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Abstract Mechanical loads which are macroscopically
acting onto bony organs, are known to influence the activi-
ties of biological cells located in the pore spaces of bone,
in particular so the signaling and production processes
mediated by osteocytes. The exact mechanisms by which
osteocytes are actually able to “feel” the mechanical load-
ing and changes thereof, has been the subject of numerous
studies, and, while several hypotheses have been brought
forth over time, this topic has remained a matter of debate.
Relaxation times reported in a recent experimental study of
Gardinier et al. (Bone 46(4):1075–1081, 2010) strongly sug-
gest that the lacunar pores are likely to experience, during
typical physiological load cycles, not only fluid transport,
but also undrained conditions. The latter entail the buildup
of lacunar pore pressures, which we here quantify by means
of a thorough multiscale modeling approach. In particular,
the proposed model is based on classical poroelasticity the-
ory, and able to account for multiple pore spaces. First, the
model reveals distinct nonlinear dependencies of the result-
ing lacunar (and vascular) pore pressures on the underlying
bone composition, highlighting the importance of a rigor-
ous multiscale approach for appropriate computation of the
aforementioned pore pressures. Then, the derived equations
are evaluated for macroscopic (uniaxial as well as hydro-
static) mechanical loading of physiological magnitude. The
resulting model-predicted pore pressures agree very well
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with the pressures that have been revealed, by means of in
vitro studies, to be of adequate magnitude for modulating
the responses of biological cells, including osteocytes. This
underlines that osteocytes may respond to many types of
loading stimuli at the same time, in particular so to fluid flow
and hydrostatic pressure.
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1 Introduction

Quite recently, Gardinier et al. (2010) presented a brilliant
modification of the seminal work of Qin et al. (2002), allow-
ing for the first time ever direct experimental access to the
permeability of the lacunar-canalicular system of bone—they
reported pressurization and relaxation times of around 8 s,
relating to filling or drainage across the osteonal thickness,
typically measuring about 65 microns (Gardinier et al. 2010).
The underlying pressure intensification and relaxation sys-
tem is governed by a constant pressure diffusion coefficient
c (Zeng et al. 1994; Cowin 1999; Gardinier et al. 2010),
being equal to the square of the characteristic length (here the
osteonal thickness) over the characteristic relaxation time,
c = l2/Trelax = 652/8 ≈ 530µm2/s. Accordingly, pressure
relaxation through fluid flow over the distance between two
lacunae, amounting to some 20 microns—see, e.g., Gardinier
et al. (2010), Fig. 3b—takes about Trelax = 202/c ≈ 0.8 s. In
other words, for characteristic loading times of 1 s or more,
canalicular fluid flow between lacunae is probable to occur,
while the fluid is virtually trapped once loading times much
below 1 s are encountered. Interestingly, both time regimes
may be encountered under normal physiological loading,
as can readily be derived from the wealth of experimental
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data available in the literature: Typical loading rates expe-
rienced in bone in vivo are accessible via force or strain
measurements, see, e.g., Lanyon et al. (1975) and Bergmann
et al. (1993). Magnitude and rate of these physical quanti-
ties allow for determination of characteristic loading times
defined along the lines of Auriault et al. (2009),

Tload = |Q|
|Q̇| (1)

with Q standing for the measured physical quantity, be it
strain or force. During a typical load cycle experienced in
vivo or subjected to in an in vitro experiment, the value for
Tload according to Eq. (1) obviously changes with time: It
reaches infinity whenever the measured quantity reaches a
maximum or minimum, and minimal characteristic times are
encountered at time points in-between, typically close to the
time instants at which the measured quantity exhibits max-
imum rates, see, e.g., Fig. 1a for the resultant force history
associated to a human hip joint during walking (Bergmann
et al. 1993). The occurring loading times illustrated in Fig. 1b,
as derived from the force history of Fig. 1a by means of
Eq. (1), may be binned into four time intervals character-
izing different orders of magnitudes: load regime I with
Tload < 0.1 s; load regime II with 0.1 s ≤ Tload < 1 s; load

(a)

(b)

Fig. 1 Bone loading experienced in the hip joint during walking on a
treadmill at 2 km/h: a resultant force history as recorded by Bergmann
et al. (1993), and b corresponding loading times Tload according to
Eq. (1)

regime III with 1 s ≤ Tload < 10 s; and load regime IV with
Tload ≥ 10 s, see Table 1. It appears that activities like uphill
running, jogging, or walking imply a large fraction of charac-
teristic loading times below a tenth of a second; this fraction
may amount even up to 74 %, according to Mikić and Carter
(1995), see Table 1. By contrast, static exercise regimes, such
as knee bending (in sports medicine also known as “squats”)
or the handling with dumbbells entail typically much longer
characteristic loading times; e.g., almost 50 % of the slow
movement of dumbbells from the lateral position to the front
position and back, as recorded by Rohlmann et al. (2014),
related to loading times larger than 10 s.

All the loading times of Table 1, which amount to, or even
exceed the 8 s-relaxation time suggested by Gardinier et al.
(2010) for the osteonal scale, clearly indicate the occurrence
of fluid flow through the canaliculi, as has been discussed
and reported very extensively in the literature (Turner and
Pavalko 1998; Qin et al. 2003; Knothe Tate 2003; San-
tos et al. 2009; Jacobs et al. 2010). On the other hand, a
significant portion of the recorded loading times are well
shorter than both the 8 s- and 0.8 s-relaxation times men-
tioned previously, so that undrained conditions are expected
to occur during physiological loading as well, both at the
osteonal and the inter-lacunar scale. Undrained conditions
imply pressurization of the lacunar fluid, and this strongly
motivates to carefully reconsider hydrostatic pressure as an
important stimulus for osteocytes, thus re-energizing a quite
old discussion. In fact, the idea of a hydrostatic pressure
stimulus is often attributed to Thompson (1936), see, e.g.,
Bassett (1968). While Thompson’s suggestion was mainly
founded on intuition and plausibility, in vitro studies repeat-
edly confirmed that bone cells (not only osteocytes, but
also osteoblasts, osteoclasts, and their progenitors) indeed
exhibit altered activities when subjected to hydrostatic pres-
sure at frequencies of up to 1 Hz, exhibiting amplitudes of
several tens (to hundreds) of kilopascals, see Table 2 for a
related literature review. However, while the in vitro stim-
ulation of bone cells by hydrostatic pressure seems to be a
generally accepted fact, there seems to be some doubt on
whether the hydrostatic pressures identified as mechanical
stimuli in vitro are actually occurring in vivo. This doubt
is exemplified by a quotation from the famous paper of
Duncan and Turner (1995), reading “hydrostatic pressure
almost never occurs in mineralized bone”. This statement
is true and false at the same time, depending on the length
scale considered. At the millimeter length scale of a piece
of cortical or trabecular bone, it is of course true, since most
of the bones are subjected to stress gradients and exhibit
one or two dominant loading directions, making the occur-
rence of hydrostatic pressure (at the millimeter scale) indeed
extremely improbable. The setting changes, however, at the
tens-of-microns length scale of a single lacunar pore (and
of the osteocyte it hosts), where the millimeter-sized gra-
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Table 1 Distribution of characteristic loading times related to in vivo mechanical loading data recorded in humans, for various organs and loading
regimes; I: Tload < 0.1 s, II: 0.1 s ≤ Tload < 1 s, III: 1 s ≤ Tload < 10 s, and IV: 10 s ≤ Tload

References Measured
quantity

Loading regime I (%) II (%) III (%) IV (%)

Bergmann et al. (1993) Hip joint force Walking on a treadmill at
2 km/h

20 45 25 10

Jogging on a treadmill at 8 km/h 39 51 6 4

Stumbling without falling 4 62 28 6

Mikić and Carter (1995) Anteromedial
tibial strain
energy

Walking on a treadmill at
1.4 m/s

56 36 6 2

Walking on the floor with 71 kg
additional weight

48 48 3 1

Jogging on a treadmill at
2.2 m/s

74 22 3 1

Burr et al. (1996) Tibial midshaft
strains

Walking on the floor at 5 km/h 35 48 15 2

Jogging on the floor at 10 km/h 55 33 9 3

Zigzag-running uphill 58 33 5 4

Nikoyaan et al. (2009) Shoulder joint
force

Full range of shoulder motions ≈0 30 57 13

Kutzner et al. (2010) Knee joint force Knee bending ≈0 17 63 20

Standing up and sitting down 3 35 43 19

Ascending stairs 12 67 17 4

Rohlmann et al. (2014) Spinal force 5 kg dumbbells moved from
lateral to front position and
back

0 1 51 48

dients are not “seen” anymore, and which therefore could
be well subjected to hydrostatic pressure (at the micron
scale).

The latter suggestion of course deserves further scrutiny,
and while direct pressure measurements at the micron scale
remain out of reach, significant progress in theoretical and
computational bone micromechanics over the last 15 years
makes it nowadays possible to indeed “downscale” macro-
scopic strains occurring in vivo, to the fluid pressures
arising in the lacunar pore spaces of cortical or trabecu-
lar bone tissue, and to check whether the resulting pore
pressures agree with those needed to stimulate the cells
occurring in bone in vitro. This is exactly the scope of
the present paper, the remainder of which is organized as
follows:

After a review of the differently sized pore spaces found
in bone (see Sect. 2.1), the fundamentals of poromicrome-
chanics are shortly summarized, focussing thereby on the
representation of the double-porous system consisting of vas-
cular and lacunar pores with solid bone matrix in-between
(see Sects. 2.2 and 2.3); and on the underlying multiscale
homogenization scheme which was experimentally validated
by tests on bones stemming from the entire vertebrate king-
dom, for various physical properties, such as elasticity, wave
propagation phenomena, viscoelasticity, and strength (see
Sects. 2.4 and 2.5). This scheme then allows for compu-
tation of lacunar pressures under different physiologically

relevant macroscopic loading scenarios, always involving
undrained conditions in the lacunar pores as discussed earlier,
but alternatively assuming drained vascular pores [as often
expected under normal physiological loading (Smit et al.
2002)], or undrained vascular pores [as expected under trau-
matic conditions (Hellmich and Ulm 2005a; Bryant 1983)].
The corresponding pressure predictions are then compared
to those which have been experimentally shown to stimulate
a variety of biological cells in vitro (see Sect. 3.1). After a
numerical study concerning age-related changes in bone (see
Sect. 3.2), the paper is concluded by an extensive discussion,
covering limitations as well as possible future extensions
of the poromicromechanics model presented in this paper,
as well as its relation to bone mechanobiology and various
associated transport processes taking place in the lacunar-
canalicular pore channel network (see Sect. 4).

2 Poromicroelasticity of bone

The scientific discipline of poromechanics originally
emerged from the industrial field of geoengineering (von
Terzaghi 1923), where it still drives technological improve-
ments through reliable, often closed form, solutions
(Abousleiman et al. 1996), ever extending the seminal work
of Biot (1941). Being, however, applicable to any porous
medium, poromechanics has gained, during recent decades,
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Table 2 Summary of experimental evidence regarding cell excitation by means of hydrostatic pressure application

References Cell type Pressure magnitude Pressure frequency Observed effects

Imamura et al. (1990) Osteoblast-like
MC3T3-E1 cells

0.5–2 atm Static Inhibition of osteoblast
differentiation, promotion
of osteoclast production
(“optimum” pressure: 100
kPa), increased PGE
synthesis

Ozawa et al. (1990) Mouse osteoblast-like
MC3T3-E1 cell

1 and 3 atm Continuous Decreased osteoblast
numbers, increased PGE2
expression

Klein-Nulend et al. (1995) Osteocytes from chicken
calvariae

13 kPa 0.3 Hz (1 s loading,
2 s relaxation), for
24 h

Increase in prostaglandin
release (can enhance bone
formation)

Roelofsen et al. (1995) Neonatal mouse
calvarial cells

13 kPa 0.3 Hz Stimulation of osteoblastic
activity, stimulation of
actin expression, AP
activity

Brighton et al. (1996) Calvarial bone cells
from neonatal rats,
exhibiting an
osteoblast phenotype

17.2–69 kPa 1 Hz, for 10 cycles increased proliferation,
increased cytosolic
calcium concentration

Vergne et al. (1996) ROS 17/2.8 (rat
osteoblast-like cells)

50–90 kPa 1 and 0.1 Hz, 20 min
test duration

Increase in cell saturation
density (for a frequency of
1 Hz), decreases alkaline
phosphatase activity

Rubin et al. (1997) Marrow cells from
tibiae and femurs of
C57BL/6 mice

1–2 atm Static Decreased osteoclast
formation, decrease in
mRNA coding for the
membrane-bound form of
MCSF

Nagatomi et al. (2001) Osteoblasts from the
calvaria of neonatal
rats

10–40 kPa 0.25 or 1 Hz, 1 h
daily

Elongated pressure
decreases osteoblast
proliferation, the same
pressure stimulus causes
different effect on
different cells

Nagatomi et al. (2002) Bone marrow cells
(source of osteoclasts)
from rat femurs

10–40 kPa 1 Hz (sinusoidal
wave form), for 1 h
per day

Reduced osteoclast
differentiation and
resorption activity, lower
concentration of IL-1α,
down-regulation of
mRNA expression for
IL-1α, IL-1β, and TNF-α

Nagatomi et al. (2003) Osteoblasts isolated
from rat calvariae

10–40 kPa 1 Hz, for 1 h daily Increased type-I collagen
mRNA expression,
increased amount of
acid-soluble collagen,
increased calcium
concentration

Takai et al. (2004) Primary osteoblasts
obtained from
trabecular bone cores
taken from the
epiphyses of
metacarpal bones from
3- to 4-month-old
calves

3 MPa 0.33 Hz (triangle
wave form), for 1
h/day

Increased osteoblast
function (only when
osteocytes are present),
increased osteocyte
viability
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Table 2 continued

References Cell type Pressure magnitude Pressure frequency Observed effects

Maul et al. (2007) Bone marrow progenitor
cells from rats

10–16 kPa 1 Hz Enhanced proliferation

Gardinier et al. (2009) MC3T3 osteoblast-like
cells

0–68 kPa 0.5 Hz Increased anabolic
response, increase in ATP
release, increased COX-2
levels

Liu et al. (2009) Bone marrow stromal
cells from tibiae and
femurs of rats

10–36 kPa 0.25 Hz (sinusoidal
wave form)

Increase in osteoblast
activity-related
transcription factors

Liu et al. (2010) MLO-Y4 osteocyte-like
cells (i.e., deriving
from cells extracted
from transgenic mice)

68 kPa 0.5 Hz (triangular
wave form), for 1
or 2 h

Decreased osteocyte
apoptosis, increase in
intracellular calcium
(after 40 s, may be related
to osteoblast activity), of
RANKL/OPG ratio (after
2 h), and of COX-2
mRNA level (after 1 h)

Rottmar et al. (2011) Human bone- derived
cells, from the hip
marrow

1–11 kPa 30 min stimulation,
7 h, 30 min break

Increased osteogenic
differentiation and
proliferation

Henstock et al. (2013) Cells contained in whole
femurs of chick
foetuses

0–279 kPa 0.0001–2 Hz Increased volume of
diaphysial collar

increasing popularity in the biological field, with applica-
tions concerning cartilage (Huyghe et al. 2007; Hoang and
Abousleiman 2009), brain (Mehrabian and Abousleiman
2011), wood (Bader et al. 2011), or bone (Cowin 1999).
Concerning the latter, the theory of poromicromechanics
(Dormieux et al. 2006), where not only porosities, but also
additional microstructural features are explicitly considered
for determining the mechanical interactions between pore
pressures and stresses acting on porous material volumes,
has been particularly successfully applied to bone (Hellmich
and Ulm 2005a, b; Morin and Hellmich 2014), and in this
context, has allowed for explaining various experimentally
observed pore pressure buildup phenomena (Bryant 1983,
1988; McCarthy et al. 1990; Hosokawa and Otani 1997; Lee
et al. 2003). Corresponding experimentally validated mathe-
matical models are employed hereafter, in order to determine
the lacunar and vascular pore pressures arising from physio-
logical strains, preceded by a short review on the pore spaces
found in bone, as described next.

2.1 Pore spaces in bone

The largest pores found in bone host blood vessels and are
therefore often called vascular pores. In cortical bone (form-
ing shell-type structures at the surface of whole bony organs),
the vascular pores form a branching structure (Cooper et al.
2003), with the main branches (normally following the main
anatomical directions of the organ) often being called Haver-

sian canals, while the sideways to smaller branches are
sometimes called Volkmann canals. Over the lifespan of an
individual, the vascular porosity typically increases, from a
few percent in young adults, up to 35 % and more at age 90
(Cooper et al. 2007), see Fig. 2a, b. Trabecular bone, sur-
rounded by a cortical shell, can be found at the ends of long
bones, proximal to joints, resulting from a perforation process
of the cartilage originally laid down during the develop-
ment of the biological individual (Buckwalter et al. 1995a, b;
Byers et al. 2000), with vascular porosities (then also called
inter-trabecular porosities) ranging from typically 50–90 %
(Padilla et al. 2008; Boutroy et al. 2005, 2011), and also
shows a great spatial variability within one and the same
organ, see Fig. 2a, e. The interpenetration of vascular pores
in trabecular bone results in the appearance of the extravas-
cular bone matrix in-between, as struts or plates, which are
called trabeculae. With aging, the latter undergo considerable
thinning and may even be lost (Thomsen et al. 2002; Chen
et al. 2010).

Within the extravascular bone matrix, another class
of pores can be found, with characteristic sizes of ten
micrometers, hosting the probably mechanosensitive osteo-
cytes. The corresponding porosity can be straightforwardly
determined from sufficiently high-resolution light or trans-
mission/scanning electron micrographs (Buckwalter et al.
1995a; Tai et al. 2008), see Fig. 2c, d, f, and g; it amounts
to about 10 % (of the space without the vascular pores). With
aging, gradual apoptosis of the osteocytes is observed (Busse
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(a) radiograph of a human femur
(as exemplary bone organ)

(b) cross
section A-A

(c) light micrograph
of cortical bone

(d) SEM image of
cortical bone

(e) CT-based reconstructions of trabecular bone (f) photomicrograph of single trabecula

(g) SEM image of
an osteocyte

(h) LSCM image of the
lacunae-canaliculi system

Fig. 2 Hierarchical organization of bone relevant for bone
remodeling–modulating pore pressures, presented by the example
of the human femur: a X-ray image of the proximal part of a human
femur, reproduced from Sinclair et al. (2013), with permission from
Elsevier B.V.; b midshaft cross section A-A, illustrated through cor-
responding microradiographs of femur cross sections, by courtesy of
John G. Clement and David Thomas (taken from the Melbourne Femur
Collection), shows deteriorating integrity with increasing age; cortical
bone microstructure and its main constituents acquired by means of c
light microscopy, reprinted from Buckwalter and Cooper (1987), with
permission from the American Academy of Orthopaedic Surgeons
(AAOS), or d scanning electron microscopy (SEM), reprinted from
Kessel and Kardon (1979), by courtesy of Randy H. Kardon; e shows

computed tomography (CT) images of trabecular bone acquired at dif-
ferent locations showing different porosities, reproduced from Padilla
et al. (2008), with permission from Elsevier B.V.; f a photomicrograph
of a single trabecula shows the composition of trabecular bone, repro-
duced from Sinclair et al. (2013), with permission from Elsevier B.V.;
g SEM allows to visualize the osteocytes residing in the lacunar pores
detectable in cortical bone and trabecular bone, reprinted from Pajevic
(2009), by permission from Macmillan Publishers Ltd. on behalf
of Cancer Research UK: IBMS BoneKey, © 2009; h laser scanning
confocal microscopy (LSCM) shows the canaliculi connecting the
lacunae and the therein residing osteocytes, forming a dense network
embedded in the extracellular bone matrix, reproduced from Ebacher
et al. (2012), with permission from Elsevier B.V.

et al. 2010), allowing for mineralization of the lacunar spaces;
thereby reducing the lacunar porosity.

The lacunae are connected by much smaller channels
called canaliculi, which host the osteocyte processes con-
necting the osteocytes to a network similar to those made up
by neurons. These channels have a characteristic diameter of
a few 100 nm, typically around 500 nm (Reilly et al. 2001;
Sharma et al. 2012), see Fig. 2h. Since these canalicular pores
are much smaller than the lacunar pores, we regard them
throughout this paper as a porosity which is of course physi-
cally linked to, but at the same time “length-scale-separated”
from the lacunar pores. Namely, length-scale separation is
one of the most fundamental and governing principles in
the very old and therefore highly mature scientific field of

continuum mechanics (Salençon 2001), and its subfields
micromechanics (Zaoui 2002) and poromechanics (Coussy
2004; Dormieux et al. 2006), which will be used hereafter
to elucidate the mechanical functioning of the different pore
spaces found in bone material. Given our focus on the osteo-
cytes and their mechanical environment, all pore spaces
smaller than the lacunar pore space, such as the canalic-
ular pore space at the 100 nanometers scale, but also the
inter-crystalline and inter-molecular pore spaces at the ten
nanometers and the single nanometer scales (Hellmich et al.
2009) will not be explicitly introduced here, but they are
considered as an integral part of what we will call in the fol-
lowing “extralacunar bone matrix,” i.e., extracellular bone
matrix plus canaliculi.
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2.2 Separation of scales—representative volume
elements

In the following, the mechanical impact of the aforemen-
tioned pore spaces is studied within the framework of
continuum micromechanics (Hill 1963, 1965; Suquet 1997;
Zaoui 1997, 2002; Dormieux et al. 2006), where a material
is understood as a macrohomogeneous, but microheteroge-
neous body filling a representative volume element (RVE)
with characteristic length �RVE, fulfilling the following
separation-of-scales conditions: (i) �RVE � dRVE, dRVE rep-
resenting the characteristic length of inhomogeneities within
the RVE, and (ii) �RVE � {L ,P},L representing the char-
acteristic length of the geometry and P representing the
characteristic length of the loading of a structure built up by
the material defined on the RVE.

In general, the microstructure within one RVE is so com-
plicated that it cannot be described in complete detail. There-
fore, quasi-homogeneous subdomains with known physical
properties are reasonably chosen. They are called mater-
ial phases, typically comprising solid and pore phases. The
homogenized (upscaled) poroelastic behavior of the mate-
rial on the observation scale of the RVE, i.e., the relation
between homogeneous deformations acting on the boundary
of the RVE, the pressures acting inside the pores, and the
resulting macroscopic (average) stresses, can then be esti-
mated from the elastic behavior of the material phases, their
volume fractions within the RVE, their characteristic shapes,
and their interactions. If a single phase exhibits a heteroge-
neous microstructure itself, its mechanical behavior can be
estimated by introduction of an RVE within this phase, with
dimensions �RVE,2 ≤ dRVE, comprising again smaller phases
with characteristic length dRVE,2 � �RVE,2, and so on. This
leads to a multistep homogenization scheme.

In the case of bone, we adopt a homogenization scheme
which has been extensively validated against experimental
data across a multitude of bone samples harvested from
different anatomical locations of different species of differ-
ent ages and various physical quantities such as elasticity
(Hellmich et al. 2004; Fritsch and Hellmich 2007), poroelas-
ticity (Hellmich and Ulm 2005a, b; Morin and Hellmich
2014), viscoelastcity (Eberhardsteiner et al. 2014), and
elastoplasticity (strength) (Fritsch et al. 2009). In the course
of this adoption, we start with zooming out of a bony
organ with a characteristic length of several mm to cm,
Lbone = 5...10 × 10−3 m, an RVE of (cortical or trabec-
ular) bone, see Fig. 3, which in the case of cortical bone
exhibits a typical length of �macro ≈ 1...5 × 10−3 m (Lees
et al. 1979; Padilla et al. 2008), and being somewhat larger
in the case of trabecular bone. Within this RVE, we distin-
guish the phases “vascular pores,” exhibiting a characteristic
size of dvas = 50...80 × 10−6 m and cylindrical shape, and
“extravascular bone matrix,” whereby the former are embed-

Fig. 3 Micromechanical representation of cortical bone, based on
which the poromicromechanical model is developed: Cortical bone
microstructure is composed of extravascular bone matrix, with vol-
ume fraction fexvas, and vascular pore space, with volume fraction fvas,
fexvas + fvas = 1, Lbone � �macro � dvas, whereas extravascular bone
matrix is composed of extracellular bone matrix, with volume fraction
f̄exlac, and lacunar pores, with volume fraction f̄lac, f̄exlac + f̄lac = 1,
�exvas � dlac; the X-ray image of the bone organ was reproduced from
Sinclair et al. (2013), with permission of Elsevier B.V.

ded into the latter (Hellmich et al. 2004, 2008; Yosibash
et al. 2008; Fritsch et al. 2009; Grimal et al. 2011; Colloca
et al. 2014), see Fig. 3. When zooming into a piece of the
extravascular bone matrix, it appears as a porous material
itself, represented by means of an RVE with a characteris-
tic length of �exvas ≈ 100...200 × 10−6 m, being composed
of the phases “extralacunar bone matrix” (i.e., extracellu-
lar bone matrix plus the therein embedded, comparatively
tiny canalicular channels) and “lacunar pores” with charac-
teristic size dlac ≈ 10 × 10−6 m (Buckwalter et al. 1995a;
Martin et al. 1998), approximated by spherical inclusions
(Fritsch and Hellmich 2007; Hellmich et al. 2009; Morin
and Hellmich 2014). We note in passing that dRVE and �RVE

are always separated by more than a factor of three, which
already allows homogenization results with a low error, of
not more than around 3 % (Drugan and Willis 1996).

2.3 Micro–macro relations in the double-porous
medium

In the framework of linearized (small) strains (standardly
used in the mechanical study of mineralized tissues) and
elastic behavior of the solid phases of the RVEs depicted
in Fig. 3, the “macroscopic” stresses Σ related to the macro-
scopic (cortical or trabecular) RVE (i.e., the spatial average
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of microstresses within this RVE) are linearly related to the
“macroscopic” strains E imposed as displacements at the
boundary of this RVE, and to the pore pressures plac and pvas

acting inside the vascular and lacunar pores, respectively,

Σ = Cmacro : E − blac
macro plac − bvas

macro pvas , (2)

as has been derived in theoretical detail in Dormieux et al.
(2006), Hellmich et al. (2009) and Pichler and Hellmich
(2010). This multilinearity is expressed by the “drained” cor-
tical stiffness tensor Cmacro (related to drained lacunar and
vascular pores, meaning that the pore pressures are governed
by effects from outside the RVE, and comprising particu-
larly the special case of “zero pressures”), and by the pore
space-specific Biot tensors bvas

macro and blac
macro, which quantify

the macroscopic stresses Σ arising in an undeformed corti-
cal RVE, from pressures acting in the two considered pore
spaces. Mathematical details on how the second-order Biot
tensors are derived from the micromechanical representation
depicted in Fig. 3, are given in the Appendix of this paper.

The macroscopic strains and the pore pressures also lead
to changes in the lacunar and vascular porosities, again in a
multilinear way,

flac − flac,0 = blac
macro : E + plac

N lac,lac
macro

+ pvas

N lac,vas
macro

(3)

and

fvas − fvas,0 = bvas
macro : E + plac

N vas,lac
macro

+ pvas

N vas,vas
macro

, (4)

where flac,0 and fvas,0 are the initial volume fractions of lacu-
nar and vascular pore spaces (quantified on the macroscopic
observation scale), before the RVE of macroscopic (cortical
or trabecular) bone is subjected to mechanical loading. Fur-
thermore, N j, j

macro and N j,k
macro = Nk, j

macro are the so-called Biot
moduli, whose nomenclature is built as follows: Biot modu-
lus N j,k

r considers the effect of the pressure in pore space k
on the porosity change of pore space j , whereby both pore
spaces are measured in RVE r . We note that the theoretical
derivation of Eqs. (3) and (4) is described in greater detail
elsewhere (Dormieux et al. 2006; Hellmich et al. 2009; Pich-
ler and Hellmich 2010), and that the Biot moduli are functions
of the Biot tensors and of the extralacunar stiffness tensor, as
given in more detail in the Appendix of this paper.

2.4 Sealing of pore spaces I—undrained lacunar pores

So far, the pore pressures plac and pvas were considered as
independent loading variables, governed by the fluid flow
conditions met in the double-porous medium. We will now
investigate specific cases of these fluid flow conditions. The
first case relates to the situation where the macroscopic

strains E (and the corresponding strains acting on the lacu-
nar pores) are built up so quickly that the pore fluid cannot
leave any more the lacunar pore space, and that it is therefore
“trapped” therein, see the first paragraph of Sect. 1, Table
1, and Fig. 1 for the corresponding physiological conditions.
Under such conditions, the lacunar pore deformation is solely
governed by the deformation of the lacunar fluid (also com-
prising the osteocyte) itself, see Hellmich and Ulm (2005a),
Hellmich et al. (2009) and Coussy (2004) for further theo-
retical details,

flac − flac,0

flac,0
= − plac

klac
(5)

where klac denotes the bulk modulus of the fluid contained in
the lacunar pores, which is standardly approximated by that
of water, klac = 2.3 GPa (Murdock 1996). At the same time,
we consider the case where the aforementioned loading is still
slow enough so as to allow the vascular fluid to equilibrate
with the (comparatively low) pressure stemming from blood
circulation, usually ranging between 10 and 30 mmHg (i.e.,
1.33–4 kPa) (Brookes and Revell 1998; Cameron et al. 1999),
which we approximate as pvas ≈ 0. Insertion of Eq. (5) into
Eq. (3) then leads to the following result:

plac = −M lac
macroblac

macro : E , (6)

with the modulus-type quantity M lac
macro defined standardly as

(Coussy 2004; Hellmich et al. 2009)

1

M lac
macro

= flac,0

klac
+ 1

N lac,lac
macro

. (7)

Insertion of Eq. (6) and pvas = 0 into Eq. (2) yields a stress-
strain relation of the format

Σ = Clac-u
macro : E , (8)

with the stiffness tensorClac-u
macro referring to undrained lacunar

pores and drained vascular pores,

Clac-u
macro = Cmacro + M lac

macroblac
macro ⊗ blac

macro . (9)

Insertion of Eq. (8) into Eq. (6) then gives

plac = −
(

Blac
macro

)
lac-u

: Σ , (10)

with the second-order Skempton tensor
(
Blac

macro

)
lac-u linearly

relating macroscopic stresses to the lacunar pore pressure,
reading as

(
Blac

macro

)
lac-u

= M lac
macroblac

macro :
(
Clac-u

macro

)−1
. (11)
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2.5 Sealing of pore spaces II—undrained lacunar
and vascular pores

Now we consider the case where also the vascular fluid is
“trapped” in its pore space, due to sufficiently high loading
rates, of typical characteristic times in the millisecond regime
(Bryant 1983; Hellmich and Ulm 2005a). Then, also the vas-
cular porosity changes are driven solely by the compression
of the vascular fluid,

fvas − fvas,0

fvas,0
= − pvas

kvas
, (12)

where we approximate also the vascular bulk modulus by
that of water, kvas = 2.3 GPa (Murdock 1996). Insertion of
Eqs. (5) and (12) into Eqs. (3) and (4) yields a linear system
of equations for the two unknowns plac and pvas, with the
solutions

plac = − M lac
macroN

lac,vas
macro

(N lac,vas
macro )2 − M lac

macroM
vas
macro

×
(

bvas
macroM

vas
macro + blac

macroN
lac,vas
macro

)
: E

(13)

and

pvas = − Mvas
macroN

lac,vas
macro

(N lac,vas
macro )2 − M lac

macroM
vas
macro

×
(

blac
macroM

lac
macro + bvas

macroN
lac,vas
macro

)
: E ,

(14)

whereby the modulus-type quantity Mvas
macro again follows the

standard definition (Coussy 2004)

1

Mvas
macro

= fvas,0

kvas
+ 1

N vas,vas
macro

. (15)

Insertion of Eqs. (13) and (14) into Eq. (2) yields a stress-
strain relation in the format

Σ = Clac,vas-u
macro : E , (16)

with the stiffness tensorClac,vas-u
macro referring to undrained lacu-

nar and vascular pores,

Clac,vas-u
macro = Cmacro + blac

macro ⊗
[

M lac
macroN

lac,vas
macro

(N lac,vas
macro )2 − M lac

macroM
vas
macro

× (
bvas

macroM
vas
macro + blac

macroN
lac,vas
macro

) ]

+ bvas
macro ⊗

[
Mvas

macroN
lac,vas
macro

(N lac,vas
macro )2 − M lac

macroM
vas
macro

× (
blac

macroM
lac
macro + bvas

macroN
lac,vas
macro

) ]
. (17)

Insertion of Eq. (17) into Eqs. (13) and (14) then yields

plac = −
(

Blac
macro

)
lac,vas-u

: Σ , (18)

and

pvas = − (
Bvas

macro

)
lac,vas-u : Σ , (19)

with the second-order Skempton tensors
(
Blac

macro

)
lac,vas-u and(

Bvas
macro

)
lac,vas-u reading as

(
Blac

macro

)
lac,vas-u

= M lac
macroN

lac,vas
macro

(N lac,vas
macro )2 − M lac

macroM
vas
macro

×
(

bvas
macroM

vas
macro + blac

macroN
lac,vas
macro

)

:
(
Clac,vas-u

macro

)−1
(20)

and

(
Bvas

macro

)
lac,vas-u = Mvas

macroN
lac,vas
macro

(N lac,vas
macro )2 − M lac

macroM
vas
macro

×
(

blac
macroM

lac
macro + bvas

macroN
lac,vas
macro

)

:
(
Clac,vas-u

macro

)−1
. (21)

3 Results

3.1 Pore pressure built up by macroscopic stress
and strain states

Evaluation of Eqs. (2)–(21), together with Eqs. (23)–(38),
reveals that the Skempton tensors given by Eqs. (11), (20),
and (21) are of diagonal format. That is, in a base frame e1, e2,
and e3 coinciding with the anatomical and pore directions, see
Fig. 3, all components Bi j with mixed indices, i �= j vanish,
and only the “normal” components B11, B22, and B33 remain.
Hence, the pressure buildup can be given explicitly as

p = B11Σ11 + B22Σ22 + B33Σ33 (22)

We directly observe that macroscopic shear loading in the
anatomical directions does not induce any pressure buildup.
However, this does not mean that macroscopic shearing
per se never builds up pore pressure: Whenever the ori-
entation of the shear stress vectors would deviate from
the anatomical directions, then they would induce corre-
sponding normal stress tensor components with respect to
the anatomical directions, and this would of course evoke
pore pressures. What can be also seen from Eq. (22) is that
the effect of macroscopic normal stresses in the anatomi-
cal directions, on the pore pressure buildup is (anatomical)
direction-dependent. This is further quantified in Fig. 4. The
lacunar and vascular pressure buildup is lower in axial than in

123



18 S. Scheiner et al.

(a) plac for Σ = e1 ⊗ e1 or Σ = e2 ⊗ e2,
and drained vascular pores

(b) plac for Σ = e3 ⊗ e3, and drained
vascular pores

(c) plac for Σ = e1 ⊗ e1 or Σ = e2 ⊗ e2,
and undrained vascular pores
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(d) plac for Σ = e3 ⊗ e3 or, and
undrained vascular pores

(e) pvas for Σ = e1 ⊗ e1 or Σ = e2 ⊗ e2,
and undrained vascular pores

(f) pvas for Σ = e3 ⊗ e3 or, and
undrained vascular pores
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Fig. 4 Lacunar (a–d) and vascular (e, f) pore pressures building up in response to uniaxial macroscopic unit stresses; the pore pressures shown in
a and b follow from evaluation of Eq. (10), whereas the pore pressures shown in c–f follow from evaluation of Eqs. (18) and (19)

transverse direction. Also, the lacunar pore pressure buildup
for the case of drained vascular pores is expectedly higher
than for undrained vascular pores. This increase is direction-
dependent as well; while the increase is in the range of only a
few percent for macroscopic stresses applied in the principal
anatomical (axial) direction, it may reach more than 20 %
in the transverse direction. Similar deliberations hold for the
strain–pore pressure relations given by Eq. (13) and (14), see
Fig. 5.

In order to study this direction dependence in more detail,
we consider a typical healthy cortical bone, with porosities
f̄lac = 0.1 and fvas = 0.05 (Buckwalter et al. 1995a; Martin
et al. 1998; Cooper et al. 2007; Tai et al. 2008). Furthermore,
we aim at elucidating the effect of macroscopic physiologi-
cal strains. Namely, considering in vivo strain measurements
(Fritton et al. 2000; Lanyon et al. 1975), a (frequently occur-
ring) macroscopic strain in the direction of the long axis
of the bone, i.e., parallel to base vector e3, is prescribed,
E33 = −10×10−6 and E = E33e3 ⊗e3. Our model predicts
that for drained vascular pores, this loading causes a pres-
sure buildup in the lacunar pores amounting to 41.05 kPa,
while for undrained vascular pores the pressure that buildups
in the lacunar and vascular pores, respectively, amounts to
39.93 and 34.59 kPa, respectively, see Fig. 6. On the level of
the entire macroscopic RVE, this leads to a storage of elastic
strain energy density amounting to

Ψ lac-u = 1.1326 Pa

in the case of undrained lacunar and drained vascular pores,
and to

Ψ lac,vas-u = 1.1501 Pa

in the case of both lacunar and vascular pores being
undrained, see Eqs. (40) and (43) for mathematical details.
For storing the same amount of elastic energy in case of uni-
axial transverse loading, E = E11e1 ⊗ e1, the latter strains
need to be of magnitude

E lac-u
11 = −11.7359 × 10−6

in the case of undrained lacunar and drained vascular pores,
and to

E lac,vas-u
11 = −11.5975 × 10−6

in the case of both lacunar and vascular pores being
undrained, see Eqs. (40) and (43) for mathematical details.
The corresponding lacunar pore pressures amount to 43.61
and 41.33 kPa, respectively (for drained and undrained vas-
cular pores, respectively), while the corresponding vascular
pore pressure for undrained vascular pores amounts to
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(a) plac for E= e1 ⊗ e1 or E= e2 ⊗ e2,
and drained vascular pores

(b)plac for E= e3 ⊗ e3, and drained
vascular pores

(c) plac for E= e1 ⊗ e1 or E= e2 ⊗ e2,
and undrained vascular pores
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Fig. 5 Lacunar (a–d) and vascular (e, f) pore pressures, in kPa, building up in response to uniaxial macroscopic unit microstrains; the pore pressures
shown in a and b follow from evaluation of Eq. (6), whereas the pore pressures shown in c–f follow from evaluation of Eqs. (13) and (14)

54.84 kPa, see Fig. 6. Hence, the macrostrain-induced lacu-
nar pore pressure is fairly independent of whether a certain
amount of energy is transferred to a macroscopic RVE in
terms of axial or transverse macroscopic strains. Next, we
check the effect of subjecting the RVE again to the same
amount of energy, but now in terms of hydrostatic macro-
scopic strain, E = Ehyd(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3).
Accordingly, Ehyd amounts to

E lac-u
hyd = −4.8111 × 10−6

in the case of undrained lacunar and drained vascular pores,
and to

E lac,vas-u
hyd = −4.7319 × 10−6

in the case of both lacunar and vascular pores being
undrained, see Eqs. (41) and (44) for mathematical details.
The corresponding lacunar pressures amount to 55.51 and
52.62 kPa, respectively (for drained and undrained vascular
pores, respectively), while the corresponding vascular pore
pressure for undrained vascular pores amounts to 61.12 kPa,
see Fig. 6. The differences between the extreme cases of
purely uniaxial and fully hydrostatic loading applied on the
macroscopic scale, in terms of their effect on the hydrosta-
tic pressure buildup in the lacunar space, are not more than

Fig. 6 Lacunar and vascular pore pressures building up in correspon-
dence to physiological macroscopic (uniaxial and hydrostatic) strains;
strain magnitudes are chosen according the requirement of strain energy
density equivalence

some 20 %—hence, the local hydrostatic pressure is fairly
independent from the hydrostatic or non-hydrostatic nature
of the macroscopic loading.
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Conclusively, under both drained and undrained con-
ditions in the vascular pores, the osteocytes experience,
irrespective of the uniaxial or hydrostatic nature of the macro-
scopic strain applied at physiologically relevant magnitudes
and frequencies, hydrostatic pressures of a magnitude which
has been shown to be very effective in stimulating various
biological cells, including osteocytes (compare Table 2), see
also Klein-Nulend et al. (2012). Moreover, once the vascu-
lar pores become undrained, they become pressurized at the
same level as the one experienced by the lacunar pores, i.e.
the one triggering cellular activity.

3.2 Development of lacunar pore pressure due to bone
aging

The presented model can also be utilized to study the effect of
degenerative diseases, such as osteoporosis, on the mechan-
ical stimulation of osteocytes. In this context, the lacunar
pores get increasingly mineralized over time, thus the lacu-
nar porosity decreases. Assuming that the number of lacunar
pores reaches a maximum at an age of 18 years, with a vol-
ume fraction of f̄ initial

lac = 0.1, the histomorphometric study
implemented by Busse et al. (2010) suggests a lacunar pore
volume fraction rate of d f̄lac/dt ≈ −5 × 10−4 y−1. The vas-
cular porosity, in turn, increases significantly with increasing
age. This increase was quantified by Cooper et al. (2007),
by means of a comprehensive analysis of microcomputed
tomography images gained from the femoral midshafts of
subjects aged between 18 and 92 years. Cooper et al. (2007)
show that the inverse of the cortical vascular porosity may
decrease linearly, with d[( fvas)

−1]/dt ≈ −0.42 years−1,
thus the corresponding porosity increase follows an expo-
nential trend. These porosity evolutions were entered into
our poromicromechanical model, in order to elucidate the
corresponding lacunar pore pressure changes. For the loading
boundary condition, we consider a body weight of 75 kg, and
an area of the cortex in the adult femoral midshaft of 60 mm2

(Gosman et al. 2013). For getting an estimate for the stresses
possibly arising in the cortex, we furthermore assume a mod-
erate loading, amounting to σmacro,33 ≈ −500 kPa (when
taking aforementioned numbers as reference).

Our model suggests that the lacunar pressure decreases
over time, when neglecting the effect of increasing vascu-
lar porosity, see Fig. 7a. This would mean that additionally
to a decreasing number of osteocytes which could sense
the mechanical loading and changes thereof, the osteocytes
would also sense less of the applied mechanical loading.
While such trend is observed irrespective of whether the vas-
cular pores are drained or undrained, in absolute numbers
drained vascular pores induce slightly higher lacunar pore
pressures. However, when neglecting the decreasing lacunar

(a)

(b)

(c)

Fig. 7 Lacunar pore pressure evolution during bone aging: a the effect
of decreasing lacunar porosity, b the effect of increasing vascular poros-
ity, and c combination of a and b; all computations are performed for
undrained and drained vascular pores
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porosity and considering only the vascular porosity increase,
we observe a significant increase in the arriving stress stimu-
lus over time for a constant mechanical loading, see Fig. 7b.
Thus, the osteocytes would be confronted with higher pore
pressures that they transduce into corresponding biochemical
processes. Again, the lacunar pore pressure for drained vas-
cular pores would be higher than the pressure for undrained
vascular pores. When combining both effects, see Fig. 7c, we
observe a long-term increase in the lacunar pore pressures,
whereas up to an age of ≈ 50 years the until then slightly
dominating effect of lacunar porosity decrease leads to an
actually reduced pore pressure. However, this effect is of
minor magnitude, and hardly visible in Fig. 7c.

We note that these results do not contradict the widespread
notion of “old” bone being less responsive to changes of the
mechanical loading than ”young” bone (Duncan and Turner
1995; Turner et al. 1995). Figure 7 merely suggests that the
pore pressure to which osteocytes are subjected increases
with increasing age. The net response of the bone metabolism
to changes of the mechanical loading, however, is not only
governed by the magnitude of the mechanical stimulus, but
also by the osteocyte density, viability, and connectivity.
The latter quantities decrease with age, as is implied by the
aging-related decrease of the lacunar porosity (Busse et al.
2010). Furthermore, in the elderly, aging-related behavioral
changes of the involved cells represent an additional key
factor, contributing to the reduced ability of cells to appro-
priately translate mechanical stimuli into corresponding bone
remodeling responses, see e.g., Klein-Nulend et al. (2002),
Pearson and Lieberman (2004), Leppänen et al. (2008) and
Onal et al. (2013).

4 Discussion

Motivated by the work of Gardinier et al. (2010), which
strongly suggested the occurrence of poromechanically
undrained lacunar pores during physiological loading cycles,
as explained in more detail in Sect. 1, we here used a well-
validated poromicromechanical model to predict undrained
lacunar pore pressures under physiological loading condi-
tions, and the obtained pressures beautifully match those
which have been experimentally shown to stimulate a variety
of cells, including bone cells (see Table 2). In this context,
it is most important to clearly note that such hydrostatic
pressures at the lacunar pore level are triggered by strongly
non-hydrostatic macroscopic stress states acting on a piece
of cortical or trabecular bone.

4.1 Poromicromechanical modeling of bone: current
limitations and potential extensions

Our current analysis aims at a reasonable and reliable esti-
mation of the lacunar hydrostatic pressure, based on classical

poroelasticity theory, and taking into account that bone is a
hierarchically organized, multiporous material. Employing
the concept of continuum micromechanics, the composition
and morphology of (cortical or trabecular) bone is considered
in terms of poromechanically governing microstructural fea-
tures, such as pore shapes and porosities, as well as elastic
stiffnesses of the solid phases. This way, it was shown that
macroscopic loading under normal physiological conditions
leads to the buildup of hydrostatic pressures in undrained
lacunar pore spaces. These pressures are high enough for
effectively stimulating the osteocytes residing in the lacunar
pores (see the previous section). However, the present con-
tribution leaves aside a Darcy-type transport model, which,
in combination with the poromechanics model presented in
this paper, would also allow for simulation of load-induced
fluid transport and consolidation processes. Such transport
models and estimation of respective permeabilities have been
intensively discussed for the lacunar-canalicular fluid flow
problem, see, e.g., Weinbaum et al. (1994), Cowin et al.
(2009) and Nguyen et al. (2010).

A straightforward extension of our model, then allowing
for fluid flow computations, would concern the formula-
tion of a Darcy-type relation between the lacunar pressure
gradient defined on the scale of the extravascular RVE,
and a corresponding fluid flow. The underlying permeabil-
ity of the lacunae-canaliculi network could be chosen based
on data available in literature, see, e.g., Cardoso et al.
(2013). Alternatively, a more elegant and elaborate approach
could be taken, involving the explicit introduction of the
canaliculi as cylindrical pores within the extracellular bone
matrix. When considering the flow in the canaliculi, in a
first approximation, as of the Poiseuille type, then this flow
can be straightforwardly upscaled, so as to arrive at the
homogenized permeability of the extralacunar matrix. Cor-
responding mathematical expressions have been recently
derived, but used at another scale, namely at that of tra-
becular bone with “vascular canals” (Abdalrahman et al.
2015). At an even more elaborate stage, transport mod-
eling may be extended to more than one pore space, in
particular to the exchange of fluid between the lacunar-
canalicular and the vascular pore space, as has been proposed
by Cowin et al. (2009). In more detail, the Biot coef-
ficient and moduli reported in this paper could well be
fed by values emanating from the double-porous model
which we have described in the present paper; while the
permeability tensor could be derived from the aforemen-
tioned model of Abdalrahman et al. (2015). In a further
sophistication step of the model, the flow pattern in the
canaliculi could be resolved beyond Poiseuille’s assump-
tion of a parabolic velocity profile, so as to distinguish
between the cell processes located at the center of the cross
sections through the canaliculi, and the surrounding peri-
cellular matrix potentially comprising also some tethering
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elements (You et al. 2004; Thompson et al. 2011; Wang et al.
2014).

4.2 Fluid flow and undrained hydrostatic pressure as
periodically alternating mechanical stimuli of bone
cells; and their relations to transport phenomena

The instances of undrained conditions are typically expected
around maximum loading rates, while states in-between may
well allow for fluid flow within the canaliculi, and these fluid
flow cycles may express themselves in terms of cycles of
so-called streaming potentials; such potential electrokinetic
effects have been proposed by Eriksson (1974), Pienkowski
and Pollack (1983), Pollack et al. (1984) and Weinbaum et al.
(1994). In turn, the aforementioned cyclic electrical poten-
tials do not necessarily imply transport of fluid, as bone is
also known to be piezoelectric (Fukada and Yasuda 1957;
Bassett 1968; Marino and Becker 1970; Marino et al. 1971;
Reinish and Nowick 1975; Zhang et al. 2012)—and distinc-
tion between piezoelectric and electrokinetic effects turns out
to be difficult, not to say impossible (Ahn and Grodzinsky
2009). Coincidently, piezoelectricity is sometimes regarded
as important factor for biological responses (Ferreira et al.
2009; Fernández et al. 2012).

Other experiments which have been employed for arguing
in favor of significant canalicular fluid flow, concern tracer
molecules which were injected into bone specimens. Then,
histological studies were carried out in bone cross sections
with and without additional mechanical loading applied,
e.g., through four point-bending protocols (Knothe Tate
et al. 2000). It turned out that mechanical loading enhanced
the tracer transport, up to 30 % when estimated from a
threshold-based voxel analysis of photomicrographs—see
Knothe Tate and Knothe (2000) for details, especially Table
2 of this reference—and by not more than 5 % when quanti-
fied through a confocal microscopy-based study—see Figure
4 of Knothe Tate and Knothe (2000).

The popular explanation for transport of tracer mole-
cules, which has been advocated more and more explicitly
over time (Seliger 1970; Knothe Tate and Knothe 2000;
Knothe Tate et al. 2000; Wang et al. 2005; Zhou et al.
2008; Kwon and Frangos 2010; Price et al. 2011; Kwon
et al. 2012), is that without mechanical loading, only dif-
fusive transport is taking place, while mechanical loading
might induce an additional convective transport portion, thus
enhancing the overall transport of tracer through the inves-
tigated bone tissue. In order to further discuss this popular
explanation, it is quite instructive to more closely examine
the load cases which were actually applied to the system stud-
ied by Knothe Tate and Knothe (2000): Their strain gauge
recordings show that loading pulses lasting around 2 s are
intermitted by 13-s-long quiescent periods where no (macro-
scopic) strain was measured at all. Since absence of such

Table 3 Distribution of characteristic loading times related to the ex
vivo compression tests on the forelimb of the Swiss alpine sheep, in
particular on the compact part of the metacarpus therein, conducted by
Knothe Tate and Knothe (2000); I: Tload < 0.1 s, II: 0.1 s ≤ Tload < 1 s,
III: 1 s ≤ Tload < 10 s, and IV: 10 s ≤ Tload

Load cycle I (%) II (%) III (%) IV (%)

1 8 65 27 0

2 11 79 10 0

3 13 84 3 0

4 13 87 0 0

5 12 70 18 0

6 10 63 27 0

7 8 78 14 0

strain provokes neither undrained hydrostatic pressure nor
pore fluid flow, we restrict our analysis of the applied load
cycles to the 2 s-intervals where actual strains were recorded.
The results are summarized in Table 3: the most frequently
occurring characteristic times range from 0.1 to 1 s, longer
times cover only a few percent of the entity of such times,
and not a single one of the characteristic times exceeds 10 s.
This, together with the arguments given in the Introduction
(see Sect. 1), qualifies fluid flow as a kind of secondary phe-
nomenon taking place in the study of Knothe Tate and Knothe
(2000), provoking the obvious question what drives then the
enhanced tracer transport under oscillatory loading.

Seeking such an explanation, we recall some fundamen-
tal principles of physical chemistry: When polarized fluids,
such as water, are adjacent to charged surfaces, such as the
experimentally observed mineral-rich surfaces of extracellu-
lar bone tissue (Lees et al. 1984; Lees and Prostak 1988; Lees
et al. 1994; Sasaki et al. 2002), the water molecules become
ordered, leading to a substance called “layered” or “struc-
tured” water (Pollack 2001, 2013), which exhibits increased
viscosity and decreased diffusivity (Ichikawa et al. 2002;
Pivonka et al. 2004), when compared to fully disordered
“bulk water”. The zone of layered water, which is also called
exclusion zone (Pollack 2013), may reach thicknesses of up
to several milimeters (Florea et al. 2014), which recently
allowed for explaining the permeability properties of tra-
becular bone (Abdalrahman et al. 2015). Remarkably, for
a variety of biological material systems (Green and Otori
1970; Wilson and Dietschy 1974; Barry and Diamond 1984;
Pollack and Clegg 2008) it has been shown that stirring of
layered fluids led to a diffusivity re-gain. Thus, mechanical
excitation of the bone fluid in form of oscillating hydro-
static pressures resulting from macroscopic loading might
result in partial “destruction” of the water layering effect,
and therefore explain the transient acceleration of tracer
transport under oscillating mechanical loading. Once the dif-
fusion process is completed, however, no difference between
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loaded and unloaded configurations would be expected, as
was indeed found experimentally by Knothe Tate and Knothe
(2000).

4.3 Summary and outlook

Conclusively, no major experimental findings necessarily
contradict the potential occurrence of undrained lacunar pore
pressure occurring during physiological load cycles. Then,
given the novel poromicromechanical results presented in
the present paper together with all the experimental evidence
condensed into Table 2, this pressure appears as a prime can-
didate for being used as a mechanical stimulus in the context
of multiscale mechanobiological approaches linking poromi-
cromechanics and mathematical systems biology (Scheiner
et al. 2013, 2014).
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Appendix: Definition of poroelastic quantities

Upscaling (drained) stiffness, Biot tensors, and Biot
moduli

We start with considering the constituents of the extravas-
cular RVE (see Fig. 3), i.e., the extralacunar matrix and the
lacunar pores, as poroelastic materials, with constitutive laws
reading as

σ i = Ci : εi − bi pi , i ∈ {exlac, lac} , (23)

where σ i is the stress tensor of constituent i , εi is the strain
tensor of constituent i , Ci is the drained stiffness tensor of
constituent i , bi is the Biot tensor of constituent i , and pi is the
pressure to which constituent i is exposed. More specifically,
the extralacunar bone matrix is considered as purely solid
phase, so that

bexlac = 0 ⇒ σ exlac = Cexlac : εexlac , (24)

while the lacunar pores do not exhibit any solid stiffness, and
are just subjected to a pore pressure, so that

blac = 1 ⇒ σ lac = −1plac (25)

where 1 denotes the second-order unit tensor. The corre-
sponding “homogenized” material behavior of the extravas-
cular bone material follows the standard relation of contin-
uum micromechanics (Zaoui 2002; Dormieux et al. 2006;
Hellmich et al. 2009):

σ exvas = Cexvas : εexvas − blac
exvas plac , (26)

with

Cexvas = f̄exlacCexlac : Aexlac (27)

and

blac
exvas = f̄lac1 : Alac , (28)

whereby f̄lac and f̄exlac are the volume fractions of the
lacunar pore space and the extralacunar space, quantified
within the RVE of extravascular bone matrix, compare
Fig. 3. Furthermore, Aexlac and Alac are the concentration
(or “downscaling”) tensors relating extravascular strains to
those in the extralacunar and (drained) lacunar spaces,

εi = Ai : εexvas , i ∈ {lac, exlac} . (29)

These concentration tensors quantify the micromechanical
interactions between a transversely isotropic extralacunar
matrix of stiffness Cexlac, and spherical (drained) lacu-
nar pores. They are derived from combination of matrix-
influence problems of the Eshelby-Laws type (Eshelby 1957;
Laws 1977), with the (micro) strain average rule valid for the
extravascular RVE. The corresponding dependence of Aexlac

and Alac on f̄lac and Cexlac is given in great mathematical
detail in Morin and Hellmich (2014), where the extralacu-
nar space is called “extracellular space”. The stiffness of
the latter space is a function of its mass density only, due
to the existence of experimentally corroborated “universal”
bone composition rules between organic, mineral, and water
contents (Vuong and Hellmich 2011), as well as of fibril-
lar organization rules depending on the mineralization and
hydration degrees only (Hellmich and Ulm 2003; Morin and
Hellmich 2013; Morin et al. 2013). These rules hold irre-
spective of species, age, or anatomical location, as long as
the organism is not drug-treated. Accordingly, an extracel-
lular mass density of 1.93 g/cm3, typical for human femur
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(Lees et al. 1983), results, according to the very compre-
hensively experimentally validated microelasticity theory as
summarized in (Morin and Hellmich 2014), in an extralacu-
nar stiffness of

Cexlac =

⎛
⎜⎜⎜⎜⎜⎜⎝

22.88 8.93 10.14 0 0 0
8.93 22.88 10.14 0 0 0

10.14 10.14 29.60 0 0 0
0 0 0 14.72 0 0
0 0 0 0 14.72 0
0 0 0 0 0 13.96

⎞
⎟⎟⎟⎟⎟⎟⎠

GPa .

(30)

We take this stiffness tensor as the basis for all computations
given in the present paper—noting that it is conveniently
close to the famous direct measurements on human femur
performed by Ashman et al. (1984).

One hierarchical level further up, i.e., within an RVE
of macroscopic bone material (see Fig. 3), the extravascu-
lar bone matrix plays the role of a (poroelastic) phase with
state equation (26), the other phase being the vascular pores,
characterized by

bvas = 1 ⇒ σ vas = −1pvas . (31)

Applying homogenization rules analogous to those having
led to Eqs. (26)–(28), we upscale Eqs. (26) and (31) one level
up, so as to arrive at Eq. (2), whereby

blac
macro = f̄exvasblac

exvas : Aexvas , (32)

and

bvas
macro = f̄vas1 : Avas , (33)

with Aexvas and Avas as the concentration tensors downscal-
ing strains from the macroscopic to the extravascular and
(drained) vascular spaces,

εi = Ai : E , i ∈ {vas, exvas} . (34)

Mathematical details on these concentration tensors can
again be found in (Morin and Hellmich 2014).

The Biot moduli occurring in the state equations for the
porosity changes, Eqs. (3) and (4), can be derived from the
superposition of pore pressure and (macro) strain-related
load cases in conjunction with the stress average rule
(Dormieux et al. 2006; Hellmich et al. 2009). In case of the
extravascular space, we arrive at

1

Nexvas
= −blac : (Cexcell)

−1 :
(
f̄lacblac − blac

exvas

)
, (35)

which then enters the following expressions for the Biot mod-
uli on the macroscopic scale

1

N lac,lac
macro

= − blac
exvas : (Cexvas)

−1

:
(
fexvasblac

exvas − blac
macro

)
+ fexvas

Nexvas
, (36)

1

N vas,vas
macro

= − bvas
exvas : (Cexvas)

−1 : (
fvasbvas − bvas

macro

)
,

(37)

1

N lac,vas
macro

= − blac
exvas : (Cexvas)

−1 : (
fvasbvas − bvas

macro

)
.

(38)

Elastic energy stored in the macroscopic RVE of bone

In the case of undrained lacunar and drained vascular pores,
the elastic energy stored in a macroscopic RVE of bone
amounts to

Ψ lac-u = 1

2
E : Clac-u

macro : E , (39)

with Clac-u
macro following Eq. (9). For uniaxial strain E =

Eiiei ⊗ ei , i = 1, 2, 3, Eq. (39) reduces to

Ψ lac-u = 1

2
C lac-u

macro,i i i i (Eii )
2 . (40)

For hydrostatic strain, E = Ehyd
∑3

i=1 ei ⊗ ei , Eq. (39)
reduces to

Ψ lac-u = 1

2
(Ehyd)

2
3∑

i=1

3∑
j=1

C lac-u
macro,i i j j . (41)

In the case of both lacunar and vascular pores being
undrained, the elastic energy stored in a macroscopic RVE
of bone amounts to

Ψ lac,vas-u = 1

2
E : Clac,vas-u

macro : E , (42)

with C
lac,vas-u
macro following Eq. (17). For uniaxial strain E =

Eiiei ⊗ ei , i = 1, 2, 3, Eq. (42) reduces to

Ψ lac,vas-u = 1

2
C lac,vas-u

macro,i i i i (Eii )
2 . (43)

For hydrostatic strain, E = Ehyd
∑3

i=1 ei ⊗ ei , Eq. (42)
reduces to

Ψ lac,vas-u = 1

2
(Ehyd)

2
3∑

i=1

3∑
j=1

C lac,vas-u
macro,i i j j . (44)
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