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Abstract

The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has

previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria.

However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate

dehydrogenase complex, iron–sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the

dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nucleargenes encoding mitochondrial proteins. The results

confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the

genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the

determination of gene duplication events.
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Dinoflagellates are a very diverse group of eukaryotic organ-

isms. Many species are photosynthetic, and some are impor-

tant coral symbionts. Other species are nonphotosynthetic,

and can cause toxic algal blooms and paralytic shellfish poi-

soning. Dinoflagellates are a sister group to the Apicomplexa,

a group of primarily intracellular parasites which include the

malaria agent Plasmodium. The majority of the Apicomplexa

have lost the ability to carry out photosynthesis, yet retain a

remnant plastid. Thus, dinoflagellates provide a unique oppor-

tunity to examine the metabolic changes required in the con-

version from a photosynthetic to a parasitic life style.

Little is known about dinoflagellate biochemistry. Until re-

cently there have been very limited DNA sequence data avail-

able. In 2013, three extensive studies examined all available

dinoflagellate expressed sequence tag (EST) and RNAseq data

in order to identify and annotate biochemical pathways pre-

sent within dinoflagellate species. All three studies were

unable to identify sequences encoding many key proteins in-

volved in a variety of biochemical pathways (Butterfield et al.

2013; Danne et al. 2013; Wisecaver et al. 2013). These in-

cluded the following: NAD+ (nicotinamide adenine nucleotide)

isocitrate dehydrogenase (involved in the tricarboxylic acid

[TCA] cycle), complex I of the mitochondrial electron transport

chain (ETC), and Isd11 (involved in the iron–sulfur cluster bio-

synthesis pathway). Furthermore, a typical pyruvate dehydro-

genase complex (PDH) appeared to be absent, and it was

suggested that it had been replaced with either a pyruvate:fer-

redoxin oxidoreductase (PFO), the branched chain a-ketoacid

dehydrogenase complex, or a Corynebacterium-style PDH

(Butterfield et al. 2013; Danne et al. 2013; Wisecaver et al.

2013). One of the surprising findings was the identification of

very few proteins involved in mitochondrial protein import,

suggesting that the import apparatus is minimal, or that it is

very divergent (Butterfield et al. 2013).

The first dinoflagellate nuclear genome sequence reported

was for Symbiodinium minutum (Shoguchi et al. 2013). The

S. minutum nuclear genome is approximately 1,500 Mbp in

size and is extremely intron rich, which made sequencing and

annotating the genome a significant achievement. RNAseq

data were also released for S. minutum (Shoguchi et al.

2013). We therefore analyzed the nuclear genome and re-

lated transcriptome data to identify genes involved in key met-

abolic pathways which had not been identified in the previous

studies.

GBE

� The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

Genome Biol. Evol. 8(2):439–445. doi:10.1093/gbe/evw002 Advance Access publication January 21, 2016 439

http://creativecommons.org/licenses/by/4.0/


Multiple Introns Prevent Gene
Identification

One hundred and eleven proteins (primarily mitochondrial)

not previously identified in the dinoflagellates were searched

against the S. minutum nuclear genome using the BLAST

(Basic Local Alignment Search Tool) algorithm (supplementary

table S1, Supplementary Material online). Queries included

protein sequences from a range of organisms and 26 nucleo-

tide sequences (both as nucleotide and translated) from sev-

eral dinoflagellate species including Perkinsus and/or Oxyrrhis

(nonphotosynthetic early-branching dinoflagellate species)

and Chromera (a photosynthetic apicomplexan). Five genes

encoding putative mitochondrially targeted proteins were

identified in the BLAST searches: Tim17 (protein import), adre-

nodoxin NADP + oxidoreductase, cytochrome c or c1-type

heme lyase, NAD+ isocitrate dehydrogenase, and an amino-

methyltransferase (table 1).

The number of genes identified was considerably lower

than expected. We therefore altered the gap penalties to de-

termine whether this would increase detection of genes pre-

sent in the S. minutum nuclear genome. Previously successful

query sequences or dinoflagellate ESTs encoding NAD+ isoci-

trate dehydrogenase, Tim17, and Tom40 (Tetrahymena ther-

mophila EAR84154, Plasmodium falciparum AAN36941, and

Alexandrium minutum GW810016, respectively) were used to

search the genome with all seven different gap penalties avail-

able on the online version of BLAST. Altering the gap penalties

did not alter the results obtained for NAD+ isocitrate dehydro-

genase or Tim17, with the number of sequences which met

the E-value threshold remaining the same.

For Tom40, the top hit contained four sequences.

However, all were identified with E values greater than the

threshold of 1�10�10 (i.e., 1�10�6, 0.001, 0.58, and 6.0).

Two of these sequences were present for all gap penalties

tested. These four sequences are located within 4 kb on scaf-

fold 344.1 (supplementary table S2, Supplementary Material

online). Although results for the first sequence when analyzed

by Blastx suggested that it encoded Tom40 or a eukaryotic

porin domain-containing protein, the E value obtained in the

blastx search (2�10�4) was well above the threshold.

However, when the EST transcript which mapped to this

region (Shoguchi et al. 2013) was analyzed by blastx, results

indicated that the transcript most likely encoded Tom40 or a

eukaryotic porin domain-containing protein (with an E value

well below the threshold). Therefore, although each of the

original sequences identified did encode regions of Tom40,

the BLAST results were well above the threshold level, even

with altered gap penalties and remained undetected in our

search. This is likely to be due to the Tom40 gene being rep-

resented by many small exons separated by large introns, with

a 1.2-kb gene spanning 14 kb of genomic sequence.

The presence of multiple introns may therefore explain why

so few genes were identified, as shown by our results of the

altered gap penalties test. The mean length of a gene is ap-

proximately 12 kb, including approximately 19 introns (of

mean length 499 bp), although some genes have up to 256

introns (Shoguchi et al. 2013). Thus, the mean length of a

single exon is approximately 100 bp, although many must

be considerably shorter (Shoguchi et al. 2013). Coupled

with sequence divergence, this extreme fragmentation de-

creases the ability of algorithms based on sequence alignment

to recognize gene sequences, due to the very short exon size.

To determine whether this was indeed the case, a positive

control experiment was performed. Previously identified

Symbiodinium sequences encoding mitochondrial proteins

(Butterfield et al. 2013) were used as queries to search the

S. minutum nuclear genome and transcriptome as either nu-

cleotide sequences (blastn) or as protein sequences (tblastn)

(details of sequences used are in supplementary table S3,

Supplementary Material online). To determine whether the

high number of introns may be influencing the results, a

third search was performed where the translated ESTs were

searched against the S. minutum nuclear genome using a max

intron length setting of 499 bp (average intron length)

(Shoguchi et al. 2013). Of the 25 nucleotide sequences, only

7 sequences (28%) were identified in the S. minutum nuclear

Table 1

Genes Identified by BLAST as Present in the Symbiodinium minutum Nuclear Genome

Protein Name Pathway Location

NAD + isocitrate dehydrogenase TCA cycle scaffold4965.1:12909-13436,13559-13693,13786-13983

Cytochrome c-type heme lyase ETC assembly scaffold4113.1:17855-17682

NADPH adrenodoxin oxidoreductase Fe–S cluster biosynthesis/ETC assembly scaffold2449.1:42386-43780

Aminomethyltransferase Unclear scaffold55.1:19483-19082

Tim17 Protein import scaffold1137.1:25614-25411,25297-25226,25163-25110

Ferredoxin NADP reductase

(chloroplast) (cpFNR)

Photosynthesis scaffold1625.1:140107-139538,scaffold7056.1:11328-12305,scaf-

fold996.1:74923-75258,75279-75019,77412-77011,scaf-

fold1066.1:78934-79236,scaffold1066.1:75430-75732,scaf-

fold303.1:30938-31327,scaffold5347.1:2431-2550,3378-

3323,3572-3439,scaffold4627.1:33578-33706
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genome using blastn. This increased to 13 of the 25 (52%)

sequences when using tblastn (default settings) (supplemen-

tary table S4, Supplementary Material online). Using an in-

creased maximum intron size further increased this to 16 of

the 25 sequences (64%). However, the best results were ob-

tained when searching the transcriptome using tblastn (22/25,

88%). For full results, see supplementary table S4,

Supplementary Material online. In all cases, a threshold of

1� 10�10 was applied. In some cases, a gene was identified

multiple times, in different regions of the genome, indicating

gene duplication events. Interestingly, duplicated genes were

not always identified by both blastn and tblastn, with individ-

ual searches identifying different regions of the genome.

Together, these results suggest that the high number of

introns in the dinoflagellate genome prevents the identifica-

tion of genes using the BLAST algorithm, even when using

very relaxed gap penalties and increased intron size settings.

These results also suggest that the transcriptome is more re-

liable for determination of gene presence within S. minutum

than the nuclear genome sequence.

Identification of Additional Genes
Using Transcriptome Data

As the positive control experiment indicated a greater detec-

tion of S. minutum encoded genes using transcriptomic data,

the initial search for dinoflagellate mitochondrial encoded

genes was repeated using the transcriptome. Transcripts for

an additional 22 genes were identified (as shown in table 2).

A single transcript was identified as a possible hexokinase;

however, blastx analysis of the transcript showed the only

hexokinase match to be from Pfiesteria piscicida

(ACU45010.1). blastp of the Pf. piscicida protein sequence

suggests that it may have been misidentified, as it does not

detect any known hexokinase sequences. A transcript encod-

ing a glucokinase was identified, suggesting that S. minutum

like Perkinsus marinus and the ciliates likely uses a glucokinase

rather than a hexokinase for the conversion of glucose to

glucose-6-phosphate (Smith et al. 2007; Butterfield et al

2013).

Transcripts were identified encoding a PFO or

pyruvate:NADPH oxidoreductase (PNO). Transcripts for these

genes had previously been identified in Pe. marinus and

Alexandrium tamarense (Butterfield et al. 2013; Wisecaver

et al. 2013). No transcript was identified for the bacterial-

type E1 subunit of PDH. This is in contrast to Butterfield

et al. (2013) and Wisecaver et al. (2013) who identified se-

quences encoding a bacterial-type subunit in Amphidinium

carterae and Al. tamarense, respectively (Butterfield et al.

2013; Wisecaver et al. 2013). These results suggest that bio-

chemical analyses will be required to fully understand PDH

evolution and pyruvate metabolism within the dinoflagellates.

The identification of a sequence encoding an NAD+-linked

isocitrate dehydrogenase shows that there is a complete TCA

cycle present within the dinoflagellates. This confirms the Pe.

marinus metabolomic studies conducted by Danne et al.

(2013) which identified key TCA cycle metabolites.

Transcripts encoding NAD+ isocitrate dehydrogenase were

not identified in previous EST data analyses, most likely due

to transcripts being at very low abundance (Butterfield et al.

2013; Danne et al. 2013; Wisecaver et al. 2013).

The attachment of heme to apocytochrome c for the mi-

tochondrion can be carried out by one of the three pathways:

System I, System III, or System V. Each species contains just

one system (Allen et al. 2008; Allen 2011). Analyses of the

cytochrome c-type heme lyase gene showed it to encode

either a c- or c1-type lyase, consistent with the c- or c1-type

heme lyase previously identified within P. marinus (Butterfield

et al. 2013). Together these results confirm that the dinofla-

gellates, including Pe. marinus, contain the System III cyto-

chrome c biogenesis pathway (Allen et al. 2008; Allen

2011). Although the apicomplexan Plasmodium also contains

a System III cytochrome c biogenesis pathway, it encodes two

heme lyases rather than one (van Dooren et al. 2006). The

transcripts identified in S. minutum map to three different

scaffolds (Shoguchi et al. 2013) suggesting that there are at

least three cytochrome c- or c1-type heme lyases encoded on

the S. minutum nuclear genome. Transcripts were also iden-

tified for genes involved in the System II and System IV path-

ways utilized within the chloroplast (Allen et al. 2011).

There are three pathways for the synthesis of iron–sulfur

clusters, essential protein cofactors. The ISC pathway (iron–

sulfur cluster) is found in the mitochondrion (Seeber 2002;

Nývltová et al. 2013). Previous studies of dinoflagellate tran-

script data had failed to identify numerous sequences encod-

ing essential proteins in the ISC pathway. These included Isd11

(involved in the release of sulfides from cysteine), Jac1 (a

cochaperone), Iba57, Isa1 (both essential for the transfer of

iron–sulfur clusters to apoproteins), and adrenodoxin

NADP + oxidoreductase (Butterfield et al. 2013; Danne et al.

2013). Although we were unable to identify genes encoding

Isd11, Jac1, or Isa1 in the S. minutum nuclear genome, tran-

scripts were identified for Jac1, Isa1, and a probable transcript

was identified for Isd11. We were also able to identify a gene

encoding an adrenodoxin NADP oxidoreductase and an ami-

nomethyltransferase, which could correspond to Iba57

(genome: 8� 10�15, 33% identity to Homo sapiens; tran-

scriptome: 1� 10�24, 36% identity to H. sapiens). These re-

sults are highly supportive of the presence of a complete ISC

pathway within the dinoflagellates. The identification of adre-

nodoxin NADP + oxidoreductase is an important step in iden-

tifying the genes encoding proteins involved in both the iron–

sulfur cluster biosynthesis and ETC assembly pathways (Barros

et al. 2002; Lill and Mühlenhoff 2005).

Several proteins involved with protein import into the mito-

chondrion had not been previously identified within the dino-

flagellates (Butterfield et al. 2013). A search of the S. minutum

nuclear genome was able to identify only one further

Symbiodinium Mitochondrial Proteins GBE

Genome Biol. Evol. 8(2):439–445. doi:10.1093/gbe/evw002 Advance Access publication January 21, 2016 441

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw002/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw002/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw002/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw002/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw002/-/DC1


T
a
b

le
2

T
ra

n
sc

ri
p

ts
Id

e
n

ti
fi

e
d

U
si

n
g

B
LA

ST
to

Se
a
rc

h
th

e
Sy

m
b

io
d

in
iu

m
m

in
u

tu
m

T
ra

n
sc

ri
p

to
m

e

P
ro

te
in

N
a
m

e
P
a
th

w
a
y

T
ra

n
sc

ri
p

ts
P
re

se
n

t
N

o
te

s

G
lu

co
k
in

a
se

G
ly

co
ly

si
s

sy
m

b
B

1
.c

o
m

p
1
5
7
5
5
_c

0
_s

e
q

1
,

sy
m

b
B

1
.c

o
m

p
2
2
0
9
9
_c

0
_s

e
q

1
,

sy
m

b
B

1
.c

o
m

p
1
7
6
0
4
_c

1
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

0
5
1
8
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

8
6
7
1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_9

2
3
2

Y
e
s

H
e
xo

k
in

a
se

G
ly

co
ly

si
s

sy
m

b
B

1
.c

o
m

p
3
5
0
9
6
_c

0
_s

e
q

1
P
o

ss
ib

le
?

P
FO

/P
N

O
P
D

H
sy

m
b

B
1
.E

ST
_k

3
7
c2

0
_3

9
0
8
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

9
0
6
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

9
0
4
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

9
0
3
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

9
1
0
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

9
0
7
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

9
0
5
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

9
0
9

Y
e
s

N
A

D
+

is
o

ci
tr

a
te

d
e
h

yd
ro

g
e
n

a
se

T
C

A
cy

cl
e

sy
m

b
B

1
.c

o
m

p
2
9
4
1
6
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

5
2
0
9

Y
e
s

Fe
rr

e
d

o
xi

n
-N

A
D

P

re
d

u
ct

a
se

E
T
C

a
ss

e
m

b
ly

/F
e
–S

cl
u

st
e
r

b
io

sy
n

th
e
si

s

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

3
0
4
1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

7
9
4
6
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

3
2
2
8
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

1
1
5
7
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

1
1
5
8
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

1
1
5
9
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

4
9
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_5

2
1
3
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_5

2
1
4
,

sy
m

b
B

1
.c

o
m

p
3
1
0
3
5
_c

0
_s

e
q

1

Y
e
s

C
yt

o
ch

ro
m

e
c-

ty
p

e
h

e
m

e

ly
a
se

E
T
C

a
ss

e
m

b
ly

sy
m

b
B

1
.c

o
m

p
1
4
5
6
0
_c

0
_s

e
q

1
,

sy
m

b
B

1
.c

o
m

p
5
2
3
9
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_4

4
6
6
3
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_4

9
8
3
,

Y
e
s

C
cs

A
/C

cs
B

E
T
C

a
ss

e
m

b
ly

sy
m

b
B

1
.c

o
m

p
7
0
5
_c

0
_s

e
q

1
P
o

ss
ib

le
?

In
vo

lv
e
d

in
ch

lo
ro

p
la

st
cy

to
-

ch
ro

m
e

c
a
ss

e
m

b
ly

p
a
th

w
a
ys

C
cb

3
E
T
C

a
ss

e
m

b
ly

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_7

1
7
0

U
n

cl
e
a
r

In
vo

lv
e
d

in
ch

lo
ro

p
la

st
cy

to
-

ch
ro

m
e

c
a
ss

e
m

b
ly

p
a
th

w
a
ys

Is
d

1
1

Fe
-S

cl
u

st
e
r

b
io

sy
n

th
e
si

s
sy

m
b

B
1
.c

o
m

p
1
2
4
8
6
_c

0
_s

e
q

1
P
ro

b
a
b

le

Ja
c1

Fe
-S

cl
u

st
e
r

b
io

sy
n

th
e
si

s
sy

m
b

B
1
.c

o
m

p
4
3
1
1
8
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

8
1
5
0

Y
e
s

Is
a
1

Fe
-S

cl
u

st
e
r

b
io

sy
n

th
e
si

s
sy

m
b

B
1
.c

o
m

p
1
0
6
8
8
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_5

9
9
0
4

Y
e
s

Ib
a
5
7

Fe
-S

cl
u

st
e
r

b
io

sy
n

th
e
si

s
sy

m
b

B
1
.c

o
m

p
4
3
8
4
7
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_4

6
1
9
7

P
o

ss
ib

le
?

G
lu

ta
m

yl
-t

R
N

A
re

d
u

ct
a
se

H
e
m

e
b

io
sy

n
th

e
si

s
sy

m
b

B
1
.c

o
m

p
6
6
2
0
_c

0
_s

e
q

1
,

sy
m

b
B

1
.c

o
m

p
1
2
0
2
5
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

4
5
8
2
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_9

9
5
5

Y
e
s

Li
k
e
ly

ch
lo

ro
p

la
st

ta
rg

e
te

d

G
u

n
4

T
e
tr

a
p

yr
ro

le
b

io
sy

n
th

e
si

s
sy

m
b

B
1
.c

o
m

p
2
3
2
3
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

3
5
4
4

a
Y

e
s

Li
k
e
ly

ch
lo

ro
p

la
st

ta
rg

e
te

d

M
a
g

n
e
si

u
m

ch
e
la

ta
se

su
b

u
n

it
D

T
e
tr

a
p

yr
ro

le
b

io
sy

n
th

e
si

s
sy

m
b

B
1
.c

o
m

p
5
3
9
7
_c

0
_s

e
q

1
,

sy
m

b
B

1
.c

o
m

p
8
9
3
8
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

3
4
4
5

a
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

6
6
5
9
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

6
0
8
0

Y
e
s

Li
k
e
ly

ch
lo

ro
p

la
st

ta
rg

e
te

d

D
H

FS
/F

P
G

S
Fo

la
te

b
io

sy
n

th
e
si

s
sy

m
b

B
1
.E

ST
_k

3
7
c2

0
_1

7
5
0
5
,

sy
m

b
B

1
.c

o
m

p
5
0
3
7
4
_c

0
_s

e
q

1
Y

e
s

H
o

lo
ca

rb
o

xy
la

se

sy
n

th
e
ta

se

B
io

ti
n

b
io

sy
n

th
e
si

s
sy

m
b

B
1
.E

ST
_k

3
7
c2

0
_3

4
6
2
5

Y
e
s

T
o

m
4
0

P
ro

te
in

im
p

o
rt

sy
m

b
B

1
.c

o
m

p
1
0
7
7
2
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

4
5
3

Y
e
s

T
o

m
7
0

P
ro

te
in

im
p

o
rt

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

3
1
5
7
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_4

2
0
2
2
,

sy
m

b
B

1
.c

o
m

p
4
0
7
5
0
_c

0
_s

e
q

1
P
o

ss
ib

le
?

T
im

5
0

P
ro

te
in

im
p

o
rt

sy
m

b
B

1
.c

o
m

p
8
3
9
4
_c

0
_s

e
q

1
,

sy
m

b
B

1
.c

o
m

p
1
2
7
5
5
_c

0
_s

e
q

1
a
,

sy
m

b
B

1
.c

o
m

p
2
8
4
2
4
_c

0
_s

e
q

1
a
,

sy
m

b
B

1
.c

o
m

p
2
4
1
8
4
_c

0
_s

e
q

1
a
,

sy
m

b
B

1
.c

o
m

p
5
4
7
2
_c

0
_s

e
q

1
a
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_1

5
8
2
6

a
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

5
0
6
6

a
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

5
6
5
0

a
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

8
2
5
6
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_3

8
9
5
9

a

Y
e
s

T
im

1
7

P
ro

te
in

im
p

o
rt

sy
m

b
B

1
.c

o
m

p
9
0
1
2
_c

0
_s

e
q

1
,

sy
m

b
B

1
.c

o
m

p
3
8
2
9
3
_c

0
_s

e
q

1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_2

1
4
1
1
,

sy
m

b
B

1
.E

ST
_k

3
7
c2

0
_4

7
2
2
1

Y
e
s

(c
o
n
ti
n
u
ed

)

Butterfield et al. GBE

442 Genome Biol. Evol. 8(2):439–445. doi:10.1093/gbe/evw002 Advance Access publication January 21, 2016



component of the protein import apparatus, Tim17. However,

analysis of the transcriptome was also able to identify Tom40,

Tim50, Tim14, and Tim10 or Tim13. Additionally, transcripts

were identified which may encode Tom70, Tim9, and inner

membrane protease 1 and 2. The identification of these ad-

ditional transcripts suggests that dinoflagellate protein import

is a more complex process than initial results suggested

(Butterfield et al. 2013) although still appears to be highly

reduced, similar to that present in Microsporidia,

Plasmodium, and Cryptosporidium (van Dooren et al. 2006;

Heinz and Lithgow 2013).

EST analyses have previously identified a transcript encod-

ing glutamyl-tRNA reductase in Lingulodinium (Butterfield

et al. 2013; Danne et al. 2013) which had been suggested

to be contaminated due to the Guanine-Cytosine content and

amino acid sequence (Butterfield et al. 2013). We were

unable to identify a sequence encoding glutamyl-tRNA reduc-

tase on the S. minutum nuclear genome; however, we were

able to identify a transcript. This may suggest that the tran-

script identified by both Danne et al. (2013) and Butterfield

et al. (2013) in the Lingulodinium database may not be con-

tamination. As no sequence was identified in the genome or

the transcriptome for the previously identified potential con-

taminant transcript encoding YaeT (an alternative to the SAM

complex involved in protein import), it supports the suggestion

of contamination in the Oxyrrhis marina library (Butterfield

et al. 2013).

Transcripts were also identified for various cofactor synthesis

pathways including folate biosynthesis and biotin biosynthesis.

Symbiodinium minutum contains sequences encoding a dual

dihydrofolate synthase–folylpolyglutamate synthase (DHFS-

FPGS) like that present within Pl. falciparum (Salcedo et al.

2001) and in T. thermophila (XP_001010006.3) which may

suggest that the alveolate ancestor contained the dual version

of the enzyme. A transcript was also identified for holocarbox-

ylase synthetase involved in the biotin biosynthesis pathway,

therefore the only protein which remains unidentified in this

pathway is dethiobiotin synthase (Butterfield et al. 2013). The

absence of this is not surprising as this gene has not been

identified in any algal species or Arabidopsis thaliana (Croft

et al. 2006). Recently, sequences encoding a protein of dual

function (diaminopelargonic acid aminotransferase/dethiobiotin

synthetase [Bio3-Bio1]) were identified in Ar. thaliana and some

algal species (Muralla et al. 2008; Cobessi et al. 2012); however,

no gene or transcript for this was identified in S. minutum. It is

likely that the dethiobiotin synthesis reaction is catalyzed by an

unknown mechanism (Croft et al. 2006).

Gene Duplications Are Common

Eight of the 25 genes identified from the positive control ex-

periment against the genome sequence (i.e., Symbiodinium

sequences which had been previously identified through anal-

ysis of EST data by Butterfield et al. 2013) returned BLASTT
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results with more than one location on the genome scaffolds.

This is suggestive of gene duplication. Analysis of mapped

RNA transcripts (Shoguchi et al. 2013) suggested that under

the conditions in which the library was made, not all copies of

duplicated genes may be transcribed. For example, two copies

of the cytochrome c gene were identified. The two genes are

arranged in tandem. The first gene encodes a protein with a

longer N-terminal region than the product of the second

gene, there is a single nucleotide substitution between the

genes, and each gene has a different 30 UTR (untranslated

region). An alignment is shown in supplementary alignment

S1, Supplementary Material online. All corresponding S. min-

utum RNA transcripts encode a protein with the longer

N-terminal region, as well as having the nucleotide substitu-

tion and 30 UTR corresponding to the first cytochrome c gene.

There are no transcripts corresponding to the second gene.

This suggests that the second gene may not be transcription-

ally active, at least under the conditions where the RNA tran-

scripts were obtained. The significant sequence similarity

between the two copies of the cytochrome c gene would

suggest that this gene duplication is recent.

Apicomplexa and the early branching dinoflagellate

Perkinsus all contain sequences encoding mitochondrial ferre-

doxin NADP reductase (FNR) (adrenodoxin NADP +oxidore-

ductase) (Lei et al. 2010). However, initial searches using the

dinoflagellate EST libraries were only able to identify a putative

FNR homolog which showed more similarity to the chloroplast

isoform (cpFNR). During the search for the mitochondrial iso-

form on the S. minutum nuclear genome (table 1), eight genes

encoding putative cpFNRs were also identified. An analysis of

the transcripts mapped to these regions suggested that all

eight genes are transcribed, at least partially. Alignments of

the translated sequences showed that the genes fall within

three groups, suggesting that there were three original cpFNR

genes which have each undergone gene duplication (supple-

mentary alignment S2, Supplementary Material online).

Interestingly, the transcript aligned to one of the likely

cpFNRs (4627.1) appears to include two frameshift mutations,

due to the insertion of a single nucleotide at two different sites

in the RNA. It is unclear whether this is caused by posttran-

scriptional editing or is a result of sequencing errors. No other

instances of possible editing were detected, suggesting that

sequencing error is more likely.

Conclusion

Despite extensive searches of the S. minutum nuclear

genome, we were able to identify only a further five genes

encoding mitochondrial proteins. This increased to 27 when

transcriptomic data were used. There are multiple reasons for

the extremely low success rate in gene identification using the

S. minutum nuclear genome sequence. The most likely reason,

supported by the results of the positive control experiment, is

the very high level of introns in genes, and the fact that exon

size is small. Second, the genome remains in draft form with

numerous scaffolds and contigs, one of which is known to be

bacterial contamination (Shoguchi et al. 2013). Although the

S. minutum nuclear genome has been estimated to be approx-

imately 1,500 Mbp, at present only 616 Mbp (41%) has been

sequenced and released (Shoguchi et al. 2013). Although the

sequenced portion of the genome has been suggested to be

the euchromatin-like region of the S. minutum genome, as

the majority of the transcripts can be mapped, it is possible

that the genes that we failed to identify in this study are lo-

cated in the 59% of unsequenced genome. Finally, some

genes may be truly absent from S. minutum.

Despite the difficulties in using the nuclear genome for the

identification of the genes present within S. minutum, the ge-

nome sequence has been shown to be very useful for the

identification of gene duplication events. Furthermore,

the identification of 27 additional genes increases our

knowledge of dinoflagellate biochemical pathways, including

those shared with the Apicomplexa. The further curation of

the S. minutum nuclear genome sequence will enable

the continued characterization of shared pathways, increasing

our understanding of how photosynthesis is lost. However,

for now, as indicated by our positive control experiment,

it may be better to rely on the extensive EST databases

for the inference of gene content within the dinoflagellate

algae.

Methods

The S. minutum nuclear genome sequence and transcriptome

were downloaded from the OIST Marine Genomics Unit web-

site http://marinegenomics.oist.jp/symb/viewer/download?

project_id=21 (last accessed September 30, 2013) (Marine

Genomics Unit 2011). The original query sequences from

Butterfield et al. (2013) and further query sequences were

obtained from the National Center for Biotechnology

Information and used to search the S. minutum nuclear

genome. Obtained nucleotide query sequences were trans-

lated using the ExPASy translate tool (http://web.expasy.org/

translate/, Swiss Institute of Bioinformatics). Nucleotide or pro-

tein input sequences were analyzed using either BLASTN or

TBLASTN against the S. minutum nuclear genome and the

transcriptome (Altschul et al. 1997, 1990). The genome loca-

tion (scaffold number and region) or transcript identification

were recorded for sequences that returned an E value of less

than or equal to 1�10�10. Hits and corresponding RNA tran-

scripts overlaying the region identified on the genome

(Shoguchi et al. 2013) were analyzed with blastx to confirm

identification. Symbiodinium minutum listed transcripts are

from two different libraries (Trinity and Velvet/Oasis assem-

blies). Transcripts from the Trinity library were analyzed. If

no transcript was found in the Trinity library, then the

Velvet/Oasis library was used instead.
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Supplementary Material

Supplementary tables S1–S4 are available at Genome Biology

and Evolution online (http://www.gbe.oxfordjournals.org/)
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