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Abstract

Studying brain connectivity is important due to potential differences in brain circuitry between health and disease.
One drawback of graph-theoretic approaches to this is that their results are dependent on the spatial scale at which
brain circuitry is examined and explicitly on how vertices and edges are defined in network models. To investigate
this, magnetic resonance and diffusion tensor images were acquired from 136 healthy adults, and each subject’s
cortex was parceled into as many as 50,000 regions. Regions were represented as nodes in a reconstructed network
representation, and interregional connectivity was inferred via deterministic tractography. Network model behavior
was explored as a function of nodal number and connectivity weighing. Three distinct regimes of quantitative be-
havior assumed by network models as a function of spatial scale are identified, and their existence may be mod-
ulated by the spatial folding scale of the cortex. The maximum number of network nodes used to model human
brain circuitry in this study (*50,000) is larger than in previous macroscale neuroimaging studies. Results suggest
that network model properties vary appreciably as a function of vertex assignment convention and edge weighing
scheme and that graph-theoretic analysis results should not be compared across spatial scales without appropriate
understanding of how spatial scale and model topology modulate network model properties. These findings have
implications for comparing macro- to mesoscale studies of brain network models and understanding how choosing
network-theoretic parameters affects the interpretation of brain connectivity studies.
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Introduction

The human connectome can be conceptualized as a
network model of elements and connections, which

form the human brain (Sporns et al., 2005). Brain connectiv-
ity studies using network models have identified differences
between healthy control subjects’ and patients’ clinical con-
ditions, which include schizophrenia, autism, and dementia
(Crossley et al., 2014). The identification of such differ-
ences is important for identifying brain circuitry pathways
whose existence and abnormal function are the causal
factors for the development and severity of brain pathology
and which can be targeted pharmacologically or electro-
physiologically to ameliorate symptoms and improve
patient health.

Though useful, one drawback of network-theoretic analyses
of brain circuitry is that their results depend strongly on how
network nodes and connectivity strengths are defined, as al-
ready found elsewhere (Zalesky et al., 2010). At the macro-

scopic level, nodes are typically defined by dividing the
cortex into regions of variable extent based on predefined par-
cellation schemes, whereas the weights of connections be-
tween nodes can assume values based on parameters, such
as connectivity density (CD), physical connection length
(CL), and so forth. Regardless of spatial scale, however,
graph properties may vary substantially depending on how
nodes and edges are defined in network models, and it is im-
portant to understand how the choice of cortical parcellation
and connectivity weighing can affect network-theoretic analy-
sis. Furthermore, it is equally important to grasp the limita-
tions of representing brain connectivity patterns using
network-theoretic models as proxies of physical connectivity
and delineate with precision both the advantages and disad-
vantages of such representations. Importantly, network mod-
els of brain circuitry are simplified representations of neural
connectivity, and thus, network-theoretic analysis suffers
from important drawbacks, which have been insufficiently ex-
plored by the connectomics community.
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At the macroscopic scale, human brain connectivity is typ-
ically studied in vivo using magnetic resonance imaging
(MRI) and diffusion tensor imaging (DTI), which can allow
one to acquire high-resolution images of brain structure
(in the case of MRI) and identify the direction of water diffu-
sion along white matter (WM) tracts, which connect gray mat-
ter (GM) regions to each other (in the case of DTI) (Goh et al.,
2014; Irimia and Van Horn, 2012, 2014). Such information can
be used to model and investigate brain architecture using net-
work theory, which has been widely used due to its powerful
tools for the quantification, analysis, and interpretation of net-
work model properties (Park and Friston, 2013). A variety of
measures, which quantify integration, segregation, centrality,
resilience, and other properties, have been proposed to de-
scribe and compare brain network models from the microscale
(neuron-to-neuron connections) to the macroscale (region-to-
region connections). This study examines the behavior of such
measures as a function of node assignment modality and con-
nectivity weighing scheme and thereby, implicitly, as a func-
tion of spatial scale. Explicitly, this behavior is investigated as
a function of vertex definition scheme and edge weighing mo-
dality due to the importance of these factors in determining
network model properties.

MRI and DTI volumes were acquired from a sample of
136 healthy adults, and both GM and WM were segmented
in each subject. The cortex was parceled into a number of re-
gions, which ranged from 2 to 50,000, and every region was
represented as a node in each subject’s brain network model.
WM connectivity was inferred from DTI using deterministic
tractography, and graph edges were assigned weights based
on either anatomic or diffusion-related measures of connec-
tivity strength. The behavior of graph genus and eight widely
used graph-theoretical metrics as a function of cortical re-
gion number and connectivity weighing was then explored.
Importantly, three distinct regimes of quantitative behavior
assumed by the properties of brain network models as a func-
tion of spatial scale were identified.

Due to the large effect of spatial scale on the quantitative
variability of graph-theoretical metrics, an important conclu-
sion of this study is that comparing such measures across
scales should not be attempted without appropriate under-
standing of their variability. Additionally, due to large vari-
ability in network model topology as quantified by graph
genus, network metrics are challenging—if not impossible—
to interpret without reference to this important property. For
this reason, we conclude that understanding the topological
properties of network models should be an immediate goal
for researchers in the field of connectomics. The asymptotic
behavior of network measures computed in this study (up to
50,000 network nodes) theoretically permits inferring the
structure and properties of human brain circuitry at a spatial
scale where cortical parcels are much smaller than in previous
studies. For this reason, the present study has implications for
bridging the gap between macro- and mesoscale investigations
of brain network models and delineating the advantages as
well as limitations of graph-theoretic models of brain circuitry.

Materials and Methods

Participants

The study cohort included N = 136 healthy adult subjects
(42 males) with ages from 18.6 to 61.1 years (mean: 33.3

years, standard deviation: 11.6 years). Each subject provided
informed written consent as required by the Declaration of
Helsinki, U.S. 45 C.F.R. 46. Neuroimage volume acquisition
was conducted with the approval of the local ethics commit-
tees at the respective research institutions where data were
acquired. Participants were recruited by advertisements in
local newspapers and campus flyers. Subjects were healthy
with no self-reported history of neurological or psychiatric
illnesses. None of the participants had a current or past psy-
chiatric diagnosis (including substance abuse), and none was
taking any medications for medical reasons. Exclusion crite-
ria included left-handedness, hypertension, metal implants,
neurological illness, and a history of head trauma with loss
of consciousness for more than 5 min.

Neuroimage acquisition

Brain imaging data sets were fully anonymized, and no
linked coding or keys to subject identity were maintained.
For these reasons, in compliance with the U.S. Health Insur-
ance Portability and Accountability Act (HIPAA; www.hhs
.gov/ocr/privacy), this study does not involve human sub-
jects’ materials. Structural T1-weighted MRI and DTI volumes
were acquired from each patient using a Siemens Trio Tim 3.0
T scanner. For T1-weighted MRI, a Turbo gradient-recalled
magnetization-prepared rapid gradient echo (MP-RAGE)
sequence (repetition time [TR] = 2 sec, echo time [TE] = 30
msec, flip angle = 25�, slice thickness = 1 mm, field of view
[FOV] = 256 mm, acquisition matrix = 256 · 256, and num-
ber of slices = 256) was used. For diffusion-weighted im-
ages, a 12-channel coil and a sequence with the following
parameters were used: TR = 9.4 sec, TE = 88 msec, flip an-
gle = 90�, slice thickness = 2 mm, FOV = 256 mm, number of
gradient directions = 68, and acquisition matrix = 128 · 128.
Two nondiffusion-weighted volumes were acquired for
each subject (B0 diffusivity: 0 and 10�3 mm2/sec). The same
scanner and sequence types were used for data acquisition
from each subject.

Connectivity calculation

Before any analysis, each subject’s T1-weighted MRI vol-
ume was registered to her/his DTI volume using FSL FLIRT
(Jenkinson and Smith, 2001). The cortical surface was recon-
structed as a triangular tessellation (average intervertex dis-
tance of *1 mm, that is, *300,000 vertices per brain mesh)
to produce a high-resolution, smooth representation of the
GM–WM interface using FreeSurfer 5.3 with default settings,
as detailed extensively elsewhere (Dale et al., 1999; Fischl
et al., 1999). At each vertex vi of the tessellation, cortical
thickness was measured as the distance between the GM–
WM boundary and the cortical surface. For each subject,
DTI and MRI volumes were first coregistered using affine reg-
istration. Eddy current correction was applied to each DTI vol-
ume, followed by an appropriate rotation of the B-matrix
(Leemans and Jones, 2009). Although field maps were not
obtained and echo planar imaging susceptibility corrections
were not implemented, a bias field correction using a fourth-
order polynomial was implemented using the BrainSuite
bias field corrector (Shattuck and Leahy, 2002). DTI volumes
were subsequently processed using TrackVis (http://trackvis
.org) to reconstruct WM streamlines using second-order
Runge–Kutta deterministic tractography. A tracking mask
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with a thresholded fractional anisotropy (FA) value of 0.35
and a step length of 1 voxel was used. Complete (whole-brain)
seeding with a turning angle of 15� was implemented.
Streamline bundles shorter than 1.5 cm were discarded.

After segmenting the cortical surface and performing DTI
tractography, the connectivity matrix of each subject’s brain
was reconstructed. Let vi and vj be vertices on the cortical
mesh, which are linked by some WM connection cij. For
every connection, the three-dimensional coordinates associ-
ated with the extremities of cij (i.e., with vi and vj) were iden-
tified. To associate each streamline end-point with a specific
graph vertex, the shortest euclidean distance between the co-
ordinates of the former and the cortical surface associated
with the GM–WM interface was first calculated. Streamlines
with end-points whose shortest distance to the cortex was
greater than 1 cm were discarded. The cortical mesh vertex,
which was closest to the streamline’s end-point, was as-
sumed to be the vertex to which the streamline was con-
nected. The corresponding entry associated with that vertex
and indexed by i and j in the connectivity matrix C of each
subject was assigned a value, which reflected the presence
of a streamline between the two vertices, and the process
was repeated for each streamline.

The generation of C did not involve a predefined parcella-
tion scheme. Because the extremity of each streamline bun-
dle is associated with some point vi on the cortical mesh, the
dimensions of C are determined by the number of streamline
bundles reconstructed via tractography rather than by a par-
cellation scheme, which is specified a priori. Whereas each
cortical mesh contained *300,000 vertices (as extracted
from T1-weighted MRI using FreeSurfer), the largest number
of parcels used was 50,000. Thus, at each level of spatial res-
olution, a different number of mesh vertices had to be com-
bined to generate a cortical parcel. Each parcel was then
equated to a node in the graph-theoretical representation of
the brain network. The process of dividing the cortical
mesh into parcels was implemented subject to the require-
ment that all parcels have approximately the same area
(i.e., the total surface of the cortical mesh divided by the
total number of parcels). For each pair of parcels, streamlines
whose extremities ended within these parcels were modeled
as forming the graph edge between the two parcels in ques-
tion. The spatial location and extent of every parcel were
constrained such that mapping each parcel to the FreeSurfer
atlas of Destrieux and colleagues (2010) would result in the
maximum atlas-space overlap across subjects.

For each connection cij, the mean FA over cij was calcu-
lated as the average of FA values over all DTI voxels tra-
versed by cij from one extremity of the streamline to the
other end. Similarly, at each vertex on the cortical mesh,
the mean FA of streamlines linking vi to the rest of the net-
work was computed. The CD at each vertex was calculated
as the sum of all reconstructed streamlines linking it to the
rest of the brain, divided by the surface area of the vertex
neighborhood and by the total number of streamlines in the
brain. Here, the neighborhood of some vertex vi denotes
the portion of the mesh surface containing points that are
closest to vi. In addition to these measures, it can also be in-
formative to compute the product between CL and CD, that
is, CL · CD. This measure is somewhat analogous to the vol-
ume of a conducting cable; specifically, the CL is similar to
the length of the cable, and the CD is analogous to its cross

section. The product of CL and CD conveys, simultaneously,
the topological distance between nodes (similar to the length
of a cable) as well as the number of individual streamlines
between pairs of parcels. The product of CL and CD is
thus a brain network model analog of total charge, which
can be accommodated along a bundle of wires within a
cable: it is a surrogate measure that is proportional to the
number of streamlines contained within a streamline bundle
(CD) as well as to the length of the connection (CL).

Network-theoretic analysis

For all network-theoretic analyses, the graph representations
of brain networks contained edges, which were weighted by
their CD, FA, CL, or CL · CD. After parceling the cortex into
a number of regions, which ranged from 2 (1 region per hemi-
sphere) to 50,000, each region was then represented as a corre-
sponding node in the reconstructed brain network model of each
subject. For each parcellation, the degree distribution of the
brain network model was then computed. Graph genus, defined
as the smallest number g such that the graph can be drawn on a
surface of genus g without any edge crossings, was also com-
puted, as detailed elsewhere (Mohar, 1999). The behavior of
eight widely used graph-theoretical metrics was then explored
as a function of cortical region number and connectivity
weighing. These metrics were assortativity, global clustering
coefficient, modularity, mean rich-club coefficient, characteris-
tic path length, small-world coefficient, efficiency, mean be-
tweenness centrality, participation coefficient, and diversity
coefficient. Their values were computed using the Brain Con-
nectivity Toolbox (www.brain-connectivity-toolbox.net). The
calculation of the small-world coefficient was performed using
the network randomization technique, as described elsewhere
(Alstott et al., 2009; Rubinov and Sporns, 2010; van Wijk
et al., 2010).

Statistical analysis

To provide a quantitative description of how significantly
graph-theoretical metrics vary as a function of spatial scale, a
multivariate analysis of variance (MANOVA) with repeated
measures was implemented following a standard approach
(Rencher, 2002). The purpose of the MANOVA was to test
the null hypothesis that the mean values of the p = 8 network
metrics were equal across k = 3 distinct statistical treatments
(levels). The three treatments consisted of parceling the cor-
tex into 50, 500, and 50,000 regions, respectively. These spe-
cific values were selected to illustrate the variability of
network model properties across spatial scales, given that
dividing the cortex into 50, 500, and 50,000 regions corre-
sponds to average parcel sizes of 50, 5, and 0.05 cm2, respec-
tively. The first case (50 cortical regions) is of interest
because many recent studies have studied connectivity prop-
erties at this spatial scale [see Markov and colleagues (2013)
for a thorough review]. The second case (500 regions) is in-
formative because it translates into an average parcel size
of *5 cm2 (i.e., a circle with a diameter of *2.5 cm),
which is at the spatial scale investigated in many functional
studies (Bassett and Bullmore, 2006). Finally, the third case
(50,000 regions) corresponds to the lowest spatial scale avail-
able in our study, and the lowest scale at which a study of
network-theoretic properties has been attempted thus far.
By conceptualizing the parcellation of the cortex into three
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numbers of regions as statistical treatments, we sought to ex-
plore the effects of nodal definition scheme on network
model properties at different spatial scales. The statistical fea-
ture vector under consideration consisted of values associated
with each of the eight graph-theoretical measures discussed in
this study. Wilks’ L test statistic was computed as L= jHj/jE +
Hj, where H and E are the hypothesis (between treatments)
and error (within treatment) matrices, respectively, and j $ j in-
dicates the matrix determinant. The omnibus null hypothesis
that the mean multivariate feature vectors were equal across
treatments was tested after converting Wilks’ L statistic to
an F statistic via an exact transformation [cf. p. 163 in Rencher
(2002)]. This F statistic has 2p and 2(vE� p + 1) degrees of
freedom (d.f.), where vE = k(N� 1), that is, 16 and 796 d.f. in
the present study. We also sought to determine which specific
univariate measures contributed most to the separation be-
tween the mean feature vectors of each treatment. To do so,
the eigenvalues ki and eigenvectors ai of the matrix E�1 H
were computed via simultaneous diagonalization (Cardoso
and Souloumiac, 1996). On the one hand, the eigenvalues ki

specify the extent to which the univariate measures contribute
to the variance across treatments. On the other hand, the mag-
nitude and sign of each eigenvector coefficient aij (where
i ranges from 1 to rank(E�1 H) = k� 1 and j ranges from
1 to p) indicate which univariate measures contribute most to
the separation between mean feature vectors across treatments
(Rencher, 2002). To show the significance of each univariate
variable’s contribution to the separation between mean feature
vectors across treatments, a partial F test can be implemented,
where F = [(1�L)(vE� p + 1)]/(LvH), vE = N� k, vH = k� 1,
and F has vH and vE� p + 1 d.f. In this specific instance of
the partial significance test, F has 2 and 126 d.f. Wilks’ L sta-
tistic is computed as L=Lp/Lp–1, where Lp is Wilks’ L for all
p variables, and Lp� 1 involves all variables except the univar-

iate measure whose contribution above and beyond all others is
being investigated [cf. p. 290 in Rencher (2002)]. A power
analysis was also implemented using a standard approach in-
volving the use of the noncentral F distribution (Butler and
Wood, 2005; Van Horn et al., 1998) to investigate whether
our sample size was large enough to detect an effect size
g2 = 0.02 at significance levels a of 0.05 and 0.01.

Results

Figure 1 displays (A) the degree distribution of human brain
network models and (B) the dependence of graph genus as a
function of node definition scheme. Up to *100 nodes, the
width (i.e., standard deviation) of the degree distribution is rel-
atively low. From*100 to*500 nodes, a substantial increase
in nodal degree variability is observed, peaking around *500
nodes. For even larger values, the standard deviation of nodal
degrees decreases again, although very slowly, and reaches
very small values in the limit where the number of nodes
in the network is very large. Similarly, in the case of graph
genus, distinct behaviors are observed for graphs with (i)
under *100 nodes, (ii) from *100 to *500 nodes, and
(iii) more than *500 nodes. Figure 2 illustrates how four
graph-theoretical metrics, which quantify network model inte-
gration/segregation (assortativity, participation coefficient,
mean rich-club coefficient, and betweenness centrality), vary
as a function of node number as well as edge weighing
scheme. In all figures, the quantities displayed correspond to
the mean of the examined graph metrics over all subjects.

Assortativity (Fig. 2A) can be conceptualized as the pref-
erence for a network model’s nodes to attach to other nodes
of similar degree. For example, highly connected nodes have
the tendency to be connected to other highly connected
nodes, forming what is commonly known as the rich-club

FIG. 1. (A) The probability distribution of nodal degrees as a function of the number of nodes being used to model human
brain networks. The horizontal axis indicates the number of nodes (logarithmic scale), and the vertical axis indicates the nodal
degree. Color encodes the probability for a node to have a given degree and ranges from zero to the mode of the distribution.
(B) Dependence of graph genus on the number of nodes used to model brain networks. The mean (red) – the standard de-
viation (black) of the genus over subjects are shown. Color images available online at www.liebertpub.com/brain
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FIG. 2. Dependence of assortativity (A), participation coefficient (B), mean rich-club coefficient (C), and mean betweenness
centrality (D) on vertex definition scheme and edge weighing modality. The numerical values of each metric are shown for four
weighing schemes, that is, according to whether edge weight is assigned based on the connectivity density (CD; blue), mean
fractional anisotropy (FA; red), connection length (CL; black), or CD·CL product (green) of each connection. The vertical
axis indicates the numerical value assumed by each measure, whereas the horizontal axis indicates the number of nodes in
the cortical parcellation used to generate the connectivity matrix (please note that the vertical axis is logarithmic for some mea-
sures). The number of parcels varies from 2 (1 per hemisphere) to 50,000. The latter upper limit is imposed by the number of
white matter connections, which can be identified at the spatial resolution afforded by our neuroimaging protocol (see Materials
and Methods section). The conversion legend at the bottom of the figure allows one to readily translate between the number of
nodes and the average surface area of every cortical parcel associated with each node. At one extreme, having two nodes in the
network model corresponds to an average cortical parcel area of 1250 cm2, resulting in a total cortical area of 2500 cm2. At the
other extreme, having 50,000 nodes in the network model results in an average parcel size of 0.05 cm2. Note that, regardless
of the number of nodes being used, the average total cortical area (the number of nodes multiplied by the surface area of
the average cortical parcel) is constant (2500 cm2). Color images available online at www.liebertpub.com/brain
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network. Formally, the assortativity coefficient is the Pearson
product-moment correlation coefficient of degree between
pairs of linked nodes (Newman, 2002). A negative assortativ-
ity value indicates a dissortative network model, whereas a
large positive assortativity value indicates a highly assorta-
tive network model. For all four weighing schemes, Figure
2A indicates that human brain network models appear to be
dissortative when the cortex is divided into either (i) *30
to 80 nodes or fewer or (ii) more than *4000 nodes. When
the total number of nodes is between these values, the brain
network model appears to be assortative and maximally so
when the cortex is parceled into *500 nodes (this may be
partially due to the fact that the degree distribution exhibits
the largest standard deviation around this value). The assorta-
tivity index then exhibits an asymptotic decrease as the cortex
is partitioned into more than *4000 nodes.

The participation coefficient (Fig. 2B) assesses the diver-
sity of connections between a node and other modules in
the network model (Guimera and Nunes Amaral, 2005). In
a network model whose nodes have a relatively high average
participation coefficient, the average node is more strongly
linked to nodes in other modules. In contrast, low values of
the average participation coefficient indicate that modules
in network models have relatively fewer links between mod-
ules than in the converse scenario. Figure 2B indicates that the
mean participation coefficient increases rapidly from zero to
its maximum observed value as the number of cortical parcels
increases from two to a few hundreds. As the number of cor-
tical regions increases above this range, the mean participa-
tion coefficient decreases asymptotically, particularly as the
number of regions increases above *1000. When edge
weights are assigned according to the mean FA over the con-
nections involved, the participation coefficient approaches
zero very rapidly for more than *1000 nodes. For all other
edge weighing schemes (based on CD, CL, and CD · CL),
the mean participation coefficient slowly approaches a value
of *0.3 as the number of network nodes increases up to
50,000. For two measures (CD and CD · CL), the mean partic-
ipation coefficient remains relatively constant as the number of
nodes increases from *10 to *1000 and then assumes an as-
ymptotic behavior, which is similar—both qualitatively and
quantitatively—to those observed in the case of FA and CD.

The rich-club coefficient conveys the extent to which net-
work model hubs (nodes that rise to prominence in the graph-
theoretical model) also tend to exchange among themselves
the majority of resources flowing within the network model
(Opsahl et al., 2008; van den Heuvel and Sporns, 2011). A
greater average rich-club coefficient indicates that, on aver-
age, network model hubs share stronger connections with
themselves (i.e., with other rich-club nodes) rather than
with other nodes outside the rich club. Figure 2C indicates
that the rich-club coefficient of human brain network models
is the largest when the number of network model nodes is rel-
atively low (*10 to a few hundred nodes) and then decreases
slowly as the spatial resolution at which the network model is
examined increases (i.e., when the network has more than
*500 nodes and the variability in degree distribution de-
creases, as seen in Fig. 1).

Betweenness centrality indicates, as its name suggests,
how central a node is within a network model. For any
node, it is equal to the number of shortest paths, which
pass through that node from all vertices to all other vertices

(Rubinov and Sporns, 2010). Nodes with high betweenness
centrality have large influence on the transfer of information
through the network model in the scenario where such trans-
fers occur along the shortest paths. As in the case of the rich-
club and participation coefficients, the average betweenness
centrality is seen to decrease asymptotically as the number of
network model nodes increases after reaching a maximum
value when the brain network model has *10 nodes.

Collectively, the results in Figure 2 indicate that graph-
theoretical measures of assortativity, participation, inclusion
in the rich-club network, and centrality (i) assume their max-
imum values when the cortex is partitioned into*10 to*500
nodes and then (ii) decrease asymptotically as the number of
network model nodes increases, thereby illustrating the ability
of high-resolution graph-theoretical analyses to capture the
true extent of heterogeneity in human neural circuitry.

Figure 3 continues to illustrate the behavior of important
graph-theoretical metrics as a function of node definition
and edge weighing schemes. The measures displayed
in Figure 2 are the clustering coefficient (Fig. 3A), small-
world coefficient (Fig. 3B), network efficiency (Fig. 3C),
and characteristic path length (Fig. 3D).

The global clustering coefficient is a measure of the extent
to which network model nodes tend to cluster together and is
designed to provide a general indication of node aggregation
in a network model (Watts and Strogatz, 1998). The nodal
clustering coefficient quantifies how close the neighbors of a
node are to forming a clique (i.e., complete graph). The global
clustering coefficient is the average of nodal clustering coeffi-
cients over all nodes in the network model. In Figure 3A, this
measure is observed to decrease asymptotically when the
number of network model nodes exceeds *500, indicating
a decreasing extent of nodal clustering as human brain cir-
cuitry is examined at higher and higher resolutions, where
the variance in nodal degree decreases (see also Fig. 1).

The small-world coefficient quantifies the extent to which
most nodes can be reached from every other node via a
small number of steps. The small-world coefficient is calcu-
lated by comparing the clustering coefficient and characteristic
path length of a given network model to those of an equivalent
random network model with identical degree distribution. A
small-world coefficient greater than 1 typically indicates that
the network model is a small world. In Figure 3B, this is
seen to be the case when either mean FA or CD is used to as-
sign edge weights, though not when either CD·CL or CL
alone is used. Nevertheless, the asymptotic behavior of the lat-
ter two measures suggests that the small-world coefficient may
reach unity even for these edge weighing scenarios when the
cortex is divided into (far) more than 50,000 parcels.

The global efficiency and characteristic path length of a
network (Fig. 3C, D) are two related measures of network in-
tegration. The former is the average inverse shortest path
length in the network model, whereas the latter is the average
shortest path length, that is, the average number of steps
along the shortest paths for all possible pairs of nodes. The
characteristic path length is a quantifier of information trans-
fer efficacy, which is more strongly influenced by long paths,
whereas the global efficiency is more influenced by short
paths (Latora and Marchiori, 2001; Watts and Strogatz,
1998). In light of these properties, the results in Figure 2C
and D are complementary: as brain networks are represented
using models, which consist of more and more nodes and
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corresponding connections, their efficiency decreases and
their characteristic path length increases.

For an effect size g2 = 0.02, the noncentrality parameter k
of the noncentral F distribution was found to have a value of
16.25. The power analysis indicated that, at significance lev-
els of 0.05 and 0.01, the statistical power p of the study was
found to be equal to 0.993 and 0.996, respectively. The om-
nibus statistical analysis indicated that the three mean feature

vectors of graph-theoretical measures differed significantly
across the three treatments (F16,796 = 1143.4, p < 0.0001), that
is, when the cortex was parceled into 50, 500, or 50,000 re-
gions. The eigenvalues of the matrix E�1 H were k1 = 92.04
and k2 = 2.57, indicating that 97.28% of the variance was ex-
plained by the first eigenvector a1 with components a1i,
i = 1, ., p. As previously stated, the magnitudes of the eigen-
vector components a1i indicate which univariate measures

FIG. 3. As in Figure 2, for the clustering coefficient (A), small-world coefficient (B), characteristic path length (C), and
efficiency (D). Color images available online at www.liebertpub.com/brain
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contributed most to the separation between mean feature vec-
tors. In this study, these measures were betweenness centrality
(a11 = 0.7063, partial F2,126 = 201.6, p < 0.0001) and the
clustering coefficient (a12 =�0.7074, partial F2,126 = 6.3,
p = 0.0025), indicating the prominence of these two measures
in distinguishing the mean values of graph-theoretic metrics
at representative points across each of the three spatial scales.
It should be mentioned that whereas our statistical analysis
focused on comparing network model behaviors when the cor-
tex is divided into 50, 500, and 50,000 nodes, similar statisti-
cal inference results should be expected when the latter three
values differ by small amounts. For example, one may reason-
ably expect similar conclusions when the cortex is divided,
say, into 49, 490, 49,000 nodes, and so forth because the
graph-theoretical metrics analyzed here vary relatively little
for small deviations from each of the three selected values.
In this context, the purpose of applying MANOVA using
50, 500, and 50,000 as the number of nodes into which the cor-
tex is divided was to illustrate the variability of graph-
theoretical measures across spatial scales.

Discussion

Whereas the connectome consists of all neurons in the brain
and their interconnections, a graph-theoretic model of neural
connectivity is a mathematical representation whose properties
are dependent on the spatial scale at which the model is
constructed. At this time, the compilation of a cellular-level
(microscale) graph-theoretic representation of the human con-
nectome from in vivo brain imaging is beyond reach due to
methodological limitations. This implies that current investi-
gations entail the use of simplified network-theoretic represen-
tations that are generated at spatial scales (i.e., meso- to
macroscale), which are larger than the true scale of brain con-
nectivity itself (microscale). Because network theory consid-
ers the representation of brain circuitry as a set of vertices
(nodes), which are interconnected by edges, constructing
graph representations of the connectome at a spatial scale
above that of individual cells must thus resort to summing
over neuronal assemblies and their connections when net-
work model nodes and edges, respectively, are created. It is
precisely the properties and behavior of such (simplified)
network-theoretic representations of the connectome that re-
quire investigation as a function of spatial scale to assess
whether it is appropriate to compare network model properties
across studies, which were undertaken at distinct spatial scales.

Reliability

To address the topic of reliability, we adopt the accepted
definition of this term in measurement theory, where it des-
ignates the repeatability or consistency of research measures.
In this context, the reliability of our research findings can be
understood to involve the ability of our adopted statistical ap-
proach (MANOVA) to test the research hypothesis of the
present study with adequate statistical power and at a satis-
factory confidence level. Because repeated scans of each
study participant were unavailable to the authors, the reliabil-
ity of our research measures (i.e., their repeatability or
consistency) was investigated instead using MANOVA.
This statistical approach accounts for the variance within
each set of multivariate measurements across the subjects
included in the study and additionally takes into account

the correlation between measures both within and between
treatments, as previously detailed. Errors related to modeling
assumptions, measurement uncertainties, and other specific
factors—such as the variability in the accuracy of recon-
structed network topologies—are also accounted for in the
error matrix E of MANOVA. For example, errors due to
computing network measures based on potentially inaccurate
network reconstructions are accounted for in the MANOVA
error matrix, which is used to compute the test statistic and
its confidence interval and p value. In this study, the test sta-
tistic was F16,796 = 1143.4, and its associated p value was
less than 10�4. Additionally, our power analysis found that
the statistical sensitivity of the MANOVA was larger than
0.99, suggesting that statistical findings are both reliable
and replicable. Consequently, despite potential modeling er-
rors due to a variety of factors—including the inherently lim-
ited reliability of network reconstructions—the posited null
hypothesis of the study that the computed graph-theoretical
measures differed significantly across treatments was not
accepted at a significance level of 0.05. Thus, though test–
retest data sets are certainly useful for investigating the
variability and accuracy of network reconstructions, the de-
tailed investigation of these factors is outside the scope of
the present study. Our current aim, instead, was to deter-
mine whether network properties differed significantly
across the three statistical regimes of network behavior
identified in the study, which was indeed found to be the
case based on our results from MANOVA.

Interpretation

It has been estimated that there are *106 cortical columns
in the adult human brain (Krueger et al., 2008), which may
imply that the largest number of nodes (*50,000) in the net-
work models examined in this study corresponds to an aver-
age parcel size, which is closer to the surface area of the
average cortical column than in previous studies. As Figures
2 and 3 suggest, increasing the number of parcels into which
the cortex is subdivided (from 2 to 50,000 in this study) al-
lows human brain network models to be investigated using
larger and larger graph-theoretical models with more and
more nodes. In contrast, decreasing the number of parcels
is similar to the effect of applying a spatial smoothing filter,
which averages network model properties over increasingly
larger portions of the cortical surface. When doing so, fine
details and low-scale properties of brain network models
may be lost to further analysis. In the case of assortativity
(Fig. 2A), the asymptotic behavior of network models toward
increasing dissortativity as brain connectivity is examined at
increasingly higher resolutions (greater numbers of parcels)
may capture the intrinsic heterogeneity of nodal assortativity
properties. Because assortativity captures preferential attach-
ment of nodes to nodes of similar degrees, Figure 2A sug-
gests that, as connectivity is modeled using cortical parcel
sizes whose dimensions are closer and closer to the meso-
scale, the fact becomes obvious that high-degree nodes are
more connected to low-degree nodes—and vice versa—
than would be apparent if the number of network nodes in
our connectivity models were much smaller.

Because the mean participation coefficient (Fig. 2B) as-
sumes relatively large values when the cortex is partitioned
into *10 up to a few hundred nodes and then asymptotes
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to smaller and smaller values above the latter threshold, this
study indicates that modeling brain connectivity at low reso-
lution (<*500 nodes) may lead to an estimate of average
nodal participation, which may be inappropriate in high-
resolution connectomics studies. The fact that the participa-
tion coefficient decreases asymptotically as spatial resolution
is increased implies that the average network node is far
more weakly linked to nodes in other modules than sug-
gested by a low-resolution analysis involving a few hundreds
of nodes or fewer. This conclusion conveys, as in the case of
assortativity, the heterogeneity of nodal properties and the
increased ability of a high-resolution analysis—such as this
one—to reveal and quantify this heterogeneity.

The results presented in Figure 3 further support the find-
ings in Figure 2, in the sense that the heterogeneity of human
brain network models is more adequately captured when
these networks are represented using models, which contain
more—rather than fewer—nodes. Thus, for example, cluster-
ing coefficients are seen to decrease as the network model is
represented with higher spatial fidelity (Fig. 3A), and small-
world coefficients increase exponentially as the number of
nodes becomes greater and greater (Fig. 3B). As expected,
network efficiency decreases and characteristic path length
increases with the number of nodes used to represent the
brain network model, despite quantitative variability in how
this behavior occurs as a function of edge weighing scheme.

Network regimes

Collectively, our results suggest that brain network model
properties assume three distinct regimes of quantitative behav-
ior as a function of spatial scale. In this context, the term
regime is used in analogy with statistical physics, where it de-
notes a class of physical conditions where a particular phe-
nomenon is of prominent interest. In the present case, the
adoption of the term illustrates the fact that graph-theoretical
measures (i.e., system properties) describing brain network
models assume certain behaviors (types of variability across
spatial scales), which are different from those exhibited by
the system in other regimes. As in statistical physics, the re-
gimes discussed here correspond to a set of limiting condi-
tions (i.e., transitions across spatial scales) in a measurable
parameter space (i.e., the statistical space of descriptive net-
work model properties). Specifically, when the graph is con-
structed using *50 nodes or fewer, most graph-theoretical
measures can vary quite substantially depending on how
many nodes are present in the network model representation
(Figs. 1–3). In this regime, both mean nodal degree and
graph genus vary substantially as well as a function of node
number (Fig. 1). In the regime where brain networks are rep-
resented using *50 to *500 nodes, graph-theoretical metric
values exhibit far less variability than in the range from 2
to *50 nodes, as does the average nodal degree. Finally,
when the brain circuitry model is represented using (far)
more than *500 nodes, mean nodal degree and network
model metrics decrease asymptotically as the average parcel
size in the brain circuitry model approaches the mesoscale.
The only exceptions to this are the small-world coefficient
and the characteristic path length, which increase as expected.
Interestingly, dividing the cortex into *500 nodes results in
an average parcel area of *5 cm2 corresponding to a circle
with an *2.5 cm diameter. This is on the spatial scale of cor-

tical folding at gyral crowns and sulcal troughs, which sug-
gests (unsurprisingly, perhaps) that the quantitative behavior
of brain network model properties may be modulated by the
spatial folding scale of the human cortex.

Comparison to previous work

Since most parcellation schemes currently available com-
prise at most *1000 brain regions (Hagmann et al., 2008),
the advantage of the present approach to studying the connec-
tivity matrix C lies in the ability of the former to construct
graph-theoretic representations of connectivity, which feature
substantially more graph vertices (parcels) than previously
attempted, and additionally without the need for averaging
connectivity measures over much larger parcels, as in the
case of previous conventional parcellation approaches. For
example, in the present study, C was of size *50,000 ·
*50,000 in each subject compared to far smaller sizes in pre-
vious studies [*1000 ·*1000 in Hagmann and colleagues
(2008) and 4000 · 4000 in Zalesky and colleagues (2010)].
Thus, the process of generating C using the present approach
carries with it the ability to study network representations
whose number of graph nodes is far greater than in previous
studies.

Although the effect of parcellation schemes on small-world
coefficient values has been explored previously (Wang et al.,
2009), few studies have undertaken analyses of graph-
theoretical measure variability, which are as systematic as
in the present study. Additionally, because thorough reviews
and discussions of parcellation schemes in the context of
network-theoretic modeling of brain connectivity are avail-
able elsewhere (de Reus and van den Heuvel, 2013; Stanley
et al., 2013), we restrict ourselves to highlighting a selection
of studies, which are most relevant to our own. In an excel-
lent study by Zalesky and colleagues (2010), the behaviors
of the clustering coefficient, characteristic path length, and
small-world coefficient were investigated as a function of
nodal number. These authors concluded, as we did, that it
is crucial to account for spatial scale when interpreting the
results of brain network model analyses. Whereas the con-
clusions of Zalesky and colleagues (2010) were based on a
study of N = 3 patients, however, our sample has the advan-
tage of being substantially larger (N = 136). The present in-
vestigation also examines the behavior of five additional
graph-theoretical metrics (assortativity, participation coeffi-
cient, rich-club coefficient, betweenness centrality, and global
efficiency), and the comparison is made across a wider range
of cortical parcel sizes [corresponding to between 2 and
50,000 nodes in this study vs. between 82 and 4000 nodes
in the study of Zalesky and colleagues (2010)]. In a recent
study by Liu and Tian (2014) concerning the impact of par-
cel size on degree metrics in functional network models, the
authors proposed that a substantial proportion of previous
network-theoretic studies of brain circuitry modeling overes-
timated the proportion of hubs in the brain. This appears to
be in agreement with our own result indicating that as the
spatial scale decreases, so does the rich-club coefficient of
network model graphs (Fig. 1C).

DTI limitations for network modeling

It is important to acknowledge that the analysis presented
in this study is subject to limitations imposed by the MRI/
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DTI imaging protocol used and its parameters (e.g., scan
sequence type and voxel size). High spatial resolution is de-
sirable in a study such as ours as it may allow exploring
graph-theoretical properties at a lower spatial scale. As a
separate note, differences in choices of DTI tractography pa-
rameters can potentially confound direct comparison across
studies. Additionally, although DTI acquisition accuracy is
limited by noise, artifacts and data undersampling as a con-
sequence of scan time constraints, DTI has been recently
noted to suffer from inherent limitations in ascertaining
long-range anatomical projections based on voxel-averaged
estimates of WM fiber orientation (Thomas et al., 2014).

One limitation of this study is that networks with as
many as 50,000 nodes are examined in it, even though the
DTI volumes used for tractography have a voxel size of
2 · 2 · 2 mm. In contrast, the structural MRI volumes used
to create brain surface models have a resolution of 1 mm3,
and the brain meshes extracted from these volumes have
an average intervertex distance of *1 mm. Thus, although
the brain parcellations have (relatively) high resolution, the
spatial resolution of DTI volumes is not as high. Because of
this, it is probable that partial volume effects and other
sources of error become more pronounced as the parcel
size approaches the spatial resolution of DTI volumes.
Though this is admittedly a limitation of our study, it is im-
portant to note that the spatial scale at which our DTI vol-
umes were acquired is larger than that of the most detailed
network models analyzed. Specifically, dividing the cortex
into 50,000 parcels results in an average parcel size of
*5 mm2. For a square parcel, this corresponds to a flat sur-
face with a side length of

ffiffiffi

5
p

^2:23 mm, implying that the
smallest average size of a parcel in this study is approxima-
tely equal to the size of a DTI voxel (2 mm side length).
This suggests that our most detailed cortical parcellations
have approximately the same spatial scale as that of the
DTI voxels from which connectivity information is extracted.
Moreover, streamlines connecting vertices within a parcel to
other cortical locations are averaged over the surface of
the parcel when computing CD and other measures. Such
an averaging plays the role of a low-pass spatial filter
whose cutoff frequency is the side length of the average
parcel (*2.23 mm), and such a filter reduces the effective
spatial scale where connectivity is resolved from the spatial
resolution of the DTI volume to the spatial scale of the av-
erage parcel size. Thus, even if higher resolution DTI vol-
umes had been acquired in this study, the spatial filtering
effect in question would still reduce the effective spatial
resolution of inferred connectivity densities, mean FA val-
ues, and so forth. Nevertheless, we acknowledge that ac-
quiring higher resolution DTI volumes would undoubtedly
be beneficial for reducing measurement error, improving the
spatial resolution of DTI tractography results, and increasing
the accuracy of connectivity measures.

Implications

An important topic explored in the present study is that
vertex definition scheme and edge weighing modality are
of substantial consequence for the network-theoretic mod-
eling of human brain connectivity. The results of this
study indicate that graph-theoretical metric values vary ap-
preciably as a function of not only vertex number but also

weighing scheme and that the results of network-theoretic
modeling should be interpreted with caution because of
this variability. As brain network models are represented
at progressively lower spatial scales (i.e., when using
more and more nodes and edges to capture connectivity in-
formation), graph-theoretical model metrics are observed
to exhibit substantial variability within three spatial re-
gimes of quantitative and qualitative behavior, which are
possibly modulated by the spatial folding scale of the
human cortex.

Although many researchers are interested in exploring
connectomics at the scale of cortical cytoarchitecture, there
is substantial interest in connectomics studies at lower scales
up to and including the cellular scale (Hua et al., 2015) and
particularly in bridging the gap between micro- and macro-
scale connectomics, efforts which are reviewed elsewhere
(Helmstaedter, 2013). These efforts suggest that our study
can be of potential relevance to investigators interested in
this direction of research.

Significance of the topological properties
of graph network models

We propose that, when reporting and quantifying graph-
theoretical metrics that are descriptive of brain connectivity
models, researchers should always report the parcellation
scheme, graph genus, nodal number, and edge weighing mo-
dality used in their study. Because the genus is a fundamental
property of graphs (Abbasi, 2000; Nguyen and Bettayeb,
2011), this property is very important, and it is substantially
easier to interpret other network metrics with prior knowledge
of graph genera (Harary, 1994). Similarly, when comparisons
are made between different studies, such parameters should
always be taken into account to preclude inappropriate con-
clusions. As an analogy, it is useful to consider the fact that
the significance of F and t values in statistics cannot be
ascertained without knowledge of the corresponding d.f.
Similarly, parcellation schemes, nodal numbers, and edge
weighing schemes should always be specified by investiga-
tors and taken into account when comparing network met-
rics across studies because such comparisons are improper
without knowledge of network parameters. Whereas graph-
theoretical metrics have been reported and analyzed in numer-
ous studies of brain connectivity, the topological properties
of the graphs, which are used to represent brain connec-
tions, have received hardly any attention, despite the inti-
mate relationship between graph topology, on the one hand,
and graph-theoretical metrics, on the other hand. For this rea-
son, we propose that the latter cannot be properly interpreted
without thorough understanding of the former and that an im-
portant priority of future graph modeling studies should be to
understand the topological structure and properties of brain
network models.

Conclusion

In this study, the behavior of graph-theoretical measures
pertaining to brain network modeling was explored as a func-
tion of cortical region number and connectivity weighing and
was found to exhibit three distinct regimes as a function of
spatial scale. The analysis suggests that network measures
exhibit appreciable quantitative variations as a function of
vertex assignment convention and edge weighing scheme
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and that graph-theoretic analysis results should not be com-
pared across spatial scales without appropriate understanding
of how the latter modulates network model properties.
Importantly, we proposed that the parcellation scheme,
nodal number, edge weighing modality, graph genus, and
other topological properties should always be reported by
connectivity studies and taken into account when compari-
sons across studies are undertaken. The lowest scale at
which network measure behaviors were examined in the
present study is closer to that of the cortical column than pre-
viously attempted. Partly because of this, this investigation
and its findings have implications for the comparison of
macro- to microscale studies of brain networks and for un-
derstanding how the choice of brain network model parame-
ters can affect the interpretation of such studies.
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