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Linking Functional Connectivity
and Structural Connectivity Quantitatively:

A Comparison of Methods

Haiqing Huang and Mingzhou Ding

Abstract

Structural connectivity in the brain is the basis of functional connectivity. Quantitatively linking the two, how-
ever, remains a challenge. For a pair of regions of interest (ROIs), anatomical connections derived from
diffusion-weighted imaging are often quantified by fractional anisotropy (FA) or edge weight, whereas func-
tional connections, derived from resting-state functional magnetic resonance imaging, can be characterized by
non-time-series measures such as zero-lag cross correlation and partial correlation, as well as by time-series mea-
sures such as coherence and Granger causality. In this study, we addressed the question of linking structural con-
nectivity and functional connectivity quantitatively by considering two pairs of ROIs, one from the default mode
network (DMN) and the other from the central executive network (CEN), using two different data sets. Selecting
(1) posterior cingulate cortex and medial prefrontal cortex of the DMN as the first pair of ROIs and (2) left dorsal
lateral prefrontal cortex and left inferior parietal lobule of the CEN as the second pair of ROIs, we show that (1)
zero-lag cross correlation, partial correlation, and pairwise Granger causality were not significantly correlated
with either mean FA or edge weight and (2) conditional Granger causality (CGC) was significantly correlated
with edge weight but not with mean FA. These results suggest that (1) edge weight may be a more appropriate
measure to quantify the strength of the anatomical connection between ROIs and (2) CGC, which statistically
removes common input and the indirect influences between a given ROI pair, may be a more appropriate measure
to quantify the strength of the functional interaction enabled by the fibers linking the two ROIs.

Key words: central executive network; default mode network; diffusion-weighted imaging; functional connectivity;
functional MRI; structural connectivity

Introduction

Anatomical connections between brain areas pro-
vide the structural basis for functional interactions be-

tween these areas. Functional connectivity derived from
resting-state functional magnetic resonance imaging (fMRI)
is thus expected to be related to structural connectivity derived
from diffusion imaging in some way. To date, this problem
has been mainly studied qualitatively in humans, which relies
on establishing white matter pathways between the nodes of a
resting-state network using fiber-tracking techniques (De Luca
et al., 2006; Greicius et al., 2009; Toosy et al., 2004; Werring
et al., 1998, 1999). Quantitative links between functional con-
nectivity and structural connectivity have received less atten-
tion. Van den Heuvel et al., applying partial correlation as a
measure of functional connectivity strength and mean frac-
tional anisotropy (FA) as a measure of structural connectivity
strength, observed a positive correlation between the mean FA
value of the cingulum tract and the partial correlation between

posterior cingulate cortex (PCC) and medial prefrontal cortex
(mPFC) connected by the cingulum tract (Van den Heuvel
et al., 2008). Hagmann et al. (2008) used normalized fiber
counting to define a new quantity called edge weight to mea-
sure structure connectivity strength and found a positive cor-
relation between edge weight and resting-state fMRI-based
cross correlation.

Both cross correlation and partial correlation are non-
time-series measures. They exploit the contemporaneous
(zero lag) covariance structure of the blood oxygen level de-
pendent (BOLD) signal and ignore the temporal correlation
that extends beyond the zero lag. Resting-state BOLD sig-
nals are time series. A hallmark of time series is that activity
at the present time can impact activity at a future time. To il-
lustrate the potential inadequacy of applying non-time-series
measures to time series, consider randomly shuffling the vol-
ume index of a resting-state recording. Despite a qualita-
tively different appearance compared to the original data,
the shuffled data have the same cross correlation and partial
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correlation as the original data (Wen et al., 2012a). Time-
series-based measures such as coherence (Curtis et al.,
2005), total interdependence (Wen et al., 2012a), and
Granger causality (Granger, 1969; Wen et al., 2012b) take
into account the temporal dependence beyond the zero lag
and are increasingly applied to characterize the functional in-
teractions of neural data. The use of time-series-based mea-
sures of functional connectivity is hypothesized to have a
positive impact on establishing the quantitative links be-
tween functional connectivity and structural connectivity.

Diffusion imaging-based tractography (Le Bihan et al.,
2001) enables noninvasive construction of the white matter
fiber pathways (Mori and van Zijl, 2002). The direct fiber
connections between two brain regions can be quantified in
a number of ways, including mean FA (Beaulieu, 2002),
mean diffusivity, fiber count (Damoiseaux and Greicius,
2009), and edge weight (Hagmann et al., 2008). Although
mean FA has been used widely to characterize structural con-
nectivity, it is not a proper measure of the strength of ana-
tomical connectivity between the two brain areas, mainly
because mean FA ignores the number of fibers between the
regions of interest (ROIs) and the length of the fibers. Both
fiber length and fiber counts are important structural charac-
teristics that can impact synaptic transmission (Honey et al.,
2009; Lim et al., 2013; Lo et al., 2010; Van den Heuvel and
Sporns, 2011) and thereby functional interactions (Hermund-
stad et al., 2013). Edge weight, in contrast, by taking into ac-
count seed ROIs size, the number of fibers, and the length of
fibers, overcomes the drawbacks of mean FA and is poten-
tially a more appropriate measure of structural connectivity
strength between the two brain areas.

In this study, we address the issue of quantitatively linking
structural connectivity and functional connectivity by ana-
lyzing two data sets of diffusion and resting-state functional
imaging. Selecting mPFC–PCC from default mode network
(DMN) and left dorsal lateral prefrontal cortex (DLPFC)–
left inferior parietal lobule (IPL) from central executive net-
work (CEN) as the two pairs of ROIs, cingulum fibers
connecting mPFC–PCC and superior longitudinal fasciculus
(SLF) fibers connecting left DLPFC–left IPL were con-
structed and quantified by mean FA and edge weight. Func-
tional connectivity measures including cross correlation,
partial correlation, pairwise Granger causality, and condi-
tional Granger causality (CGC) were computed and corre-
lated with mean FA and edge weight. We hypothesize that,
among the many possible pairings of functional connectivity
and structural connectivity measures, CGC and edge weight
offer the best combination to quantitatively link functional
connectivity and structural connectivity.

Materials and Methods

Data acquisition

Two data sets were analyzed to test the relationship be-
tween functional connectivity and structural connectivity.
The first data set was recorded at the University of Florida
(UF) by the authors and will be henceforth referred to as
the UF data set. The second data set, downloaded from the
Functional Connectome 1000 website, was recorded at the
Beijing Normal University (BNU) and will henceforth be re-
ferred to as the BNU data set. We describe each data set in
detail as follows.

UF data set. The experimental protocol was approved by
the University of Florida Institutional Review Board. Twelve
healthy subjects (five females, seven males, age: 25.4 – 2.5
years) with no history of neurological diseases or head injury
gave written informed consent and participated in the exper-
iment. All subjects were screened for possible risks or con-
traindications for MRI scanning.

MRI data were acquired on a Philips Achieva 3T MRI scan-
ner. Participants were instructed to keep still during the entire
experiment to minimize motion artifacts. During resting-state
recording, participants were asked to have their eyes closed but
not to fall asleep or focus on any specific thoughts. Resting-
state fMRI was recorded for 10 min using a single-shot echo
planar imaging (EPI) sequence with the following parameters:
field of view = 224 · 224 mm, matrix size = 64 · 64, TR =
2 sec, TE = 30 ms, flip angle = 90�, slice thickness = 3.8 mm;
300 scans, each volume consisted of 36 axial slices. In the
same scanning session, diffusion tensor imaging (DTI) im-
ages, consisting of 32 weighted (b = 1000 sec/mm2) diffusion
scans and 1 unweighted (b = 0 sec/mm2) scan, were recorded
using a single-shot spin echo EPI sequence with the following
parameters: field of view = 224 · 224 mm, matrix size = 112 ·
112, slice thickness = 2 mm; each volume consisted of 66
axial slices. T1-weighted images were recorded in the sagittal
direction with the following parameters: field of view = 240 ·
240 mm, matrix size = 240 · 240, and slice thickness = 1 mm.

BNU data set. MRI data were acquired from 28 healthy
young subjects (14 females, 14 males, age: 24.5 – 7.52
years) on a SIEMENS MAGNETOM Trio Tim 3T scanner.
Resting-state fMRI was recorded for 8 min using a single-
shot EPI sequence with the following parameters: field of
view = 200 · 200 mm, matrix size = 64 · 64, TR = 2
sec, TE = 30 ms, flip angle = 90�, slice thickness = 3.5 mm;
240 scans, each volume consisted of 33 axial slices. DTI im-
ages, consisting of 64 weighted diffusion scans (b = 1000 sec/
mm2) and one unweighted diffusion scan (b = 0 sec/mm), were
recorded with the following parameters: field of view = 230 ·
230 mm, matrix size = 128 · 128, slice thickness = 2.5 mm;
each volume consisted of 49 axial slices. T1 MPRAGE images
were recorded in the sagittal direction with the following pa-
rameters: field of view = 256 · 256 mm, matrix size = 256 ·
256, and slice thickness = 1.33 mm. Five subjects were
rejected from this data set. Four of them did not have DTI
scans and the remaining subject did not have fMRI scans.

FMRI data preprocessing

The same preprocessing and analysis protocol was applied
to both UF and BNU data sets and it consisted of the follow-
ing steps. The first five functional scans were discarded to
eliminate transients. The remaining fMRI images were pre-
processed using statistical parametric mapping 5 (SPM5)
(www.fil.ion.ucl.ac.uk/spm/). Slice timing correction was
performed to compensate for acquisition delays across slices.
Motion artifacts of timing-corrected images were estimated
and corrected by realigning all functional images to the first
image. Any subject with excessive motion (i.e., exceeding
3 mm translational movement or 3� rotational movement)
was excluded from this study. (No subject was excluded
according to these criteria.) All the motion-corrected func-
tional images were coregistered onto the T1 structural image,
which were then normalized to the standard MNI T1 template

100 HUANG AND DING



and resampled into 3 · 3 · 3 mm voxels. Functional images in
the MNI template space were spatially smoothed with an
8 mm full width at half maximum isotropic Gaussian kernel.

Regions of interest selection

Group ICA implemented in the GIFT Toolbox (http://
icatb.sourceforge.net/) was applied to the preprocessed
fMRI data. The optimal number of independent components
was determined to be 30 by the GIFT ICA algorithm. The
DMN component that contained mPFC, PCC, bilateral an-
gular gyrus (AG), and bilateral middle temporal lobe (MTL),
and the two CEN components that contained left DLPFC–left
IPL and right DLPFC–right IPL, respectively, were identified
by visual inspection and selected. For functional connectivity
analysis, an ROI representing a brain region was defined to
contain voxels within a sphere of 3 mm in radius centered at
the local maximum t-value of that region. For structural
connectivity analysis, the ROIs defined previously were di-
lated by 3 mm to ensure that sufficient white matter was in-
cluded. The structural ROIs so defined were coregistered with
the first volume of the DTI image without diffusion and
transformed to the individual DTI space by SPM5. The main
ROIs pairs used to address the question of quantitative links
between functional connectivity and structural connectivity
were mPFC–PCC of the DMN and left DLPFC–left IPL of the
CEN. Fiber tracking was performed between mPFC and PCC
and between left DLPFC and left IPL, respectively. For
functional connectivity, in addition to the resting-state fMRI
data from these two ROIs pairs, resting-state fMRI data from
other DMN ROIs, including bilateral AG and bilateral MTL,
were used in computing mPFC–PCC partial correlation and
CGC. Similarly, resting-state fMRI data from other CEN
ROIs, including right DLPFC and right IPL, were used in
computing left DLPFC–left IPL partial correlation and CGC.

Measures of functional connectivity

Resting-state fMRI time series before spatial smoothing
were extracted from all the voxels in each spherical ROI
and divided by the global mean of each fMRI scan to remove
the global effect. The time series were band-pass filtered be-
tween 0.01 and 0.1 Hz with a finite impulse response filter.
The filtered signals of each spherical ROI were averaged
across voxels to yield one signal for each ROI. For mPFC–
PCC and left DLPFC–left IPL, the ROIs pairs in this
study, the measures used to quantify the strength of func-
tional connectivity include cross correlation, partial correla-
tion, pairwise Granger causality, and CGC.

Let the signals from a pair of ROIs be denoted as
(x : x1, x2, � � � xn) and (y : y1, y2, � � � yn). Cross correlation be-
tween the two ROIs is defined as (assuming that the means of
x and y are zero)

CCx, y =
�

+
n

i = 1

xiyi

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
n

i = 1

xixi
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+
n
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As the covariation between BOLD signals from two ROIs
could be due to the common influence from a third ROI, to
account for this possibility, we computed partial correlation.
To compute the partial correlation between the pair of ROIs,
data from all the ROIs within the same network (DMN or

CEN) were taken into account. Let z be the data matrix
where each row represents the time series of a network
ROI. The partial correlation between ROIs i and j was com-
puted as follows (Marrelec et al., 2006):

Pij = � Uijffiffiffiffiffiffiffiffiffiffi
UiiUjj

p ,

where U = (Uij) =S� 1 is the inverse covariance matrix of z.
Both cross correlation and partial correlation exploit the

zero-lag covariance structure of the data. Resting-state
BOLD signals, however, are time series, the temporal correla-
tions of which at nonzero lags are not zero. Recent work has
pointed out the advantage of applying time-series-based mea-
sures to resting-state BOLD data (Wen et al., 2012a). Here,
two time-series-based measures were considered: Granger
causality (Granger, 1969) and CGC (Chen et al., 2009).

Let Xt = (xt, yt)
T denote the two time series from two

ROIs. A multivariate autoregressive (MVAR) model was
fit to the data, from which pairwise Granger causality be-
tween two ROIs was derived. Let

+
m

k = 0

AkXt� k = Et,

where Ak is a 2 · 2 coefficient matrix to be estimated and Et is
the residual error with covariance matrix S. The order of
MVAR model m is estimated by Akaike Information Crite-
rion (Akaike, 1974). Once the coefficient matrix Ak and S
are estimated, the spectral density matrix can be defined as

S( f ) = H( f )SH�( f ),

where H(f ) = +m

k = 0
Ake� 2pikf

� �� 1
is the transfer function and

H�(f ) is the transpose and complex conjugation of H(f ). The
Granger causality spectrum from yt to xt is computed accord-
ing to the following equation:

Iy/x( f ) = � ln 1�
+

yy
� +2

xy

+
xx

� �
jHxy( f )j2

Sxx( f )

0
BB@

1
CCA,

which is the proportion of causal contribution from yt to xt at
frequency f. Granger causality in the opposite direction
Iy/x

� �
can be similarly defined. As our goal is to relate

such functional measures with structural connectivity,
which has no directional information, we used the summa-
tion Iy/xþ Ix/y

� �
to quantify the strength of information

flow between the two ROIs. For this study, owing to the
lack of frequency-specific predictions, we integrate over all
the frequencies to arrive at a time domain quantity.

Similar to the rationale of using partial correlation, one
needs to consider CGC to eliminate common influence and
activity transmitted along pathways not directly connecting
the two ROIs. The mathematical formulation for CGC is
rather involved. We refer the reader to our previous publica-
tions for more thorough coverage (Chen et al., 2009; Ding
et al., 2006). The quantity of interest is again the summation
of CGC along opposite directions Iy/xjzþ Ix/yjz

� �
. Here, the

variable z represents all the ROIs that were conditioned out
(bilateral AG and bilateral MTL for DMN or right DLPFC
and right IPL for CEN) and time-domain quantity is derived
by integration over frequencies.
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Measures of structural connectivity

Preprocessing of diffusion images followed the standard
FSL DTI processing pipeline, including three steps of artifact
controlling: (1) manual removal of images affected by large
artifacts, (2) eddy current correction, and (3) brain extraction
to exclude nonbrain areas.

Anatomically, PCC and mPFC are connected through the
cingulum bundle, whereas ipsilateral DLPFC and IPL are
connected by the SLF. In this study, the cingulum bundle
fibers linking mPFC–PCC and SLF fibers linking left
DLPFC–left IPL were established using the DTI data by
the streamline fiber-tracking method implemented in the
software package Diffusion Tensor Visualizer (dTV II)
and VOLUME-ONE (www.volume-one.org). Structural
connectivity strength was quantified by two measures,
mean FA and edge weight. FA at a given tracking point,
measuring the degree of organization of the underlying
white matter at that point (Beaulieu, 2002), was estimated
and averaged over all tracked points on the fiber bundles to
yield the mean FA. Edge weight, which takes into account
the number of fibers, the length of the fibers, and the ROI
size, is computed as follows (Hagmann et al., 2008):

EW(u, v) =
2

Suþ Sv

+
f2F(u, v)

1

l( f )
,

where F(u,v) is the set of fibers connecting ROIs u and v, Su

and Sv are the sizes of the two ROIs, f is each individual fiber
within F(u,v), and l(f) is the length of fiber f.

It is worth noting that fiber tracking between ROIs is not
always successful (Greicius et al., 2009; Van den Heuvel
et al., 2009). For the UF data set, fibers linking mPFC and
PCC were found in 12 out of 12 subjects, whereas fibers link-
ing left DLPFC and left IPL were found in 11 out of 12 sub-
jects. For right DLPFC and right IPL, however, only 4 out of
12 subjects exhibited fibers linking the two ROIs. For the
BNU data set, fiber connections between mPFC and PCC
were found in 15 out of 23 subjects and fibers linking left
DLPFC–left IPL were found in 11 out of 23 subjects. Similar
to the UF data set, fiber tracking between right DLPFC and
right IPL was only possible for 9 out of 23 subjects. For
this reason, right DLPFC and right IPL were not chosen as
an ROI pair for further analysis.

There are multiple reasons for the inability to detect fiber
connections for some subjects. First, individual ROIs used
for fiber tracking were based on group level ROIs. This ap-
proach, although maintaining methodological consistency
across subjects, has the shortcoming of not accounting for in-
dividual differences in anatomy. Although the use of individ-
ually defined ROIs is an alternative, such an approach will
necessarily involve subjective interventions and consequently
increases the likelihood of methodological inconsistencies
across subjects. In addition, little is known about individual
differences in the ROIs within resting-state networks. Our ap-
proach was adopted based on these considerations and in line
with other studies (Van den Heuvel et al., 2009). Second, the
fiber tracts connecting two ROIs are not uniformly distributed
within each ROI, further highlighting the effects that the indi-
vidual differences in ROI definitions can have on the success-
ful outcomes of fiber tracking (Van den Heuvel et al., 2009).
Third, the deterministic fiber-tracking algorithm is known to
have difficulty in reconstructing stable fiber tracts at the

point of crossing fibers (Van den Heuvel et al., 2009; Wakana
et al., 2004). This may lead to failures in finding fiber tracts in
some subjects. Fourth, we used more stringent stopping criteria
in our fiber-tracking algorithm, in which fiber tracking was
stopped when the fiber touched a voxel with an FA value
<0.15 or when it had an angle change between the neighboring
eigenvectors of >30�. Stopping criteria adopted in other similar
studies are FA <0.1 and angle >45� (Van den Heuvel et al.,
2008, 2009). Finally, for the BNU data set, the mPFC is located
further away from PCC according to the group level analysis,
mainly containing the ventral portion of mPFC, which makes it
more difficult to track between PCC and mPFC (Greicius et al.,
2009; Supekar et al., 2010; Van den Heuvel et al., 2008, 2009).

Linking functional connectivity and structural connectivity

Each of the four functional connectivity measures, cross
correlation, partial correlation, pairwise Granger causality,
and CGC, was computed for each subject and plotted against
the mean FA and edge weight for the same subject to inves-
tigate the correlation between the functional connectivity and
structural connectivity measures of mPFC–PCC and of left
DLPFC–left IPL. In each data set, DMN and CEN were an-
alyzed separately.

Meta-analysis of the two data sets

In addition to the separate analysis of the UF data set and
the BNU data set, a meta-analysis combining the two data
sets was also carried out by applying the Liptak–Stouffer
Z-score method (Liptak, 1958). The same method has been
applied to MRI studies in which MRI data recorded at mul-
tisites were combined (Cheng et al., 2015). In this method,
correlation p values of structural–functional correlation
from each data set were first converted to Z-scores: Zi =F–1

(1 – pi), where F is the standard normal cumulative distribu-
tion function. The Liptak–Stouffer Z-score for each functional
connectivity and structural connectivity pair was computed
according to the following (Liptak, 1958):

Z =
+k

i = 1
wiZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

+k

i = 1
w2

i

q ,

where Z is the combined Z-score of individual Z-scores (Zi)
from k different data sets (k = 2 for this work), Zi is ith data
set’s Z-score, the weight of ith data set wi =

ffiffiffiffiffi
Ni

p
, and Ni is

the number of subjects in the ith data set. From the combined
Z-score the corresponding p value was identified.

Results

UF data set

Default mode network. As shown in Figure 1A, key
nodes of the DMN, including mPFC, PCC, bilateral AG,
and bilateral MTL, were contained in a single ICA compo-
nent (false discovery rate [FDR] p < 0.001).

For structural connectivity analysis, the ROIs were core-
gistered to each subject’s first volume of DTI image
(b = 0 sec/mm2) by SPM5. Fibers linking mPFC and PCC
were then tracked by the streamline fiber-tracking method
using VOLUME-ONE and shown for a typical subject in
Figure 1B. From these tracked fibers, structural connectivity
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strength was quantified by mean FA and edge weight for
each subject.

To link functional connectivity with structural connectivity,
cross correlation, partial correlation, Granger causality, and
CGC between mPFC and PCC were evaluated for each subject

and plotted against mean FA and edge weight. No significant
correlation was observed between all four functional connec-
tivity measures and mean FA. Although no significant correla-
tion was found between cross correlation, partial correlation,
Granger causality, and edge weight, there is a significant

FIG. 1. Region of interest
(ROI) identification and fiber
tracking in default mode net-
work (DMN) (UF data set).
(A) The DMN identified by
ICA, p < 0.001 false discov-
ery rate corrected, which
includes posterior cingulate
cortex (PCC), medial pre-
frontal cortex (mPFC), bilat-
eral angular gyrus (AG), and
bilateral middle temporal
lobe (MTL). (B) Cingulum
fiber bundle connecting PCC
and mPFC in one subject.
Streamline fiber-tracking
method was used. Color
images available online at
www.liebertpub.com/brain

FIG. 2. Relationship be-
tween measures of structural
connectivity and measures of
functional connectivity for
mPFC–PCC (UF data set).
(A) Cross correlation versus
edge weight. (B) Partial cor-
relation versus edge weight.
(C) Granger causality versus
edge weight. (D) Conditional
Granger causality (CGC)
versus edge weight.
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positive correlation between CGC and edge weight, as seen in
Figure 2. Table 1 summarizes these results.

Central executive network. In Figure 3A, key nodes of
CEN were identified by two ICA components, one contain-
ing left DLPFC and left IPL and the other containing right
DLPFC and right IPL (FDR p < 0.001). Fibers linking left
DLPFC and left IPL were then tracked by the streamline
fiber-tracking method using VOLUME-ONE and shown
for a typical subject in Figure 3B. As shown in Figure 4
and summarized in Table 1, between left DLPFC and left
IPL, only CGC and edge weight displayed significant posi-
tive correlation, similar to what was found for mPFC–PCC.

BNU data set

To cross validate the results mentioned, we applied the
same analysis to the BNU data set and the results are summa-
rized in Table 2. As can be seen, no significant correlation
was found between all four functional connectivity measures
and mean FA for both mPFC–PCC and left DLPFC–left IPL.
For mPFC–PCC, CGC was again the only measure among
the four applied that was positively correlated with edge
weight. For left DLPFC–left IPL connections, however,
none of the functional connectivity and structural connectiv-
ity measurement pairs was significantly correlated.

Meta-analysis of the two data sets

The two data sets were combined through a meta-analysis
using the Liptak–Stouffer Z-score method (Liptak, 1958).
The results are summarized in Table 3. Again, for both
mPFC–PCC and left DLPFC-left IPL, no significant correla-
tion was found between all four functional connectivity mea-
sures and mean FA. Importantly, for both mPFC–PCC and
left DLPFC–left IPL, CGC was the only measure among the
four applied that was significantly correlated with edge weight.

Discussion

We selected mPFC–PCC in DMN and left DLPFC–left IPL
in CEN, and the cingulum and SLF bundles that connect them,
as the objects of interest to examine the quantitative links be-
tween functional connectivity and structural connectivity.
Deriving functional connectivity between the two ROI pairs
from resting-state fMRI data and structural connectivity
from diffusion imaging data, we reported two results. First,
zero-lag cross correlation, partial correlation, and pairwise
Granger causality were not significantly correlated with either
mean FA or edge weight across subjects. Second, CGC was
significantly correlated across subjects with edge weight but
not with mean FA. These results suggest that (1) edge weight
may be a more appropriate measure to quantify the strength of
the anatomical connection between ROIs and (2) CGC, which
statistically removes the common input and the indirect influ-
ences between a given ROI pair, may be a more appropriate
measure to quantify the strength of the functional interaction
enabled by the fibers linking the two ROIs.

Quantifying the strength of functional connectivity

Functional connectivity is based on covariation of BOLD
activity at different recording sites. Cross correlation, partial

Table 1. Correlation Between Functional Connectivity and Structural Connectivity

Measures (UF Data Set)

mPFC–PCC Left DLPFC–left IPL

Mean FA Edge weight Mean FA Edge weight

CC R =�0.400 p = 0.197 R = 0.161 p = 0.617 R =�0.084 p = 0.806 R = 0.066 p = 0.847
PartCC R =�0.290 p = 0.360 R = 0.464 p = 0.129 R =�0.290 p = 0.386 R = 0.165 p = 0.628
GC R =�0.398 p = 0.201 R = 0.249 p = 0.436 R = 0.448 p = 0.167 R = 0.178 p = 0.601
CGC R = 0.187 p = 0.561 R 5 0.901 p 5 0.0001 R = 0.092 p = 0.788 R 5 0.793 p 5 0.004

Significant correlation was indicated by bold typeface.
CC, cross correlation; CGC, conditional Granger causality; DLPFC, dorsal lateral prefrontal cortex; FA, fractional anisotropy; GC,

Granger causality; IPL, inferior parietal lobule; mPFC, medial prefrontal cortex; PartCC, partial correlation; PCC, posterior cingulate cortex.

FIG. 3. ROI identification and fiber tracking in central ex-
ecutive network (CEN) (UF data set). (A) The CEN identi-
fied by ICA, p < 0.001 FDR corrected, which includes
bilateral dorsal lateral prefrontal cortex (DLPFC) and bilat-
eral inferior parietal lobule (IPL). (B) Superior longitudinal
fasciculus fiber bundle connecting left DLPFC and left IPL
in one subject. Streamline fiber-tracking method was used.
Color images available online at www.liebertpub.com/brain
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correlation, pairwise Granger causality, and CGC are all mea-
sures of covarying BOLD activities. Covariation of BOLD ac-
tivity can have multiple sources: (1) direct interaction between
the two ROIs, (2) common input from other brain areas, and
(3) interaction between the two ROIs mediated by other
brain areas. Structural connectivity between two ROIs is
based on the fibers directly connecting the two ROIs. There-
fore, only the direct functional interaction between the ROIs
is expected to correlate with the structural connectivity
strength.

Cross correlation measures the degree of covariation of
two BOLD signals at zero lag and is widely used in fMRI
studies for its conceptual simplicity and ease of use. It has
two problems in terms of providing a measure of the func-
tional communication between two ROIs enabled by the fi-
bers linking them. First, it includes contributions from
common input from other brain areas as well as activities
transmitted through other nodes of the same resting-state net-

work (Messé et al., 2014). Second, it only accounts for the
zero-lag covariation structure in the data and ignores tempo-
ral dependence beyond the zero lag. In other words, it is not a
time-series measure. Past work has already recognized the
first problem and proposed the use of partial correlation as
an alternative (Supekar et al., 2010; Van den Heuvel et al.,
2008). Although partial correlation removes statistically
the influences from the other nodes in the same resting-
state network, it has two issues of its own. First, it cannot
take into account the influence of common input. Second,
like cross correlation, partial correlation explores covariation
structures in contemporaneously recorded data (zero lag).
Temporal relations beyond the zero lag were again not con-
sidered. As expected, both cross correlation and partial cor-
relation were found to be not significantly correlated with
structural connectivity measures.

The hallmark of a time series is that activity occurring now
can influence activity occurring in the future. It has long been

FIG. 4. Relationship be-
tween measures of structural
connectivity and measures of
functional connectivity for
left DLPFC–left IPL (UF
data set). (A) Cross correla-
tion versus edge weight. (B)
Partial correlation versus
edge weight. (C) Granger
causality versus edge weight.
(D) CGC versus edge weight.

Table 2. Correlation Between Functional Connectivity and Structural Connectivity

Measures (BNU Data Set)

mPFC–PCC Left DLPFC–left IPL

Mean FA Edge weight Mean FA Edge weight

CC R =�0.0004 p = 0.999 R = 0.162 p = 0.564 R = 0.218 p = 0.369 R = 0.290 p = 0.229
PartCC R = 0.096 p = 0.733 R =�0.191 p = 0.495 R = 0.033 p = 0.894 R = 0.001 p = 0.997
GC R = 0.235 p = 0.399 R =�0.076 p = 0.787 R = 0.065 p = 0.792 R =�0.200 p = 0.412
CGC R = 0.236 p = 0.397 R 5 0.541 p 5 0.037 R = 0.002 p = 0.995 R = 0.216 p = 0.374

Significant correlation was indicated by bold typeface.
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recognized that resting-state BOLD signals are time series.
The commonly used band-pass filter further introduces tem-
poral dependence into the data. Time-series-based measures
of functional connectivity that have been applied to study
both resting-state and task-state functional networks include
coherence, total interdependence, pairwise Granger causal-
ity, and CGC. For the purpose of this study, CGC was consid-
ered the most appropriate measure that can be quantitatively
linked with structural connectivity measures. The reason is
that the total temporal relationship between two ROIs A and
B can be decomposed into three components: causal influence
from A to B (A/B) + causal influence from B to A (B/
A) + common input (Ding et al., 2006). By adding pairwise
Granger causality in both directions as a measure of functional
connectivity, (A/B) + (B/A), we remove the effect of
common input. However, pairwise Granger causality still
includes influences between A and B that are transmitted
through other nodes of the network (e.g., A/C/B). Com-
pared to pairwise Granger causality, CGC has the additional
benefit of being able to differentiate direct from indirect causal
influences, and has been applied to measure direct functional
connectivity in the brain (Chen et al., 2006; Ding et al., 2006;
Liao et al., 2010; Zhou et al. 2009). As CGC can statistically
remove common input as well as indirect influences routed
through the other nodes of the same network, it is thus
expected to be a more accurate measure of functional interac-
tion mediated by the fibers linking the two ROIs. Our results
are in support of this hypothesis.

Recent computational modeling studies show that the indi-
rect structural connections between the two brain regions, for
example, through a third brain region, can contribute signif-
icantly to the functional connectivity measures between the
two regions (Adachi et al., 2012; Messé et al., 2014). This
lends further support to our effort to remove common input
and indirect influences when assessing the functional interac-
tion strength between the two ROIs to address the quantita-
tive links between functional connectivity and structural
connectivity.

Quantifying the strength of structural connectivity

Diffusion-weighted imaging data provide the foundation
for deriving structural connectivity measures. The most com-
monly used structural connectivity measure is FA. By defini-
tion, FA is a good measure of fiber integrity, but as a measure
of structural connectivity strength, it has shortcomings. The
main reason is that it does not incorporate factors such as
the number of fibers, the length of each fiber, and the size of

ROIs, which are important for assessing the strength of struc-
tural connectivity (Honey et al., 2009; Lim et al., 2013; Lo
et al., 2010; Van den Heuvel and Sporn, 2011). Edge weight
proposed by Hagmann et al. (2008), reflecting the summation
over all the tracked fibers and normalized by the seed ROIs’
size and fiber length, takes these factors into account and
has been viewed as a more appropriate measure of structural
connectivity strength (Cheng et al., 2012; Hagmann et al.,
2010; Supekar et al., 2010; Uddin et al., 2010, 2011; Van
den Heuvel and Sporns, 2011). As expected, mean FA showed
no correlation with any of the four functional connectivity
measures used in this study. In contrast, edge weight showed
significant correlation with CGC.

Our findings are in line with the literature. Attempts at
linking mean FA and functional connectivity have resulted
in inconsistent findings. For example, positive correlation
between mean FA and functional connectivity was only
found when multiple sclerosis patients and normal controls
were combined, but not within each group (Lowe et al.,
2008). Morgan et al. found no correlation between mean
FA and functional connectivity within the human language
circuits (Morgan et al., 2009). In addition, no correlation
was found between mean FA and functional connectivity
in DMN of young children (Supekar et al., 2010).

Structural–functional relationship in animal studies

The relationship between functional connectivity and struc-
tural connectivity has been investigated in macaque monkeys.
Similarities between macaque brain networks and human
brain networks have been suggested (Margulies et al., 2009;
Mars et al., 2011; Shen et al., 2015). In macaques, whereas
functional connectivity, quantified by cross correlation, was
sometimes derived from fMRI data (Adachi et al., 2012;
Deco et al., 2014; Margulies et al., 2009; Mars et al., 2011;
Shen et al., 2012, 2015), structural connectivity was often
based on tract tracing techniques, which are not possible in hu-
mans. The tracer molecules injected into the source brain re-
gion are absorbed and transported by axons to target brain
regions, resulting in a tracer density map. Those areas showing
high tracer density are labeled as brain regions with strong
structural connections to the source region, whereas areas
showing zero or low tracer density are considered having
none or weak structural connection to the source region. In
the online macaque cortex anatomical connectivity database
CoCoMac (CoCoMac.g-node.org), structural connections are
classified according to four categories: no connection, light
connection, moderate connection, and strong connection
(Adachi et al., 2012; Deco et al., 2014; Shen et al., 2012,
2015). Positive correlation has been found between functional
connectivity and structural connectivity within local areas in
somatosensory cortex (Wang et al., 2013). Other studies, in-
vestigating the whole brain connections including long-
distance ROIs, found that brain regions with direct structural
connections also exhibited stable functional connectivity
(Shen et al., 2012, 2015). A lesion study in monkeys further
showed that interhemispheric functional connectivity was se-
verely reduced with resection of interhemispheric fiber con-
nections. Interestingly, no prominent reduction was found if
anterior commissure was left intact, which demonstrates the
contribution of indirect structural connections to functional
connectivity (O’Reilly et al., 2013).

Table 3. Correlation Between Functional

Connectivity and Structural Connectivity

Measures (UF and BNU Data Sets Combined

Through Meta-Analysis)

mPFC–PCC Left DLPFC–left IPL

Mean FA Edge weight Mean FA Edge weight

CC p = 0.959 p = 0.625 p = 0.563 p = 0.732
PartCC p = 0.589 p = 0.223 p = 0.663 p = 0.740
GC p = 0.227 p = 0.687 p = 0.285 p = 0.258
CGC p = 0.463 p 5 0.0001 p = 0.861 p 5 0.021

Significant correlation was indicated by bold typeface.
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ROI selection

The choice of PCC and mPFC of the DMN and left
DLPFC and left IPL of the CEN as the ROIs is based on sev-
eral considerations. First, DMN and CEN are two of the most
studied resting-state networks. They are also the networks
where much of the discussion on the relationship between
functional connectivity and structural connectivity took
place (Greicius et al., 2009; Supekar et al., 2010; Uddin
et al., 2011; Van den Heuvel et al., 2008, 2009). Second,
mPFC–PCC and DLPFC–IPL are the ROI pairs of choice
in a number of previous studies attempting to link structural
connectivity and functional connectivity (Greicius et al.,
2009; Supekar et al., 2010; Uddin et al., 2011; Van den Heu-
vel et al., 2008, 2009). By choosing the same ROIs, we can
facilitate the comparison with the previous work. Third, PCC
and mPFC, the two midline nodes of DMN, and bilateral
DLPFC and IPL are the most robustly identified brain re-
gions from resting-state data (Greicius et al., 2003; van den
Heuvel and Hulshoff Pol, 2010). Fourth, mPFC–PCC and
left DLPFC–left IPL are linked by major fiber systems. It
has been shown that cingulum fiber bundles linking PCC–
mPFC (Greicius et al., 2009; Khalsa, 2014; Supekar et al.,
2010; Van den Heuvel et al., 2008) and left hemisphere
SLF linking left DLPFC–left IPL (Uddin et al., 2011; Van
den Heuvel et al., 2009) can be more reliably established.
Fifth, the nodes within DMN and CEN are strongly con-
nected with one another, and this is important as signals
from other nodes within the network are used for computing
partial correlation and CGC.
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