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Abstract

The potential distribution of Amblyomma americanum ticks in Kansas was modeled using maximum entropy
(MaxEnt) approaches based on museum and field-collected species occurrence data. Various bioclimatic
variables were used in the model as potentially influential factors affecting the A. americanum niche. Following
reduction of dimensionality among predictor variables using principal components analysis, which revealed that
the first two principal axes explain over 87% of the variance, the model indicated that suitable conditions for
this medically important tick species cover a larger area in Kansas than currently believed. Soil moisture,
temperature, and precipitation were highly correlated with the first two principal components and were influ-
ential factors in the A. americanum ecological niche. Assuming that the niche estimated in this study covers the
occupied distribution, which needs to be further confirmed by systematic surveys, human exposure to this
known disease vector may be considerably under-appreciated in the state.

Key Words: Lone star tick—Amblyomma americanum—MaxEnt—Climate—Soil moisture—Temperature—
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Introduction

Amblyomma americanum (Linn.) (Acari: Ixodidae), or
the lone star tick, is a vector for multiple human and

animal pathogens in the United States. The best-known dis-
eases resulting from pathogens transmitted by this tick spe-
cies include human monocytic ehrlichiosis and human
ewingii ehrlichiosis (Centers for Disease Control and Pre-
vention 2015a), tularemia (Centers for Disease Control and
Prevention 2015b), southern tick-associated rash illness
(STARI) (Centers for Disease Control and Prevention
2015c), and feline cytauxzoonosis (Reichard et al. 2010).
Recent studies also identified yet another A. americanum–
transmitted viral pathogen, Heartland virus from northwest-
ern Missouri, causing a novel emerging disease in people
(Savage et al. 2013, Centers for Disease Control and Pre-
vention 2015d). The biology of A. americanum and the
pathogens that it vectors have been reviewed by Childs and
Paddock (2003) and Goddard and Varela-Stokes (2009). A.
americanum–vectored diseases in humans are mostly en-
demic to regions where the ticks are known to occur, but the

status of these diseases elsewhere in the United States remain
poorly understood. The current geographic extent of A.
americanum distribution estimated by the United States
Centers for Disease Control and Prevention (CDC) covers all
of the southeastern and eastern United States, including areas
covering a large portion of eastern Kansas (www.cdc.gov/
ticks/maps/lone_star_tick.html). However, a recent article by
Springer and colleagues (Springer et al. 2014) indicated a
wider but discontinuous distribution pattern for the state and
noted some western counties in Kansas that have reported this
species over the last century.

Some evidence suggests that the disease agents transmitted
by A. americanum ticks in Kansas may be increasing (Ra-
ghavan et al. 2013, 2014). The spatio-temporal pattern of hu-
man monocytic ehrlichiosis, vectored by A. americanum, used
to be concentrated in the southeastern counties in the state but
is now reported commonly from most eastern and many cen-
tral Kansas counties (Raghavan et al. 2014). Although other
factors could influence this trend, such as human or animal
movements, better awareness among physicians and patients
of tick-borne illnesses, and improved and easy access to
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diagnostic techniques, the potential for A. americanum–vec-
tored transmission from increasing abundance and geographic
expansion is a concern. The current spatial distribution pattern
estimated by the CDC for A. americanum in Kansas is based on
acarological surveys conducted around 1945 (Bishopp and
Trembley 1945), yet much may have changed in the ensuing
years. Knowledge of the spatial extent of a vector species
distribution is important for management and prevention of
diseases that they transmit. One effective approach to under-
stand species distribution is through correlative modeling
(Phillips et al. 2006, Estrada-Peña and Venzal 2007).

Diverse methods have been developed for modeling
Grinnellian niches of species and estimating their geographic
distributions (Soberón 2007, Soberón and Nakamura 2009).
Modeling approaches such as climate envelopes, logistic
regression, multivariate regression splines, and boosted re-
gression trees require absence data for modeling, but such
data are difficult to obtain and may also be unreliable (Elith
et al. 2006, Phillips et al. 2006). Other approaches such as the
genetic algorithm for rule-set production (GARP) and max-
imum entropy (MaxEnt) do not require species absence data
and have been used to model ecological niches and estimate
potential distributions of a wide variety of species. Inclusion
of species absence data, however, yields better information
about prevalence than presence-only methods (Elith et al.
2009); such information is incorporated in GARP and Max-
Ent methods as background or pseudo-absence data (Phillips
and Dudik 2008, Stockwell 2009). The quality of predictions
based on different modeling approaches and their interpre-
tation has been discussed previously (Phillips et al. 2004,
Peterson et al. 2007). Some studies have shown MaxEnt to
produce consistently robust species distribution estimates
among presence-only methods (Tsoar et al. 2007, Elith et al.
2009, Feria-Arroyo et al. 2014).

The spatial distribution of most arthropods, including A.
americanum ticks, are limited for the most part by climatic
conditions and physical environment, such as landscape
cover and landscape structure. Other influential factors that
limit species’ distributions include ecological forces such as
predator availability and density, competition, and host
abundance, which are difficult to incorporate in correlative
models (Thuiller et al. 2006, Soberón and Nakamura 2009).
In this study, we modeled the ecological niche of A. amer-
icanum in Kansas using a maximum entropy approach and
evaluated important bioclimatic and physical environment
determinants of that niche.

Materials and Methods

Species distribution data

Lone star ticks are widely present in the eastern, south-
eastern, and midwestern United States (Childs and Paddock
2003). Species distribution data were obtained from three
sources. The Walter Reed Biosystematics Unit (WRBU),
based in the Smithsonian Institution, made available histor-
ical collection data, which included presence records from
across the species’ range in North America. The Kansas State
University Museum of Entomological and Prairie Arthropod
Research (MEPAR) provided tick collection data from 1982
to 1995. Taxonomic label data in this collection were re-
viewed, and records with discernable textual location infor-
mation were georeferenced using the MaNIS georeferencing

calculator (http://manisnet.org/search.shtml). Only records
that had an error radius of £ 1 km were used in analyses.
Finally, we conducted tick surveys in central and eastern
Kansas during May through August of 2012–2014. The
presence of larval, nymphal, and both sexes of adult stages of
A. americanum ticks in a given survey location was consid-
ered to indicate species presence in this study. In total, there
were 461, 107, and 258 unique presence locations obtained
from WRBU, MEPAR, and tick surveys, respectively.
Counties in which A. americanum ticks were positively
identified in the three data sources are shown in Figure 1.
Duplicate presence locations within 1 km were removed to
avoid redundancy; presence records were rarefied whenever
clusters of points were noted by removing minimum neces-
sary points until they were ‡ 2 km apart. These steps resulted
in 682 unique presence records for modeling.

Environmental variables

Environmental variables summarizing aspects of climate
were prepared to summarize important potential drivers of
the A. americanum ecological niche. That is, summaries of
temperature, precipitation, and soil moisture index were ob-
tained from the CliMond archive (Kriticos et al. 2012). Cli-
Mond contains gridded historical climate data at 10¢ or 30¢
resolution collectively, representing a statistical summary of
temperature, precipitation, radiation, and soil moisture, pri-
marily using historical data sourced from WorldClim (Hij-
mans et al. 2005) and Climate Research Unit datasets
(www.cru.uea.ac.uk/cru/data/hrg/). We used CliMond as our
source for climate data instead of WorldClim, which is used
more frequently by others, because the latter does not include
data on soil moisture estimates that are ecologically relevant
in the A. americanum life cycle.

High correlations among independent climatic variables
are well known and their simultaneous presence in MaxEnt
models has been shown to cause problems. To address this
concern, a priori selection of variables (Medley 2010, Tonini
et al. 2014) was carried out using the Band Collection Sta-
tistics tool in ArcGIS 10.1 to exclude pairs of highly corre-
lated variables (r > 0.8). Dimensionality among independent
variables was reduced by conducting principal component
analysis using SPSS version 18 (IBM Corporation, Somers,
NY), which yields uncorrelated axes of variance, or principal
components. Principal components analysis was conducted
by extracting climate and habitat data from 10,000 random
points across the study area. The corresponding values were
standardized such that each variable had a zero mean and
standard deviation of 1. Data layers representing principal
components were then used for modeling species distribu-
tion, and variable loading scores were used to interpret the
importance of different variables to each factor, and ulti-
mately A. americanum niche.

Niche modeling

We used the maximum entropy algorithm MaxEnt version
3.3.3k for modeling the ecological niche of A. americanum. A
statistical explanation of the algorithm is provided in Elith
et al. (2011). Briefly, the ecological niche and/or the spatial
distribution of a species can be modeled in MaxEnt using
correlative algorithms and known point-occurrences of a
given species in relation to various environmental constraints.
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For this study, models were run mostly with default settings
(Phillips et al. 2006), except as following. We set aside 25% of
occurrence points for the binary omission rates tests, and the
remaining were used to run 20 cross-validation replicates. The
advantage of using cross-validation is that it uses all of the data
for model building and validation, unlike the single training/
test data split. We used the subsampling method in MaxEnt for
randomly selecting test data points, and the model was iterated
5000 times to allow sufficient time for model convergence.
Two complementary models were run, the first containing
climatic variables only and the second with climatic and land
cover variables.

We evaluated the model performance using area under the
curve (AUC) scores, which is a measure of the area under a
receiver operator characteristic curve (ROC) that plots the
rate of true positives to false positives. It varies between 0.5
when the result is not better than random and 1.0 when the
result is significantly better than random. Another evaluation
method based on false negatives (omission error) was also
used. MaxEnt calculates the omission error rate for training
and test data, which indicates the percentage of test localities
that falls into pixels not predicted as suitable for a given
species (Phillips et al. 2006). Better models have low or
nonsignificant omission rates. The AUC values and standard
deviation of the replicated models, and the omission rates at
threshold of M10, which have been suggested as an appro-
priate threshold (Pearson et al. 2006) were used.

Results

The principal components analysis of independent cli-
matic variables defined an environmental space of reduced
dimensionality that allowed modeling the ecological niche of
A. americanum. The first two axes of the principal compo-
nents analysis explained 87.9% of the total variance in the
data (Table 1) and were significantly different from random

( p < 0.01). The first principal component, consisting mostly
of variables representing soil moisture index and also tem-
perature, explained 61.4% of the variance; the second axis,
consisting of variables primarily representing precipitation,
explained 26.4% of the variance (Table 1).

The ROC analysis of the resulting MaxEnt models based
on all presence data and principal components as predictor
variables indicated adequate performance without overfitting
to training data (Table 2). When applying the M10 threshold
to the cross-validation replicate with highest AUC values
(0.84) for the models, they were found to perform signifi-
cantly better than random ( p < 0.01), with no records used for
modeling falling outside the predicted suitable area. MaxEnt
output includes a jackknife analysis of the contribution of
each variable to the model (Table 2). Of the two principal
components used as predictor variables in the model, the first
component contributed most to the model, followed by the
second component (Table 2).

On the basis of the average values of the 20 MaxEnt
models generated, the median distribution for A. americanum
using the three principal components as predictor variables is
presented in Figure 2. The pixels with highest presence
probabilities were concentrated in an east to west gradient,
with the eastern region gradually more suitable than the west.
Areas predicted to be suitable for this species in the present
study covered a visibly larger area in the central and western
areas of Kansas than currently estimated by the CDC.

Discussion

Most attempts to study the distribution and abundance of
A. americanum and other tick species in Kansas have been
made in the more populated eastern and central parts of the
state, so few data exist from the western areas. Although
MaxEnt and other niche modeling approaches are perhaps
capable of predicting species’ distributions in unsampled

FIG. 1. Abiotically suitable regions for A. americanum ticks in Kansas as modeled with MaxEnt.
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areas, extrapolations based on such spatially biased data
should be interpreted with caution (Stockwell and Peterson
2002, Pearson et al. 2007). Presence-only models such as
MaxEnt provide a robust and repeatable method for studying
species distributions; however, limitations of such methods
have been discussed elsewhere (Elith et al. 2011, Karplus
2011, Hijmans 2012). One particular problem with correla-
tive modeling is the accidental introduction of false-positives
(localities where species was collected but long-term popu-
lation establishment is not feasible in such places) and false-
negatives (conditions are suitable but the species has not
reached due to natural barriers). This issue is also true for
other statistical datasets and can be mitigated to a consider-
able extent through careful evaluation and ground-truthing,
which we attempted in this study. The model output for A.
americanum in this study should not be interpreted as the
definitive limits of its range; cell-level occurrence probabil-
ities should be used only as a guide for actual detailed field
evaluations of this species’ presence and abundance.

Our model indicates that the area suitable for A. amer-
icanum in Kansas is likely larger than the area currently
suggested by the CDC. Particularly, the central and western
portions of the state are likely suitable for A. americanum
(Fig. 2), which is to some extent consistent with Springer
et al. (2014), wherein a few western counties in Kansas were
highlighted for A. americanum presence. That study was
based on historic tick collection records covering the entire

United States for over a century, and although it leaves many
central Kansas counties without information, the authors
noted that true absence needs confirmation in systematic
surveys. The contrast with CDC’s distribution map could be a
result of many factors, including methods used for distribu-
tion modeling and adequacy of presence data used for pre-
dictions. The current CDC prediction is based on acarological
surveys conducted over a broad region around 1945 (Bishopp
and Trembley 1945), and the distribution of A. americanum
has likely changed since that time owing to environmental,
climatic, and anthropogenic influences.

The model evaluation criteria used in the study indicated
satisfactory performance. Although similar studies evaluat-
ing the ecological niche or the spatial distribution for other
species have achieved higher AUC values up to and above
0.9, our models consistently performed around 0.8. The sig-
nificant variables in our models, based on variable associa-
tions with the first two axes (r > 0.7), were consistent with the
biology of A. americanum ticks. The first principal compo-
nent was primarily associated with variables representing soil
moisture index and temperature. Soil moisture and temper-
ature are important aspects in tick ecology, and the avail-
ability of soil moisture has been suggested as an important
factor in characterizing tick habitats (Randolph 2000, Berger
et al. 2013). Higher soil moisture content, lower midday
temperature, and increased cloud cover are linked to in-
creased questing activity of a similar hard tick, Ixodes ricinus

Table 2. Model Results with Bioclimatic Determinants

of Amblyomma americanum Distribution in Kansas

Jackknife results

Model
Training AUC
(mean – SD)

Testing AUC
(mean – SD)

Avg. variable
contribution (%)

Avg. AUC without the
variable

Avg. AUC with only
the variable

Climatic
variables

0.87 – 0.01 0.82 – 0.01

PC-1 81.81 0.74 0.78
PC-2 19.18 0.79 0.62

AUC, area under the curve; SD, standard deviation; PC, principal component axes.

Table 1. Variables and Principal Component Analysis Loadings for the First Two Main Axes

Factor loadingsa

Source Variable PC-1 PC-2

CliMond (Bio01) Annual mean temperature (�C) –0.75 -0.18
(Bio02) Mean diurnal temperature range 0.68 -0.24
(Bio07) Temperature annual range (Bio05-Bio06) (�C) 0.19 0.01
(Bio11) Mean temperature of coldest quarter (�C) -0.31 -0.22
(Bio16) Precipitation of wettest quarter (mm) 0.05 0.82
(Bio19) Precipitation of coldest quarter -0.14 0.73
(Bio28) Annual mean moisture index -0.51 0.13
(Bio30) Lowest weekly moisture index 0.48 -0.19
(Bio32) Mean moisture index of wettest quarter 0.81 0.05
(Bio35) Mean moisture index of coldest quarter 0.92 -0.01

Eigenvalue 6.24 3.88
% Explained variance 61.42 26.48
Cumulative % variance 87.90

aVariables strongly correlated (r > 0.7) with the axes are shown in bold.
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(Medlock et al. 2013). Conditions that negatively affect soil
moisture, such as droughts, can result in reduced host-seeking
behavior and may increase mortality among quiescent A.
americanum.

The second component of principal component analysis
was associated with precipitation, which could be linked to
soil moisture availability, but also may be a proxy for other
factors, such as availability of vegetation and host density.
Large variations exist in annual rainfall across Kansas, with
eastern Kansas receiving up to three times more rainfall than
the western portion (Goodin et al. 2004). As a result, climate
and vegetation are transitional between the wetter east and
semiarid western Kansas, which may explain the relatively
higher probability for A. americanum habitat suitability in the
east versus central and western portions of the state. The
normalized difference vegetation index (NDVI) has been
suggested, in general, as a better predictor for some tick
spatial distributions compared to precipitation variables be-
cause it better captures water availability (Randolph 2000,
Estrada-Peña et al. 2013). However, precipitation variables
may perform adequately for regional studies such as the
present one (Estrada-Peña et al. 2013).

The potential for a broader distribution of A. americanum
ticks in Kansas and the wider region in general is worrisome
because of the number of human and animal diseases these
ticks are known to vector. A recent study (Raghavan et al.
2014a) has shown a steady spatio-temporal progression of
human monocytic ehrlichiosis (HME) in Kansas during years
2005–2012. The spatial distribution noted in that study for a

steady HME spatiotemporal progression has high visible
concordance with the predicted distribution for A. amer-
icanum in the present study. Other diseases vectored by these
ticks could also be increasing in the region. The number
of cases of feline tularemia (Raghavan et al. 2013) and
cytauxzoonosis (Raghavan et al. 2014b) in the region diag-
nosed at the Kansas State Veterinary Diagnostic Laboratory
(KSVDL) have increased steadily over the years, at least
partly owing to the wider geographic distribution of A.
americanum. An important contributing factor for the current
distribution of this species in the state and increases in A.
americanum–vectored diseases could be the almost expo-
nential population increase of their primary host, the white-
tailed deer, in Kansas in the past two decades (Paddock and
Yabsley 2007, Kansas Department of Wildlife, Parks and
Tourism [KDWP] 2015). Studies evaluating nonstationary
ecological processes (e.g., changes in climate patterns,
landscape fragmentation) that may influence vector–host and
as well as vector–human contact rates cannot be found for A.
americanum ticks and are worthy of consideration.

Finally, ongoing warming of global temperatures will
likely influence the ecology and distribution of such medi-
cally important ticks. Changes in climatic patterns, including
regional increases in temperatures and shifts in precipitation,
are altering the structure and function of ecosystems globally
(Parmesan and Yohe 2003). These changes can favor emer-
gence of new parasites and new disease agents transmitted by
ticks (Epstein 2001, Harvell et al. 2002), and also alter host–
parasite relationships (Kutz et al. 2005). Climate conditions

FIG. 2. County-level presence map of A. americanum ticks in Kansas. Shaded counties include one or multiple locations
where nymph, larvae, and adult stages of A. americanum were recorded by one or more presence data source in this study—
the Walter Reed Biosystematics Unit, the Prairie Arthropod Research at Kansas State University, and field collections
conducted between years 2012 and 2014.
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considered typical for the Central Plains region (including
Kansas) have already been noted to have changed in no-
ticeable ways (Schoof 2013, Hayhoe et al. 2015), and many
such conditions are known to affect tick phenology and
spatial distribution either directly or indirectly. For instance,
diurnal temperature range, a climate-change index, has been
decreasing steadily since the 1950s, particularly in the mid-
western United States but also other regions of North
America (Karl et al. 1991, 1993). Increased atmospheric
humidity during spring and summer months over the North-
ern Plains was noted for roughly the same time period
(Schwartz 1995). Other ixodid ticks (Ixodes scapularis and I.
ricinus) occurring in northern latitudes have already shown
shifts in their distribution and abundance that have been
linked to warming climate (Daniel et al. 2003, Leighton et al.
2012, Descamps 2013). Any such effect on A. americanum
distribution in the midwestern United States is yet to be
documented and requires further studies.
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