
The oncogenic and prognostic potential of eight microRNAs 
identified by a synergetic regulatory network approach in lung 
cancer

Ramkrishna Mitra and
Department of Biomedical Informatics, Vanderbilt University, School of Medicine, Nashville, 
Tennessee 37232, USA, ramkrishna.mitra@vanderbilt.edu

Zhongming Zhao
Departments of Biomedical Informatics, Psychiatry, and Cancer Biology, Vanderbilt University, 
School of Medicine, Nashville, Tennessee 37232, USA, zhongming.zhao@vanderbilt.edu

Abstract

Transcription factors (TFs) and microRNAs (miRNAs), the two main gene regulators in the 

biological system, control the gene expression at the transcriptional and post-transcriptional level, 

respectively. However, little is known regarding whether the miRNATF co-regulatory 

mechanisms, predicted by several studies, truly reflect the molecular interactions in cellular 

systems. To tackle this important issue, we developed an integrative framework by utilising four 

independent miRNA and matched mRNA expression profiling data sets to identify reproducible 

regulations, and demonstrated this approach in non-small cell lung cancer (NSCLC). Our analyses 

pinpointed several reproducible miRNA-TF co-regulatory networks in NSCLC from which we 

systematically prioritised eight hub miRNAs that may have strong oncogenic characteristics. Here, 

we discussed the major findings of our study and explored the oncogenic and prognostic potential 

of eight prioritised miRNAs through literature-mining based analysis and patient survival analysis. 

The findings provide additional insights into the miRNA-TF co-regulation in lung cancer.
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1 Introduction

Transcription factors (TFs) are important regulators that either induce or repress gene 

expression by binding to a gene’s promoter region at the transcriptional level. Then, the 

expression of the same gene can be repressed by microRNAs (miRNAs), the small (~21–23 

nucleotides) endogenous non-coding RNA molecules (Bartel, 2004), at the post-

transcriptional level. miRNAs can both regulate and be regulated by TFs, forming a 
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regulatory circuit (Gong et al., 2011; Guo et al., 2010). Hence, it is not surprising that, in 

gene regulatory networks both types of regulators are tightly related to each other.

The examination of regulatory networks showed that TFs and miRNAs can jointly regulate 

target gene expression and frequently form 3-node feed-forward loops (FFLs) (Figure 1) 

(Poos et al., 2013). Recently, Sun et al. extended the 3-node FFLs to 4-node and showed the 

oncogenic potential of the inferred 3-node and 4-node FFLs in glioblastoma multiforme 

(Sun et al., 2012). These regulatory loops serve as important motifs in gene regulatory 

networks and play critical roles in the development of cancer and other diseases, including 

breast cancer (Qin et al., 2014), colorectal cancer (Sengupta and Bandyopadhyay, 2013), 

glioblastoma multiforme (Setty et al., 2012; Sun et al., 2012), high-grade serous ovarian 

cancer (Zhao et al., 2013), osteosarcoma (Poos et al., 2013), schizophrenia (Guo et al., 

2010), T-cell acute lymphoblastic leukaemia (Ye et al., 2012), and several others. It is 

imperative to mention here that these studies mostly rely on the predicted regulation 

information of miRNAs (Bandyopadhyay and Mitra, 2009; Betel et al., 2010; Friedman et 

al., 2009; Mitra and Bandyopadhyay, 2011) and TFs (Matys et al., 2006); hence, the 

identified regulatory networks may suffer from high false-positive molecular interactions.

Recently we uncovered the presence of miRNA-TF co-regulatory networks in non-small cell 

lung cancer (NSCLC) (Mitra et al., 2014). To minimise false-positives, we investigated the 

regulator-target relationships that were reproducible or preserved in multiple independent 

NSCLC data sets. Reproducible regulation has not yet been applied to miRNA-TF co-

regulatory network analyses in cancer or other diseases, even though it may reflect the true 

molecular interaction (Dutta et al., 2012; Langfelder et al., 2011). The study constructed the 

miRNA-TF co-regulatory networks from a discovery data set and validated the regulations 

using three independent validation data sets where all the data sets consisted of matched 

miRNA and mRNA expression profiles in NSCLC.

Our network analysis prioritised eight miRNAs (miR-9-5p, miR-17-5p, miR-96-5p, 

miR-130b-3p, miR-182-5p, miR-183-5p, miR-200b-3p, and miR-200c-3p) and showed that 

they have strong oncogenic potential in NSCLC pathology. We reported that these miRNAs 

were up-regulated in NSCLC and a large proportion of their regulations were reproducible 

in other independent data sets. Importantly, we found that these eight miRNAs have the 

potential to repress the expression of 16 tumour suppressor genes and TFs in NSCLC and 

form a sub-network that included 32 edges. Among these 32 edges, 30 (93.7%) were 

reproducible in independent validation data sets.

Our framework appeared more robust in several respects when compared to other 

conventional network studies. The two leading advantages are:

• the framework may immediately pinpoint high-confident biological regulations 

based on the number of validation data sets validate the regulations

• we can prioritise densely connected network modules that have been enriched with 

reproducible edges.

For example, by using the discovery data set, we identified four miRNA-TF co-regulatory 

network modules that are potentially associated with the TGF-β signalling pathway. 
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Modules 1, 2, 3, and 4 consisted of 12.5%, 33.04%, 50.89%, and 88.89% reproducible 

network edges, respectively. This information correctly prompted us to conduct follow-up 

experiments on module 4 in order to validate the important regulations. Using a luciferase 

reporter assay, we confirmed that, in this module, the tumour suppressor gene TGFBR2 is a 

direct target of miR-9-5p and miR-130b-3p. This confidence cannot be gained from existing 

network studies that rely on a single expression profiling data set.

To further explore the oncogenic and prognostic potential of these miRNAs prioritised by 

our computational approach, we performed additional analyses in this study. Firstly, we 

conducted an in-depth literature search to infer whether our prioritised miRNA pool 

dysregulated in other lung cancer clinical samples. This may clarify that the up-regulation of 

these miRNAs was not due to the artefacts of high-throughput expression profiling data sets 

that we used in our previous study. Secondly, literature-based evidence, along with an 

extended analysis using 170 high-quality NSCLC patient samples, revealed the importance 

of six miRNAs in lung cancer patient survival. In summary, the combined results of our 

previous (Mitra et al., 2014) and current study provided an adequate foundation for lung 

cancer investigators to conduct in-depth experiments to uncover the therapeutic potential of 

these miRNAs in the treatment of NSCLC.

2 Materials and methods

2.1 Literature search for dysregulated miRNAs in lung cancer

We collected studies that examine miRNA dysregulation in lung cancer by searching 

PubMed (http://www.ncbi.nlm.nih.gov/pubmed), using the keywords ‘lung cancer’ and 

‘microRNA’. We collected aberrantly expressed miRNAs in lung cancer from high-

throughput (microarray and miRNA-Seq) and low-throughput [reverse transcriptase 

polymerase chain reaction (RT-PCR) and northern blot] experimental results published 

before 22 August, 2014. We initially read the titles and abstracts in order to exclude studies 

that mainly used bioinformatics approaches, reviews, comments, and those unrelated to lung 

cancer or miRNA. We further excluded the studies if miRNA dysregulation was observed 

due to the interference of drugs (including chemotherapy or radiotherapy) or genetic 

variations. We identified 130 papers that report dysregulated miRNAs in lung tumour tissues 

or lung cancer cell lines compared to normal lung tissue samples or cell lines.

2.2 Lung squamous cell carcinoma patient samples for survival analysis

To perform the survival analysis, we selected relevant patient samples and corresponding 

clinical information from Supplemental Tables S2 and S5 of Mitra et al., (2014). 

Additionally, for these patient samples, we downloaded the ‘days to death’ and ‘days to last 

follow-up’ information from The Cancer Genome Atlas (TCGA) data portal (https://tcga-

data.nci.nih.gov/tcga/) in order to denote event and censor, respectively. Patients were 

censored from statistical analysis if they were alive and had five years of clinical follow-up. 

We obtained 170 patients, among them 12 who had neither the ‘days to death’ nor the ‘days 

to last follow-up’ information. Furthermore, 20 patients were excluded from the analysis 

because the reported event/censor information was not within the five year range. In total 
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138 patients were eligible for survival analysis; among those being eligible, mortality 

occurred in 55 patients (39.85%).

Cox regression (or proportional hazards regression) is a method for investigating the effect 

of several variables in the context of an outcome such as death for survival analysis. We 

performed univariate Cox hazard regression analysis based on miRNA expression profiles, 

stratified TNM stages [grouped by lower stages (stage I, IA, IB, IIA, and IIB) and higher 

stages (stage IIIA, IIIB, and IV)], stratified tumour sizes [grouped by smaller sizes (T1, T1a, 

T1b, T2, T2a, and T2b) and larger sizes (T3 and T4)], stratified lymphnode metastasis 

[grouped by no lymphnode metastasis (N0) and lymphnode metastasis (N1, N2, N3)], and 

the patient’s age at the time of initial diagnosis. Patients were divided into a lower age group 

and a higher age group by calculating the median age (68 years). We performed the survival 

analysis using the R package Survival (Therneau and Grambsch, 2014).

3 Results and discussion

3.1 Reproducible regulatory networks prioritise most studied dysregulated miRNAs in lung 
cancer

In an on-going project, we conducted an in-depth literature search to identify global patterns 

of miRNA dysregulation in lung cancer (data not shown). We identified 413 miRNAs that 

had significant differential expression in lung tumour tissue samples or cell lines compared 

to normal lung tissue samples or cell lines. Among the eight miRNAs (miR-9-5p, 

miR-17-5p, miR-96-5p, miR-130b-3p, miR-182-5p, miR-183-5p, miR-200b-3p, and 

miR-200c-3p), except for miR-130b-3p, the elevated expression of the seven miRNAs had 

already been confirmed by RT-PCR in previous studies (Table 1). Combining the high-

throughput and low-throughput experimental evidence (see Materials and methods), we 

found that most of the miRNAs had been previously reported by a small number of studies 

and hence researchers garnered less confidence about their pathogenic potential in lung 

cancer. Only 17 miRNAs out of 413, or 4.12%, had been reported by 10 or more studies; 

among them miR-182-5p (19 studies), miR-183-5p (13 studies), miR-200b-3p (12 studies), 

and miR-9-5p (10 studies) were prioritised through our network study (Mitra et al., 2014). 

Another two prioritised miRNAs, miR-96-5p (8 studies; ~top 5%) and miR-200c-3p (7 

studies; ~top 7%) belong to the most studied miRNAs (Figure 2). These results provide an 

additional line of support that these miRNAs, prioritised by our network study, have 

significant aberrant expression in lung cancer and may play a major role in NSCLC 

development. Of note, the network analyses in our previous study were performed based on 

large-scale, genome-wide datasets (e.g., TCGA); thus, the results were not biased towards 

the specific report in literature. Furthermore, in our previous study using RT-PCR analysis, 

we confirmed the elevated expression of miR-130b-3p in NSCLC for the first time (Mitra et 

al., 2014).

3.2 Prognostic value of prioritised miRNAs in NSCLC

Among the eight potential oncogenic miRNAs, the elevated expression of miR-9-5p (Xu et 

al., 2014), miR-17-5p (Chen et al., 2013), miR-183 clustered miRNAs (miR-96-5p, 

miR-182-5p, and miR-183-5p) (Zhu et al., 2011), and miR-200c-3p (Tejero et al., 2014) 
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were associated with poor overall survival (OS) rates of NSCLC patients. With the 

exception of miR-17-5p, all of these studies conducted a survival analysis using NSCLC 

tissue samples. The correlation of miR-17-5p over-expression with the poor OS of patients 

with lung cancer was determined by serum samples. And, to the best of our knowledge, 

there is no report for miR-130b-3p and miR-200b-3p. Hence, here we investigated whether 

the elevated expression of miR-17-5p, miR-130b-3p, and miR- 200b-3p in NSCLC tissue 

samples, extracted from TCGA, was related to the prognosis of patients with lung cancer.

For each miR-17-5p, miR-130b-3p, and miR-200b-3p, we analysed the Kaplan-Meier 

survival curve as a first step in assessing the prognostic value of the corresponding miRNA 

in NSCLC. We then selected miR-17-5p and divided the patient samples into quartiles (Q1–

Q4), according to the expression of the miRNA. Patients belonging to Q4 were selected for 

the high-expression group, and the rest of the patients (Q1–Q3) were selected for the low-

expression group, as demonstrated in Nosho et al. (2014) and Yoo et al. (2009). In the 

Kaplan-Meier survival analysis, we observed a trend with patients with high miR-17-5p 

expression to have a poor OS, in comparison with those with low-miR-17-5p expression 

(see Figure 3). The median survival rate decreased to 16.2 months (35.3 vs. 19.1) when 

miR-17-5p registered at a high level. The univariate Cox hazard regression model analysis 

demonstrated that an elevated expression of miR-17-5p (P-value = 0.004, log-rank test, 

hazard ratio (HR) = 2.23; 95% confidence interval (CI) = 1.27 – 3.92) was associated with 

poor OS (see Table 2). Other variables, such as tumour stage (P-value = 0.07) and tumour 

size (P-value = 0.03) showed a significant association with poor OS; however, the effect was 

not as strong as that of miR-17-5p over-expression. A further point to be noted is that, in 

Kaplan-Meier survival analysis, an elevated expression of miR-130b-3p and miR-200b-3p 

was not observed to be associated with poor OS.

4 Conclusion

This extended analysis, combined with the results from Mitra et al., (2014), elucidates the 

fact that most of the prioritised miRNAs possess both oncogenic and prognostic potential in 

NSCLC. In summary, the concept of reproducible miRNA-TF co-regulatory networks may 

enhance our understanding of miRNA-TF co-regulatory mechanisms in cancer or other 

diseases. Due to the rapid growth of high-throughput expression profiling studies, we may 

access multiple miRNA and mRNA expression profiles for different diseases. Therefore, the 

computational framework we proposed is not only feasible to be applied to other disease 

studies, but also necessary for the identification of complex gene regulation in order to 

enhance our understanding of a specific disease of interest.
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Figure 1. 
microRNA- (miRNA) and transcription factor- (TF) mediated 3-node and 4-node feed-

forward loops (FFLs). Solid line: required. Dash dot line: at least one of the dash dot lines is 

required. Round dot line: not required. ‘T’ shape arrowhead represents regulator-mediated 

target repression event. Round shape arrowhead represents regulator-mediated target 

activation or repression event. In 4-node FFLs, gene-gene association could be inferred from 

gene co-expression (Sun et al., 2012) or known protein-protein interaction (Poos et al., 

2013) networks (see online version for colours)
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Figure 2. 
Literature-based evidence of miRNAs found to be dysregulated in lung cancer by miRNA-

TF co-regulation network approach. X-axis represents the number of miRNAs reported to be 

dysregulated in lung cancer in literature. Y-axis represents the number of studies for each 

miRNA. Red circle: miRNAs reported by 5 or more studies. Grey circle: miRNAs reported 

by less than five studies. miRNA IDs were converted according to miRBase v20 (Kozomara 

and Griffiths-Jones, 2014) using the ID conversion tool embedded in the web-server 

miRandola (Russo et al., 2012) (see online version for colours)
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Figure 3. 
Kaplan-Meier survival curves for patients with NSCLC plotted on miR-17-5p expression. 

Patients were categorised into low or high miR-17-5p expression group if they belong to the 

first three quartiles (Q1–Q3) or fourth quartile (Q4), respectively
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Table 1

Dysregulation pattern of potential oncogenic miRNAs in lung cancer§

miRNA ID

No. studies
reported
up/down
regulation

Total No. 
samples
(tumour + 
normal)
tested

Dysregulation
confirmed by
RT-PCR PubMed IDs

miR-182-5p 19/0 1508 Up in eight studies 20885442, 19493678, 20526284, 21351266, 21358675, 21890451, 
21748820, 21721011, 22573352, 22046296, 19584273, 19654003, 
21116241, 21904633, 21516486, 21920043, 25012722, 24599520, 
24519909

miR-183-5p 13/0 1028 Up in four studies 19493678, 20526284, 21358675, 21748820, 22573352, 19584273, 
19654003, 21904633, 21516486, 21920043, 24599520, 24785186, 
24113142

miR-200b-3p 12/0 680 Up in three studies 20885442, 19493678, 21351266, 21358675, 21563230, 19597153, 
21300873, 21890451, 21721011, 21116241, 21516486, 24113142

miR-9-5p 8/2 993 Up in four studies 16778182, 21748820, 22573352, 19010987, 19654003, 21516486, 
24113142, 24599520, 24019037, 24785186

miR-96 8/0 844 Up in three studies 20885442, 21563230, 22573352, 22046296, 21516486, 21920043, 
24113142, 24599520

miR-200c-3p 7/0 455 Up in two studies 20885442, 19493678, 20526284, 21563230, 19584273, 21516486, 
25124149

miR-17-5p 3/0 577 Up in two studies 19584273, 21544802, 19209007

§
Using RT-PCR analysis, up-regulation of miR-130b-3p in NSCLC was confirmed by Mitra et al. (2014).
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Table 2

Univariate Cox proportional hazard analysis of overall survival in NSCLC patients

Variable HR 95% CI P-value

miR-17-5p expression 2.23 1.27–3.92 0.004

TNM stage 1.69 0.94–3.02 0.07

Tumour size 2.04 1.05–3.98 0.03

Lymph node metastasis 1.48 0.86–2.56 0.16

Age 1.21 0.70–2.08 0.49

HR: Hazard ratio. CI: confidence interval.
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