tissue 
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dysfunction. In an animal model of diet-induced obesity, arginase inhibition ameliorated 

obesity-induced adipose tissue inflammation by reducing macrophage infiltration into 

adipose tissue, improving adipose tissue monocyte profiles, and decreasing pro-

inflammatory cytokine expression [140]. Several studies have suggested that probiotic 

supplementation may help improve adipose tissue dysfunction by “resetting” the gut 

microbiome, which could help restore gut mucosal integrity, decrease microbial 

translocation, and decrease systemic inflammation. In the recent Probio-HIV study, ART-

treated, HIV-infected adults treated with probiotics demonstrated reduced CD4+ T 

lymphocyte activation and reduced plasma levels of lipopolysaccharide binding protein and 

hs-CRP [141]. Similar studies have demonstrated improvements in d-dimer, IL-6 and 

lipopolysaccharide binding protein [142, 143]. An upcoming ACTG study will study the 

effect of the probiotic Visbiome on markers of microbial translocation, inflammation and 

immune activation in adults on suppressive ART.

Recent data suggest that trimethoprim sulfamethoxazole use at the time of ART initiation 

may improve some markers of microbial translocations without restoring the gut blood-

barrier, a finding the authors hypothesized was mediated through modulation of the gut 

microbiome [144]. Finally, in an animal model of obesity, maraviroc therapy was associated 

with simultaneous improvements in gut Enterobacteriales, body weight gain, insulin 

sensitivity and liver fat [145].

Conclusions

While data on the contribution of adipose tissue dysfunction to health in treated HIV 

infection are emerging, many questions remain unanswered, including how adipose tissue 

physiology may be unique in HIV infection and/or with ART selection, the trajectory of 

body weight and hip/waist circumference throughout the lifetime of an HIV-infected person 

and/or the effects of obesity duration in HIV-infected compared to uninfected populations. 

Additionally, whether these associations differ by ART era and timing of ART initiation 

also remains unknown. Although multiple ongoing studies aim to address some of these 

questions, additional research is needed, particularly in regards to tissue-level physiology 

and the effects of newer antiretroviral agents.
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Table 1
Known effects of specific antiretroviral agents on adipocytes

Type of Adipose Tissue Disturbance Implicated Antiretroviral Agents

Impaired adipogenesis or adipocyte differentiation 
or function

Lopinavir/ritonavir [48, 49], ritonavir [48], efavirenz [50, 51], rilpivirine [50], stavudine 
[52]

Pre-adipocyte autophagy and apoptosis Atazanavir [53]

Impairment of lipid and/or glucose metabolism Atazanavir/ritonavir [54], lopinavir/ritonavir [48, 49], ritonavir [48], ± darunavir [48, 
49], NNRTIs [54], efavirenz [50], NRTI [54]

Impairment of mitochondrial function Atazanavir [53], azanavir/ritonavir [48], saquinavir [55], lopinavir/ritonavir [48], 
ritonavir [48], NRTIs [52, 56-58]

Pro-inflammatory Atazanavir/ritonavir [48] lopinavir/ritonavir[48], ritonavir [48], efavirenz [50, 51, 59], 
rilpivirine [50]

Prelamin A accumulation Protease inhibitors [44]
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