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Abstract Studies suggest that fluid motion in the extracel-
lular space may be involved in the cellular mechanosensitiv-
ity at play in the bone tissue adaptation process. Previously,
the authors developed a mesoscale predictive structural
model of the femur using truss elements to represent tra-
becular bone, relying on a phenomenological strain-based
bone adaptation algorithm. In order to introduce a response
to bending and shear, the authors considered the use of beam
elements, requiring a new formulation of the bone adapta-
tion drivers. The primary goal of the study presented here
was to isolate phenomenological drivers based on the results
of a mechanistic approach to be used with a beam element
representation of trabecular bone in mesoscale structural
modelling. A single-beam model and a microscale poroelas-
ticmodel of a single trabeculawere developed.Amechanistic
iterative adaptation algorithm was implemented based on
fluid motion velocity through the bone matrix pores to pre-
dict the remodelled geometries of the poroelastic trabecula
under 42 different loading scenarios. Regression analyses
were used to correlate the changes in poroelastic trabec-
ula thickness and orientation to the initial strain outputs
of the beam model. Linear (R2 > 0.998) and third-order
polynomial (R2 > 0.98) relationships were found between
change in cross section and axial strain at the central axis,
and between beam reorientation and ratio of bending strain
to axial strain, respectively. Implementing these relation-

B Claire C. Villette
claire.villette11@imperial.ac.uk

1 Structural Biomechanics, Department of Civil and
Environment Engineering, Imperial College London, South
Kensington Campus, London SW7 2AZ, UK

2 The Royal British Legion Centre for Blast Injury Studies at
Imperial College London, South Kensington Campus,
London SW7 2AZ, UK

ships into the phenomenological predictive algorithm for the
mesoscale structural femur has the potential to produce a
model combining biofidelic structure and mechanical behav-
iour with computational efficiency.
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List of symbols

ϕ Inclination of the beam with respect to the ver-
tical axis

�ϕ Change in beam inclination
A Beam cross-sectional area
RA Ratio of the beam initial and adapted cross-

sectional areas
εb Relative difference in normal strain between

diametrically opposite points on the outer sur-
face of the beam cross section. Also referred to
as ‘bending strain’ in this study.

εa Normal strain at the beam central axis
Kε Ratio of εb over εa
f Function defining the relationship between �ϕ

and Kε

g Function defining the relationship between RA

and εa

1 Introduction

It has long been observed that bone adapts its shape and
structure to its mechanical environment (Wolff 1869; von
Meyer 1867). The process involved in this functional adap-
tation is called bone remodelling and has been extensively
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studied (Frost 1987; Pioletti 2013). Bone tissue adaptation
is a multi-aspect physiological process driven by interre-
lated mechanical and biological stimuli (Zadpoor 2013),
which requires the combined activity of several populations
of bone cells. Amongst them, the osteoclasts degrade bone
material and the osteoblasts synthesise it (Rucci 2008). It is
thought that osteoblast activity is triggered by signals sent
by a third population of bone cells, the osteocytes (Burger
and Klein-Nulend 1999; Temiyasathit and Jacobs 2010). The
mechanism involved in the mechanosensitivity of osteocytes
remains to be clarified (Rucci 2008).

Strains that are osteogenic at the tissue level (Rubin and
Lanyon 1985) are below those which produce osteoblas-
tic response to substrate deformation (You et al. 2000;
Pereira and Shefelbine 2014), which tends to indicate that
deformation of the solid matrix is not the sole trigger for
mechanotransduction of the osteocytes attached to it. Stud-
ies suggest that fluid motion in the extracellular space of the
lacunar-canalicular porosities where the osteocytes lay may
be involved in cellularmechanosensitivity (Rubin et al. 2001;
Qin et al. 2003; Cowin et al. 1995; Temiyasathit and Jacobs
2010), potentially via the resulting shear stress on the cell
walls due to fluid motion (Adachi et al. 2010). A potential
candidate as an extracellular sensor of mechanical loading is
the primary cilium, amicrotubule that protrudes from the cell
membrane (Whitfield 2003; Temiyasathit and Jacobs 2010).
In silico studies and simulations have implemented these the-
ories in mechanistic models with probant results (Riddle and
Donahue 2009; Adachi et al. 2010; Kameo and Adachi 2014;
Pereira and Shefelbine 2014).

Extensive work has also been conducted using phenom-
enological approaches, based on the empirical relationships
between mechanical stimulus and bone adaptation. Such
approaches are limited in scale, due to the homogenisation
of properties they assume, and in scope. Specifically, they
do not allow direct investigation of the biological processes
potentially involved in conditions affecting bone morphol-
ogy such as osteoarthritis and osteoporosis. However, they
present tremendous advantages in terms of model simplicity
and computational efficiency. They have been used repeat-
edly in areas of biomechanics that focus on bone’s reaction to
altered loading conditions such as fracture initiation (Hambli
2011), healing (Shefelbine et al. 2005) and the behaviour of
bone-implant interfaces (Huiskes et al. 1987; Scannell and
Prendergast 2009).Recent studies have focused onpredicting
bone structure entirely through bone adaptation considera-
tions, based only on general information about the bone such
as its surface geometry and its overall porosity value com-
bined with loading data (Tsubota et al. 2009; Geraldes and
Phillips 2010, 2014; Geraldes et al. 2015). While the results
presented in these studies rely on continuum modelling,
recent attempts have also combined structuralmodellingwith
bone adaptation predictions (Phillips et al. 2015; Phillips

2012;Marzban et al. 2013).Marzban et al. iteratively adapted
the cellular structure of a 2D model of a proximal femur by
adding or removing load-bearing elements in structural cells
in order to reach a target stress. Results displayed some of the
characteristic high-density trajectories observable in DEXA
scans (Marzban et al. 2013).

In a previous study, the authors developed a mesoscale
structural finite-element model of a femur relying on a
phenomenological strain-based bone adaptation algorithm
(Phillips et al. 2015). The study hypothesised that the struc-
ture of bones is optimised, in termsof amount anddistribution
of bone material, to withstand daily activities such as walk-
ing or going up and down the stairs. In the study, the surface
geometry of a Sawbones surrogate was obtained from a CT
scan, and the enclosed volume was meshed with tetrahedral
elements of average edge length 4.5mm. The surface faces of
the elements were used to define homogeneously thin shell
elements representing cortical bone. Each volume node was
connected to its 16 closest neighbours to build a web of
truss elements with homogeneous circular cross section to
represent trabecular bone. This initial inner structure was
considered randomised, as the truss distribution, orientation
and cross sections were homogeneous. Loading conditions
corresponding to joint contact forces, muscles forces, and
inertia loading during daily activities were estimated using
musculoskeletal simulations of gait cycles recorded on a vol-
unteer (Modenese et al. 2011), and applied to the femur. The
maximum absolute principal strain in the plane of the shells
and the maximum absolute axial strain in the trusses over all
the load cases were extracted and compared to a target range
as proposed in Frost’s ‘Mechanostat’ (1987). The cross sec-
tion of each element outside the target rangewas then linearly
adaptedwith respect to the ratio of observed strain over target
strain. This load application and subsequent adaptation were
conducted iteratively until 99% of the elements lay within
the target range. The predicted structure showed a strong cor-
relationwith anatomical observations. Cortical thickness and
trabecular density distribution were consistent with medical
imaging, and the main proximal trabecular groups (primary
compressive, primary tensile, secondary compressive, sec-
ondary tensile and greater trochanter tensile) described in
the literature (Wolff 1869; von Meyer 1867) were repro-
duced. Computational efficiency was considered good, with
a simple quasi-static loading scenario converging in under
3min on a standard workstation. Such a predictive modelling
approach does not require extensive clinical data, such as
high-resolution CT scans which cannot be obtained in vivo.
In addition, it has the potential to predict possible changes
in bone morphology if a patient were to drastically change
their daily loading activities or develop a condition which
modifies their bone adaptation physiology. This modelling
approach however presents limitations arising from the sim-
plifications introduced in the truss formulation, where only
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axial strain is considered. In order to introduce a response
to bending and shear, required for a complete description of
the structural behaviour of bone, the authors considered the
use of beam elements. This requires a new formulation of
the bone adaptation drivers. In addition, it has been observed
that bending-related loading scenarios lead to a reorientation
of the structure, aligning to the trajectory of the load (Adachi
et al. 2001, 2010; Kameo and Adachi 2014; Tsubota et al.
2009). The nodal repositioning involved is not supported in
the authors’ current phenomelogical structural model.

The primary purpose of the study presented here was
to isolate phenomenological drivers based on the results
of a mechanistic approach, for future implementation in a
strain-based bone adaptation algorithm to be used with a
beam formulation of the trabecular elements in mesoscale
structural modelling (Phillips et al. 2015). Following the
concept developed by Adachi et al. (2010), the mechanis-
tic approach should constitute a ‘framework of trabecular
bone remodelling that interconnects the microscopic cellular
activities to the macroscopic morphological changes through
the mechanical hierarchy’. These microscale results would
then be translated to the mesoscale model while maintain-
ing its computational efficiency. With that aim, a continuum
poroelasticmodel of a single trabeculawas implemented util-
ising the fluid motion hypothesis (Adachi et al. 2010; Kameo
and Adachi 2014; Pereira and Shefelbine 2014) for the bone
remodelling mechanosensitivity pathway. This model was
used to inform the phenomenological algorithm based on the
assumption that the static structural model is able to capture
the loading conditions corresponding to the initial state of
the transient poroelastic simulation.

2 Methods

2.1 Overview

The overall framework of the study is represented in the
flowchart displayed in Fig. 1. The aim of this study was to
derive the rules of a structural strain-basedphenomenological
adaptation algorithm. Hence, two distinct 2D finite-element
models of a single trabecula were developed. In one model,
the trabecula was represented by a single-beam element. In
the other model, the trabecula was represented by a mesh
of poroelastic elements. Both models were designed to rep-
resent equivalent set-ups and were subjected to the same
selection of loading scenarios. An adaptation algorithm was
implemented to iteratively remodel the poroelastic trabec-
ula under loading, based on fluid motion velocity through
the bone matrix pores. Even though it does not capture
cellular mechanisms or biochemical responses, this algo-
rithm will be referred to as ‘mechanistic’ to highlight the
deeper level in the mechanotransduction hierarchy included

Fig. 1 Flow chart of the study. In black are the simulation steps per-
formed in this study. In dashed red are the simulation steps which will
be made possible by the results of this study. In green are the analy-
sis steps performed in this study, which will inform the red simulation
steps, based on the results of the black simulations steps

in the modelling compared to the structural phenomenologi-
cal adaptation algorithm. After convergence of this iterative
process, the definition parameters of a reorientated beam
equivalent to the continuum remodelled poroelastic trabecula
were estimated for each load case. A regression analysis was
conducted to derive relationships between the beam initial
strains and the definition parameters of its adapted configu-
ration.

2.2 Initial models

2.2.1 Beam model

A single three-nodded quadratic Timoshenko 2D beam
element was used [Abaqus 6.12 element B22 (Dassault Sys-
temes 2013)]. It was assigned a circular cross section of
radius 0.1mm, a length of 1mm and linear elastic isotropic
properties consistent with the literature (E = 18kN/mm2

and ν = 0.3, (Phillips 2012; Turner et al. 1999)). It was tied
at both extremities to 0.5mm thick, 1mm deep and 1.4mm
wide plates with bone material properties, meshed with four-
nodded linear plane stress continuum elements (CPS4R).
Figure 2a shows the initial set-up with the boundary con-
ditions and the points of load application. The intermediary
node of the beam element was taken as the middle point
between the top and the bottom nodes. The continuum ele-
ments constituting the plates do not have a rotational degree
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(a) (b)

Fig. 2 Simulation set-up. a Beam model. b Poroelastic model

of freedom. Hence, the tied conditions applied did not pre-
vent rotation of the beam with respect to the plate. This
rotation was naturally constrained in the poroelastic model
presented in Sect. 2.2.2 because the tied conditions were
defined between edges, hence involving several pairs of tied
nodes in parallel. To model this rotational constraint in the
case of a beam, a rotational spring was added between the
top node of the beam and the ground and its bottom node and
the ground. The order of magnitude of the rotational spring
stiffness was estimated to reproduce the stiffness provided
by the bone plates in the poroelastic model. It was computed
using the stiffness matrix coefficient for a beam element with
the dimensions of the bottom plate.

k = 4E I

t

with I the second moment of area of the plate cross section,
t = 0.5mm the plate thickness, d = 1mm the plate depth
perpendicular to the model plane and w = 1.4mm the plate
width

I = dw3

12

This yielded a rotational spring stiffness k = 30kNmm.

2.2.2 Poroelastic model

Bone can be considered as a biphasic or poroelastic mater-
ial with fluid present within the porous solid matrix (Cowin
1999). Poroelastic finite-element formulations are commonly
used to predict pore pressure and fluid velocities in the
lacunar-canalicular porosities (Pereira and Shefelbine 2014;
Kameo and Adachi 2013, 2014; Adachi et al. 2010; Cowin

et al. 1995). For a complete description of the poroelastic the-
ory, the reader may refer to Biot (1941) and Detournay and
Cheng (1993). Briefly, the poroelasticity theory describes the
condition of the medium at a scale larger than the size of the
pores so that it may be treated as homogeneous, and at the
same time smaller than the region under consideration so that
one element may be considered as infinitesimal in the numer-
ical treatment. The average stress conditions in the medium
must then satisfy the equilibrium equations of a stress field.
These stresses can be interpreted as composed of two parts:
one caused by the hydrostatic pressure of the fluid filling
the pores, and the other caused by the average stress in the
solid phase. An additional variable ζ accounting for the vari-
ation in fluid content must be considered in order to describe
completely the macroscopic condition of the medium, with
pore pressure p as its counterpart. If the changes in the
medium are assumed to occur by reversible processes, the
macroscopic condition of the medium described by the strain
variables εi j and the variation in fluid content must be a
definite function of the stresses σi j and the fluid pressure.
For small quantities, these relationships can be considered
as linear. If the medium is considered isotropic, the consti-
tutive equations for the medium can then be expressed as
follows:

σi j = 2Gεi j +
(
2Gν

1
− 2ν

)
εkkδi j − αMζ δi j

p = M(ζ − αεkk)

where i and j are tensor components, σi j the stress tensor, εi j
the strain tensor, ν the drained Poisson’s ratio, G the drained
shear modulus related to Young’s modulus E and ν, α the
Biot effective stress coefficient and M a coefficient such as:
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α = 1 − K

Ks

M = φ

K f
+ α − φ

Ks

where φ is the porosity and K , Ks and K f are, respectively,
the drained bulk modulus, the solid matrix bulk modulus and
the bulk modulus of the fluid phase. The field equations to
be solved in the poroelastic problem can then be obtained
from these constitutive equations using equilibrium consid-
erations, compatibility equations for strain, and a continuity
equation for the fluid phase which accounts for the mass con-
servation of a compressible fluid. This last equation relies on
a transport law, such as Darcy’s law:

q = − κ

μ
∇p

where q is the fluid flux, κ the intrinsic permeability, μ the
interstitial fluid viscosity and ∇p the gradient of pore pres-
sure.

The single trabecula was modelled as a rectangle (cylin-
der projected on the 2D plane) with length 1mm and width
0.2mm. It was meshed using four-nodded linear plane strain
poroelastic elements with characteristic element edge length
of 0.015mm (Abaqus 6.12 element CPE4P (Dassault Sys-
temes 2013)). This mesh refinement was validated based on a
mesh convergence study. It was tied at both extremities to the
same plates as described for the beam model. The elements
were assigned fluid-saturated isotropic material properties.
The solid bone matrix was assigned the same elastic prop-
erties as the beam model. The solid and fluid phases were
assumed compressible with respective compressibilities of
Ks=20kN/mm2 and K f =2.3kN/mm2, and a pore volume
fraction φ of 5% (Pereira and Shefelbine 2014; Adachi et al.
2010;Kameo andAdachi 2014; Cowin et al. 1995). Viscosity
μ and specific weight were adapted from Pereira and Shefel-
bine (2014) and Adachi et al. (2010) and set to 10−9 Ns/mm2

and 9.8×10−6 N/mm3 respectively, similar to the properties
of salt water. Permeability was taken as 10−20 m2 (Pereira
and Shefelbine 2014; Adachi et al. 2010; Beno et al. 2006).

Free-flow boundary conditions were applied to the two
lateral edges of the trabecula by setting their pore pressure
to zero, while fluid flow was prevented at the junction with
the bone plates. Figure 2b shows this initial set-up.

2.3 Parameters of interest

For the beam element used, the normal strain in the direc-
tion of the beam is computed for a series of points. For each
of the two integration points of the 2D beam element, strain
values are computed at the central axis as well as a selec-
tion of section points through the cross section. In this study,
the beam element is taken to have a constant circular cross

Fig. 3 Schematic of the beam element parameters definition

section, which means that it can be completely defined by
the spacial coordinates of three nodes and its cross-sectional
area. As the intermediate node of the beam is taken as the
middle point between the start and end nodes, the number
of definition parameters is reduced to three: position of the
middle node XN2, inclination of the beam with respect to the
vertical axis x2, ϕ, and cross-sectional area A = πr2. The
parameters of interest are displayed on Fig. 3. Previous in
silico work on trabecular remodelling has shown adaptation
(thickening/thinning) in response to varying load amplitude
and reorientation of the bone elements in the direction of the
load (Adachi et al. 2001, 2010; Tsubota et al. 2009; Kameo
and Adachi 2014). This effectively encourages longitudinal
tension or compression deformation modes at the expense
of bending. A good marker of bending in a beam element is
the relative difference εb in normal strain between opposite
points on the outer surface of the cross section. Similarly,
the normal strain at the central axis εa provides information
on the axial state (compression/tension) of the element. The
ratio of the two Kε provides an indication of the preponder-
ance of bending moment over axial force. The aim of this
study was thus to isolate two relationships between beam
strain outputs in the initial beam configuration (subscript ‘i’)
and the parameters required to define the final adapted beam
configuration ( subscript ‘f’) .More specifically, the two rela-
tionships sought would ideally predict the change in beam
inclination �ϕ and the ratio of the beam initial and adapted
cross-sectional areas RA based on the bending strain and
axial strain values obtained from the initial configuration. As
the poroelastic trabecula model is two dimensional, with a
constant depth, the ratio of the three-dimensional beam initial
and adapted cross-sectional areas is equivalent to the ratio of
the two-dimensional poroelastic trabecula initial and adapted
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widths wi and w f . In a first version of the model presented
here, the final position of node N2 XN2 f is equal to the
initial position of node N2, XN2i as the trabecular element
would be expected to change in cross section and orienta-
tion but not in position. The strain outputs were taken at the
second Gauss point. Based on the notation defined in Fig. 3,
the strain and beam definition parameters are thus defined as
follows, where all the strain outputs are extracted from the
initial beam model:

εb = εG2S2 − εG2S1

εa = εG2

Kε = εb

εa

�ϕ = ϕ f − ϕi

RA = w f

wi

The primary aim of this study was thus to isolate two rela-
tionships f and g:

�ϕ = f (Kε) (1)

RA = g(εa) (2)

2.4 Finite-element analyses

2.4.1 Simulation set-ups

The poroelastic simulations were conducted using the tran-
sient soil analysis option in Abaqus (Standard), with a time
step of one second. The loading was applied, in step incre-
ments of 0.1 s, linearly from zero to the amplitude prescribed
in the plan of analysis over half of the time step and then
decreased linearly over the other half. This load rate was
consistent with the literature (Pereira and Shefelbine 2014;
Adachi et al. 2010). The beam model simulations were run
in a static analysis.

For both the beam model and the poroelastic model, the
bottom edge of the bottom plate was fixed. The loading was
evenly applied to the nodes at the top edge of the top plate.
The top plate was constrained to displace only in the direc-
tion of the load, to maintain a constant load direction on the
trabecula and avoid deformation of the plate in ways that
could impact the load profile on the trabecula. A schematic
of both set-ups is displayed in Fig. 2.

2.4.2 Plan of analyses

Five values of load amplitude F were selected in the range
[0.5Ftarget, 2Ftarget]. Thirteen values of load inclination θ

with respect to the vertical direction were selected between 0
and π . It was considered that results for the other half quad-

Table 1 Loading scenarios tested

Angle Ftarget/2 3Ftarget/4 Ftarget 3Ftarget/2 2Ftarget

0 • • •
1π/16 • • •
2π/16 • • •
3π/16 • • •
π/4 • • •
5π/16 • • •
6π/16 • • •
7π/16 • • •
π/2 • • •
9π/16 • • •
10π/16 • • •
3π/4 • • •
14π/16 • • •
π • • •

rant could be inferred by symmetry. The combinations of
parameters tested are listed with a symbol ‘•’ in Table 1.

2.5 Poroelastic pipeline

2.5.1 Mechanistic remodelling algorithm

In this study, the mechanistic remodelling algorithm was
based on the fluid motion theory. Hence, pore fluid veloc-
ity, directly linked to cell membrane shear stress and strain,
was chosen as the driver for bone apposition or resorption.
This driver is consistent with previous in silico work. For
instance, Adachi et al. (2010) used membrane shear stress
and Pereira and Shefelbine (2014) used the integration of
absolute fluid velocity over the time step.

Just as in the previous studies, a target fluid velocity range
was chosen. Its limits can be interpreted as thresholds for cell
mechanosensitivity. They were obtained through a trial-and-
error calibration: A purely compressive force Ftarget = A ×
εtarget was applied to themodel,with εtarget = 1250με the tar-
get strain proposed by Frost (1987) and A the cross-sectional
area of a cylindrical trabecula with radius equal to half the
width of the 2D trabecular model in this study. According
to the ‘Mechanostat’ principle, such a load case should elicit
minimal adaptation. The remodelling algorithmwas runwith
varying fluid velocity targets and target range limits until
‘qualitativelyminimal’ remodelling was obtained. The target
valueswere thus set to Vtarget = 5×10−8 mm/s, Vapposition =
5.2 × 10−8 mm/s and Vresorption = 4.8 × 10−8 mm/s, with
Vapposition and Vresorption the upper and lower limits of the tar-
get range, respectively, outside which bone remodelling will
occur.
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Remodelling happens on the surface of the bone elements
(Rucci 2008). In this study, twelve points were chosen uni-
formly distributed on each of the two lateral sides of the initial
trabecula model to assess the distribution of fluid velocity
(cellular activity), as displayed in Fig. 2b. The median fluid
velocities of all poroelastic elements located in a sphere of
influence around each point were averaged to determine a
characteristic fluid velocity V at that point. The median was
chosen instead of the mean to minimise potential errors aris-
ing from outliers and finite-element edge effects. The radius
of the sphere of influence was taken as a third of the distance
between two characteristic points. An updated horizontal
component of the position Xpn+1 was computed for each
of these points p:

Xpn+1 = Xpn ± min

(
0.005 × V

Vtarget
, 0.05

)
(3)

Where 0.05 corresponds to the maximum allowable dis-
placement in an iteration, in mm, and 0.005 to an arbitrary
displacement increment in mm. The value of ± depended on
which side was considered and whether bone material was
deposited (V ≥ Vapposition) or resorbed (V ≤ Vresorption). The
adapted trabecular geometry was then generated between
two splines passing through the updated position of these
24 points and two straight lines joining the top points of
both splines and the bottom points of both splines. This pla-
nar model was then automatically remeshed to produce the
updatedmodel. This topology adaptationwas conducted iter-
atively for 100 iterations.At that point, no characteristic point
showed a displacement greater than 5% of the trabecula cen-
tral width and the adaptation was considered complete. The
central width was approximated as the difference in horizon-
tal position at the middle characteristic points. The pipeline
was entirely automated, using Python scripts to extract infor-
mation from an Abaqus output database and generate new
Abaqus models, andMATLAB to compute the updated char-
acteristic point positions.

2.5.2 Poroelastic pipeline validation test

The poroelastic remodelling pipelinewas tested on a scenario
adapted from Adachi et al. (2010) for comparison of results:
A 0.2mmwide and 0.92mm long trabecula with the material
properties described above was modelled with an incline of
30◦ with respect to the vertical. Its bottom edge was con-
strained in the vertical direction. For consistency with the
simulation described in Adachi et al. (2010), pore fluid flow
was set free on all edges, including the junctionswith the bone
plates. Its upper edgewas in hard contact with a stiff isotropic
elastic plate (E = 200kN/mm2, ν =0.3) constrained in all
degrees of freedom but the vertical displacement. A pressure

of 0.4N/mm2 was linearly applied to the top edge of the plate
over the 1 s long transient soil analysis step.

2.6 Model correlation

The definition parameters of beams equivalent to the remod-
elled poroelastic trabeculaewere estimated for all the loading
scenarios tested. The position of the start and end nodes were
taken as the middle points between the left and right extrem-
ities of the corresponding edge of the trabecula models. The
inclination ϕ f was taken as the scalar product of the vector
defined by these two nodes and the unit vertical vector. The
initial inclination being zero, the change in beam inclination
�ϕ was taken as the inclination of the adapted beam model
ϕ f .

An apparent trabecular radius was estimated as half of the
mean between the differences in horizontal position of the
characteristic points of both splines. The remodelled radius
was computed as the projection of the apparent radius over
the direction perpendicular to the beam axis defined by the
start and end nodes. The changes in the beam definition para-
meters between initial and equivalent adapted configurations
(�ϕ and RA) were computed and plotted against the strain
outputs from the structural model (Kε and εa) for all corre-
sponding loading scenarios. Relationships between both sets
of parameters were then found by regression and assessed
for goodness of fit.

3 Results

3.1 Validation of the poroelastic model

Figure 4 shows the evolution of the trabecular morphology
during the validation test over 100 iterations of the remod-
elling algorithm. It results in a complete reorientation in the
vertical direction (the direction of the load) as well as a thin-
ning of about 20% of the apparent cross section. This is
consistent with the results presented by Adachi et al. (2010).

3.2 Remodelling of the poroelastic trabeculae

Figures 5, 6 and 7 display the remodelled trabecula geome-
tries for the loading scenarios obtained by combinations of
0.5Ftarget, Ftarget and 2Ftarget with inclination angles of π ,
π/4 and 3π/4, respectively.

Figure 8 displays the remodelled trabecula geometries
for the purely lateral (inclination of π/2) loading scenarios
with amplitudes 0.5Ftarget, Ftarget and 2Ftarget. Trabecular
adaptations for all other angles of load application result in
configurations similar to those displayed in Figs. 5, 6 and 7.
Mean width increases with load amplitude, and the orienta-
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(a) (b) (c)

Fig. 4 Evolution of the trabecula geometry during the validation test. a Initial iteration. b Iteration 40. c Iteration 100 (converged)

(a) (b) (c)

Fig. 5 Adapted shape of trabeculae remodelled under a load application angle of π rad at three different load amplitudes a 0.5Ftarget . b Ftarget . c
2Ftarget

(a) (b) (c)

Fig. 6 Adapted shape of trabeculae remodelled under a load application angle of π/4 rad at three different load amplitudes a 0.5Ftarget . b Ftarget .
c 2Ftarget
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(a) (b) (c)

Fig. 7 Adapted shape of trabeculae remodelled under a load application angle of 3π/4 rad at three different load amplitudes a 0.5Ftarget . b Ftarget .
c 2Ftarget

(a) (b) (c)

Fig. 8 Adapted shape of trabeculae remodelled under a load application angle of π/2 at three different amplitudes a 0.5Ftarget . b Ftarget . c 2Ftarget

tion of the trabecula axis varies consistentlywith the direction
of the load.

3.3 Model correlation

Figures 9 and 10 show the changes in the beam definition
parameters (�ϕ, and RA) plotted against the strain outputs
Kε and εa for the loading scenarios with θ in the range
[0, 6π/16] ∪ [10π/16, π ].

The results shown in Fig. 9 present a family of curves
relating RA to εa . For all angles of application of the load θ ,
RA increases linearly with εa (R2 > 0.998). The slope of the
linear fit increases with θ . Further description of this trend is
provided in the Discussion and in Fig. 11.

�ϕ increases with Kε. For θ ∈ [0, 5π/16]∪[11π/16, π ],
the relationship is quasi-linear (R2 > 0.96). However, the
rate of change in �ϕ decreases significantly with θ close to
the horizontal. A third-order polynomial provided a good fit
for the relationship over the entire design space (R2 > 0.98)
and is displayed in black in Fig. 10. Its equation is given
below:

P(x) = −0.1129x3 − 0.003x2 + 0.6725x + 0.0054

The coefficients of even powers are two orders of magni-
tude lower than the coefficients of odd powers. It would thus
be sensible to ignore the even power terms. This choice is
further justified as a symmetrical relationship between �ϕ
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Fig. 9 Ratio of the beam initial
and adapted cross-sectional
areas RA against the normal
strain at the central axis εa
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Fig. 10 Change in beam
inclination �ϕ against the ratio
of bending strain over normal
strain at the central axis Kε .
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and Kε would be expected, as two loading scenarios equiv-
alent but for the direction of bending would yield Kε of
the same magnitude, while likely reorienting by the same
angle in opposite directions. The plot displayed in Fig. 10
supports this remark. The polynomial ignoring even power
terms is plotted in red in Fig. 10. As a result, it is possible

to model the relationship between �ϕ and Kε as described
in Eq. 4.

�ϕ = aK 3
ε + bKε (4)

with a = −0.1129, b = 0.6725
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Fig. 11 Slopes of the linear
relationships between the ratio
of the beam initial and adapted
cross-sectional areas RA and the
normal strain at the central axis
εa as a function of the ratio of
bending strain over strain at the
central axis Kε
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4 Discussion

For all the loading scenarios tested, including pure tension
and pure compression at force amplitude Ftarget , the remod-
elled trabecula geometry changed from the initial perfect
rectangle to a rod-like shape with wider extremities and a
thinner central cross section. This is consistent with μCT
observation of individual trabeculae (Van Lenthe et al. 2006).

The calibration of the target fluid velocities was arbi-
trarily assigned, based on achieving a match with the
well-established strain targets proposed by Frost (1987), and
further work would benefit from investigating an optimisa-
tion processmore directly related to themechanotransductive
process. The peak fluid velocities observed in this study were
of the order of magnitude of 10−5mm/s. This is consistent
with previous computational work (Pereira and Shefelbine
2014; Fornells et al. 2007). Based on experimental measure-
ments for similar loading rates and amplitudes, Price et al.
(2011) estimated peak fluid flow velocities of 60μ m/s. The
values predicted in this study are well below this estimation.
Poroelasticity theory computes averaged quantities, such as
fluid velocities, over the element volume; hence, an underes-
timation of peak quantities is expected. It is, however, unclear
why such a large difference is observed, although tortuosity
and directionality of the fluid phase network might influence
this phenomenon.

Adaptation in tension (θ < π/2) and compression (θ >

π/2) scenarios yielded near-symmetrical results. This was
to be expected considering that the driver considered for the
poroelastic remodelling algorithm was the absolute value
of the fluid velocity, which did not distinguish between
inward fluid motion generated in tension and outward fluid
motion generated in compression. Potential physiological
justifications for a different cellular reaction according to the
direction of the fluid motion are of future interest but were
considered outside the scope of this study.

The trabecula orientations adapted consistently with the
load inclination; however, they did not match them exactly.
The offset can be visualised on Fig. 10, where the direction
of load application was plotted against Kε. It is interesting
to note that this offset increases with load amplitude. As fur-
ther refinement, a correcting coefficient could be estimated
and included into the relationship f between �ϕ and Kε to
account for this influence of load magnitude on the adapted
trabecula orientation.

The offset, and its increase with load amplitude are very
likely due to the non-zero width of the target range, as a
less precise alignment of �ϕ with θ would be required
for a low load amplitude to stay within the target range.
The boundary conditions of the top plate whose displace-
ment is constrained generate reaction forces which are
then transmitted to the trabecula, and might influence the
direction of the locally applied load (overall equilibrium
maintained and the sum of all reactions compensate the load
applied).

The interpretation of the results of bone remodelling to
a purely lateral load is unclear. It seems like a combination
of the adaptation to a load with a small positive θ and a
small negative θ . One could imagine that in a 3D scenario,
the central part of this geometry would resorb, leaving two
rod-like elements inclined by a small angle with respect to
horizontal. For the angles closest to the horizontal θ = 7π/16
and θ = 9π/16, a similar behaviour, although to a much
lower extent, was observed.

For all other θ , the adapted cross section can be approxi-
mated using a linear relationshipwith εa . The constant term k
of these linear relationships varies between−0.1 and−0.02.
It is not exactly zero due to the non-zero width of the target
range. In the design space chosen, fixing the constant to the
average kmean = −0.065 will not generate errors higher than
10%. Setting it to zero might be a way of representing a sce-
nario of near-zero width target range. For these relationships
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to be used within a phenomenological algorithm, where only
the beam strains would be outputted, one needs to be able to
predict the slope of the linear relationship. Figure 11 shows
the evolution of the slope of the linear relationship between
RA and εa as a function of Kε. This relationship is continuous
except at the point Kε = 0. It is symmetrical between tension
and compression scenarios: the slope amplitude is given by
the preponderance of bending, while its sign is given by the
sign of εa . In the subdomain corresponding to tension, the
relationship between the slope and Kε can be approximated
by a linear function with R2 > 0.95. The corresponding lin-
ear fit is displayed in Fig. 11. Due to the symmetrymentioned
above, a similar linear relationship can be derived between
the slope and Kε in the compression subdomain, with the
negative of the constant. From these concepts, it is possible
to build a complete definition of the relationship between RA,
εa and Kε, detailed in Eq. 5.

RA = g(εa, Kε) (5a)

g(εa, Kε) = h(εa, Kε)εa + kmean (5b)

h(εa, Kε) = i Kε + sign(εa) j (5c)

which can be expressed in a compressed form

RA = (i Kε + sign(εa) j)εa + kmean (6)

with kmean = −0.065, i = −274.654, j = 999.7622
It should be noted that the adapted position of the centre

of the trabecula was not computed. In a perfectly symmetri-
cal set-up, it could be assumed that this point remains fixed,
the trabecula ‘rotating’ around it. However, the set-up in this
study only allows loading from above, and in reality, trabec-
ular elements are likely not to be loaded symmetrically from
both sides.

At this stage of development, the relationships derived can
be implemented in the authors’ phenomenological structural
model (Phillips et al. 2015; Phillips 2012). The concept of this
implementation is depicted in Fig. 12. The proposed method
would involve extracting the strain outputs for each individ-
ual beam element and computing its adapted cross section
and its adapted inclination using equations (4) to (6). The
adapted position of the top and bottom nodes defining each
beam element would then be computed based on the element
length and the inclination. Each node being potentially part
of several elements, an average updated position weighted
by the element cross sections should be considered. A sig-
nificant limitation to this study is that it has been conducted
in 2D and involved assumptions regarding the translation of
the observations into a 3D problem. The authors’ structural
model being in 3D, averaging of computations in three per-
pendicular planes should also be considered. A later stage of
development would be to generalise the relationships derived

Fig. 12 Schematic of the use of the relationships derived in this study
within the phenomenological structural model developed previously
(Phillips et al. 2015)

to a 3D space. Similar relationships could also be derived
for shell elements, using for instance the principal in-plane
strains from the top and bottom surfaces of the elements. This
2D definition also impacted the cross-sectional properties
(area and second moment of area, for example) of the ele-
ments: while the beam formulation was used with a circular
cross section, a constant ‘through-plane’ depth was assigned
to the poroelastic trabecula, effectively generating a rec-
tangular cross section. This third-dimensional geometrical
difference influenced the structural stiffness of the models.
However, this structural stiffness difference was homoge-
neous, meaning that the orders of magnitude of the field
variables were scaled consistently with the cross-sectional
properties, but the profile of their spatial variation remained
the same in both configurations. As the calibration process
is based on detecting spatial relative differences, it typi-
cally cancels the influence of parameters with homogeneous
effect on the model. Hence, despite yielding different field
variables, both the beam model and its poroelastic coun-
terpart retain their structural equivalence for the purpose
of this 2D study. It is important to note that the authors’
structural mesoscale models are not intended to capture the
transient phenomena related to the fluid phase. The capabil-
ity to account for such phenomena is not retained in the beam
models presented in this study, although the developed rela-
tionships will allow mesoscale beam models to be informed
by the results of the microscale poroelastic models, based on
the behaviour of the transient fluid phase.

Another limitation is that, to this point, no branching phe-
nomenon has been implemented in the poroelastic model.
It is, however, a potential mechanism of adaptation, already
reported in in silico work (Kameo and Adachi 2013). This
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will also constitute a point of further work, in two and three
dimensions.

To summarise, a single-beam model and a microscale
poroelastic model of a single trabecula were developed. A
mechanistic iterative adaptation algorithm was implemented
based on fluid motion velocity through the bone matrix pores
to predict the remodelled geometries of a single trabecula
under 42 different axial loading scenarios. The remodelled
geometries were used to derive two phenomenological rela-
tionships (R2 > 0.95) to predict the beam changes in cross
section and orientation from its initial strain outputs. It
is expected that the implementation of these relationships
into the phenomenological predictive algorithm for a full
mesoscale femur modelled with beams and shells will pro-
duce a model whose structure and mechanical behaviour
are biofidelic while maintaining the high computational effi-
ciency of a purely structural model.
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