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Tumour angiogenesis as a chemo-
mechanical surface instability
Chiara Giverso1 & Pasquale Ciarletta1,2

The hypoxic conditions within avascular solid tumours may trigger the secretion of chemical factors, 
which diffuse to the nearby vasculature and promote the formation of new vessels eventually joining 
the tumour. Mathematical models of this process, known as tumour angiogenesis, have mainly 
investigated the formation of the new capillary networks using reaction-diffusion equations. Since 
angiogenesis involves the growth dynamics of the endothelial cells sprouting, we propose in this 
work an alternative mechanistic approach, developing a surface growth model for studying capillary 
formation and network dynamics. The model takes into account the proliferation of endothelial 
cells on the pre-existing capillary surface, coupled with the bulk diffusion of the vascular endothelial 
growth factor (VEGF). The thermo-dynamical consistency is imposed by means of interfacial and bulk 
balance laws. Finite element simulations show that both the morphology and the dynamics of the 
sprouting vessels are controlled by the bulk diffusion of VEGF and the chemo-mechanical and geometric 
properties at the capillary interface. Similarly to dendritic growth processes, we suggest that the 
emergence of tree-like vessel structures during tumour angiogenesis may result from the free boundary 
instability driven by competition between chemical and mechanical phenomena occurring at different 
length-scales.

Angiogenesis is the complex process by which new blood vessels develop from an existing vasculature in order to 
supply nutrients and/or metabolites to tissues, playing a fundamental role in many physiological and pathological 
conditions1–5.

For instance, angiogenesis physiologically occurs during embryogenesis, placenta formation, fetal develop-
ment6 and during tissue-repair7. On the other hand, it may drive the onset and the progression of rheumatoid 
disease8, some eye diseases, duodenal ulcers and the initiation and growth of most types of solid tumors9,10.

Since angiogenesis involves the dynamics of the endothelial cells (ECs) forming the blood vessel wall, we 
investigate whether it is possible to develop a thermodynamically consistent surface growth model describing 
the onset of new vessels, unlike existing mathematical approaches requiring some empirical rules for capillary 
formation.

Angiogenesis invariably occurs through a well-ordered sequence of events driven by the rearrangement and 
migration of ECs (i.e. sprouting) forming the lining of the existing vasculature, and the subsequent EC prolifera-
tion and fusion, culminating in the formation of a network of new capillaries11,12.

In this paper, we focus on tumour-induced angiogenesis, the process in which a small avascular tumour (i.e. a 
colony of cancer cells that lacks its own blood supply) reaches a critical diameter of approximately 2 mm. Above 
this critical size, the existing vasculature can no longer sustain tumor growth only by means of nutrients and oxy-
gen diffusion9. Tumour cell hypoxia is assumed to trigger the first event of tumor-induced angiogenesis, which 
is the secretion by tumor cells of a number of chemicals5, collectively called tumour angiogenic factors (TAFs)13. 
These substances diffuse through the surrounding tissue until they reach the nearby vasculature, whereupon they 
initiate the degradation of the basal membrane of the capillary wall5. Then, ECs respond to the TAF concentration 
gradient by proliferating near the sprout tip and by chemotactically migrating towards the TAF source, forming 
protrusions (sprouts)14–16. Following the initial small finger-like protrusion, branching later occurs (i.e. sprout 
branching)4,14,17. The growing branches move towards the tumour, following the motion of the leading EC at the 
sprout-tip and organize themselves into sort of a dendritic structure4,15–17 inside the extracellular matrix (ECM). 
Furthermore, as the sprout approaches the tumor, eventually joining the tumour mass, the branches dramatically 
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increase in number18. Once the tumour has granted access to the vasculature, it gains access to a virtually endless 
supply of nutrients, possibly metastasizing in distant sites1,4.

Tumor angiogenesis is an active field of research not only for the biologists but also for the physical and math-
ematical researchers. In particular, several continuous19–22 and hybrid23–26 models have been proposed in the past 
20 years27–29. These works focused mainly on the role played by ECs and by the different chemicals, including 
both those associated with the soluble angiogenic factors secreted by the cancer cells, and eventually those arising 
from insoluble molecules in the ECM2. The modelling of the interactions between the ECs and both the differ-
ent angiogenic factors and ECM macromolecules typically encapsulates systems of coupled nonlinear partial 
differential equations (PDEs) describing the migration of ECs from the parent vessel towards the solid tumour. 
Such PDEs continuous models, first proposed by Balding and McElwain20 and later refined4, can describe some 
important features of angiogenesis occurring at the macroscopic scale, such as average sprout density, average 
vessel growth rates and network expansion rates17. However, they are not able to reproduce the morphology of 
the developing capillary network, since they use a diffuse interface approach. Therefore this kind of model can 
be used neither to capture the overall dendritic structure of the network nor to evaluate the inner blood flow24. 
The finer description of these vessel networks can be reproduced with some discrete models that operate at the 
scale of a single EC17,30,31. Thus some hybrid models combining a continuous representation for the chemicals 
and discrete elements to track the motion of individual ECs have been proposed3,4,23,25,26,32,33. Although discrete/
hybrid models have the advantage of describing the motion of individual ECs for simulating a realistic capillary 
network, empirical rules for branching should be generally defined. Moreover, a proper mechanical description 
of the interactions occurring between the ECs and the ECM has not be incorporated23.

Furthermore, both the continuous and the discrete mathematical models in the state-of-the-art focused 
uniquely on the formation of the capillary sprout network in response to soluble and unsoluble chemical stim-
uli (e.g. TAFs and eventually fibronectin), without giving a proper mechanical representation of the process. 
Notwithstanding, in addition to chemical stimuli, mechanical cues play a fundamental role in vascular sprouting 
and maturation, since they govern the interaction between ECs and the surrounding extracellular environment4. 
Indeed, ECs interact with the ECM components, which strongly affect the cellular migration characteris-
tics4,19,22,34. An extensive description of the key chemical and mechanical processes occurring during angiogenesis 
can be found in recent experimental works35–37.

In this work, we propose an original mechanistic approach to angiogenesis, defining a thermo-dynamically-consistent 
continuous model of interfacial growth, that takes into account geometrical, physical and chemo-mechanical 
factors.

Inspired by the striking similarity to tree-like structures found in pure liquid solidification, isothermal solid-
ification of liquid mixtures and oil recovery by fluid injection38,39, we resort to the theory of interfacial growth40 
and pattern formation in crystal growth39,41, proposing a continuous model with sharp interface. These theories 
have largely been applied to inert matter, ranging from the growth of snowflakes to the solidification of metals38, 
and recently employed for living systems, such as bacterial colonies42,43, cell differentiation during morphogenesis 
and cancer growth44. Compared to non-living systems, biological processes present a significantly higher com-
plexity in the mechanisms of self-organization, even if some general principles can be still applied41,42. All these 
processes, indeed, are characterized by the occurrence of an interfacial pattern, i.e. the developing structures 
will form at the interface between two (meta-) stable phases/materials rather than in the bulk of the material. 
Furthermore, complex patterns result from out-of-equilibrium phenomena dominated by the interplay of driv-
ing forces of different physical nature38,39. Our understanding of this mechanism is given by the Mulins-Sekerka 
instability41,45, which describes pattern formation during the solidification of a solid phase front growing into a 
supercooled liquid39.

In the following we propose a free-boundary mathematical model of tumor-induced angiogenesis. The model 
encapsulates the interfacial and bulk balance laws for ECs and extracellular space, respectively, as well as the 
reaction-diffusion equation for the vascular endothelial growth factor (VEGF), one of the principal tumour angi-
ogenic factors15,26. Implementing a finite element code, we later present the numerical simulations of the model, 
together with a sensitivity analysis on the model parameters, which highlights the key factors controlling the 
vascular morphology. Finally, we critically discuss the numerical results of the proposed model and we add few 
concluding remarks.

Mathematical Model
Description of the biological system model.  Solid tumors can stimulate new vessel formation10 across 
distances of some millimeters (from 1–3 mm46 to 5 mm47), whilst it takes approximately 10–21 days for the grow-
ing network to link the tumour to the parent vessel14,18,47. However, generally, mathematical models generally 
focus on smaller length-scales (e.g. 17–68 μm3).

The major biological components of the vessel are ECs, forming a mono-layer of flattened and extended units. 
The abluminal surface of the capillary is then wrapped into the basal lamina, which is a collageneous network 
composed by laminin, other proteins and carbohydrates. The thickness of the basal lamina is only a fraction of 
the endothelial layer, so that the typical dimension of the capillary wall (including both the basal lamina and the 
endothelial layer) is in the order of 190–270 nm, for a capillary lumen spanning from 4–5 μm up to 30–40 μm 48. 
Thus all the relevant biological processes occurring during angiogenesis take place within a region ΔVε whose 
characteristic width is much smaller than the capillary-tumor distance and the lumen size (see Fig. 1a).

Definition of the mathematical model.  Accordingly, let us consider a continuous system made by two 
different materials occupying the two adjacent regions, V+, representing the extracellular space, occupied by the 
ECM and healthy tissue, and V− representing the capillary lumen filled with blood. In the following, we will refer 
to all properties related to the material in V+ and V− with the superscripts +  and − , respectively (see Fig. 1b). 
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Let us consider angiogenesis as an interfacial growth process40,44, i.e. as the ensemble of phase transformation 
phenomena occurring between the two contiguous materials in a very narrow volume ΔVε across their interface 
(see Fig. 1):

∪ ε ε∆ = + ∀ ∈ Σ − < <ε ΣV s t sx n x( ) ( ), /2 /2 (1)

where nΣ =  n− =  − n+ is the local outward unit normal vector of the surface, ε is the small thickness of this 
interfacial volume and Σ (t) is the non-material interface that separates the two regions and that represents the 
capillary wall.

Thus, we can define the surface fields on the interface Σ (t) by homogenizing the volumetric physical proper-
ties defined inside the small volume ΔVε40. In practice, the surface Σ (t) behaves as a moving non-material inter-
face, which carries the thermo-chemo-mechanical properties of ΔVε. Therefore Σ (t) can be treated as a 
discontinuity moving inside the continuous biological system with parametric velocity Σv  and associated physical 
velocity vΣ. Then we can assume40 that the projection vΣs on the surface Σ  of the physical velocity v is uniform 
inside the volume ΔVε, i.e.

ε ε= − ⊗ ⋅ = − ⊗ ⋅ + ∀ ∈ Σ − < < .Σ Σ Σ Σ Σ Σs t sv I n n v x I n n v x n x( ) ( ) ( ) ( ) ( ), /2 /2 (2)s

The tangential component =Σ Σv vs s  is dependent on the parametrization, whilst the normal component Σv n is 
not. Finally, we remark that the decomposition of the physical velocity is given by = +Σ Σ Σ Σvv v ns n , so that 

= ⋅Σ Σ Σv v nn  is unique.
In this framework, balance laws should be formulated not only for the volume fields but also for the surface 

fields, thus to guarantee the consistency of the thermo-chemo-mechanical properties of the whole system. Let 
ρα, with α =  {+ , − }, be the spatial density in the corresponding volumes, we first derive the mass balance laws. 
Considering that no net proliferation occurs inside the volumes Vα, with α =  {+ , − }, that the ECM degrada-
tion associated to matrix metalloproteinases is locally concentrated at the interface, the mass balance equation 
reads40,44

ρ ρ∂
∂

+ ∇ ⋅ =
α

α α

t
v( ) 0, (3)

where we considered that non-convective mass fluxes are zero everywhere in the bulk volumes Vα but on both 
sides of the interface, possibly having a discontinuity across Σ (t). Since the spatial density ρα can be considered 
as constant, the impressibility condition in Eq. (3) is satisfied if we take vα =  0, thus assuming that either the 
capillary sprout degrades and invades the extracellular space without deforming it49, or that the growing ECs fill 
V− without inducing any volumetric deformation.

On the other hand, defining the homogenized surface density field ρΣ and surface mass source γΣ, the mass 
balance of the surface density for the ECs of the capillary wall reads40,44

δ ρ

δ
ρ ρ ρ γ ρ+ ∇ ⋅ − = + − + ⋅Σ

Σ Σ Σ Σ Σ Σ Σ Σ Σ⟦ ⟧
t

K v v vv n m( ) ( )
(4)

t

t
s n n n

where ∇ Σ · (·) =  (I −  nΣ ⊗ nΣ) · ∇  is the surface divergence, K is twice the local mean curvature, δt indicates the 
Thomas (convected) derivative, ⟦(·)⟧ =  (·)+−  (·)− is the jump operator and m is a non-convective mass flux vector.

Taking ρΣ constant in time and in space, the mass balance for the surface density of ECs (5) leads to

ρ ρ ρ γ ρ∇ ⋅ − = + + ⋅ .Σ Σ Σ Σ Σ Σ Σ Σ Σ⟦ ⟧K v vv n m( ) (5)s n n

Inside the proliferative interface, new ECs are constantly produced by a surface mass source γΣ, whereas the 
extracellular material is degraded49 in order to make the capillary advance and the waste material is transported 

Figure 1.  (a) Schematic representation of the biological domain consider: the capillary lumen, the extracellular 
space and the tumor can be represented through the control volumes V− (t), V+ (t) and Vt (t), respectively, 
whereas the endothelial layer of the capillary is represented through the non-material interface, Σ (t). (b) 2D 
domain used for the numerical simulations, representing the section of the 3D domain in (a).
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inside the capillary in order to be eliminated. Therefore, we can define the mass fluxes mα at the interface by 
setting

αρ α ρ= − = Σ .α α α α α
Σ Σv v v on tm n( ) ( ) ( ) (6)n n n

Assuming that ρ+ =  ρ−, motivated by the fact that both materials are mainly composed by water, the previous 
relation states that the growing material deposited in the capillary lumen is created with the same rate of the 
degraded ECM at the interface. Substituting Eq. (6) into Eq. (5) and, for the sake of simplicity, restricting to sur-
face divergence-free motion of the interface, we obtain that γ = − .Σ ΣKv n  This interface balance law states that 
the proliferation of EC is proportional to the curvature, as observed in some biological experiments50.

For the sake of simplicity, we here consider only the effect of the VEGF, which is the main chemical involved 
in the early stage of angiogenesis15. In the proposed model, we assume that the secreted VEGF diffuses from the 
tumor cell located at the boundary ∂ Vt (see Fig. 1) through the extracellular region and the intercapillary space, 
with the same diffusion coefficient Dc, so that the balance of the VEGF concentration, c, reads

β∂
∂

− ∇ = −
α

α α αc
t

D c c (7)c
2

being βα the decay rate of the substance in the volume Vα. Since the VEGF is a diffusible factor with negligible 
inertia, the introduction of an interfacial field is not required and Eq. (7) must be complemented with the follow-
ing boundary conditions

=⟦ ⟧c 0 , (8)

γ∇ ⋅ =Σ⟦ ⟧D c K cn ( , ) , (9)c c

which represent the continuity of the chemical field and the jump of the normal gradient due to the absorption 
rate γc(K,c) at the interface.

Let us now impose the balance of the physical linear momentum inside the biological system. Neglecting iner-
tial terms and in absence of external forces, the balance of linear momentum inside the volume Vα reads

σ∇ ⋅ =α 0, (10)

being σα the Cauchy stress tensor of the material in the volume Vα. As done for the mass balance, we have to 
consider also surface quantities along with volumetric ones. Therefore, defining the Cauchy stress tensor for the 
interface, σΣ, the balance of linear momentum for the interface, under the condition (6), reads

σ σ∇ ⋅ + ⋅ = .Σ Σ Σ ⟦ ⟧n 0 (11)

Considering that the living material in V+ and V− behaves as a perfect fluid with surface tension ω , being 
σΣ =  ω IΣ = ω (I −  nΣ ⊗  nΣ), eq. (11) reduces to the standard Young-Laplace equation.

In order to impose the thermodynamical consistency of the model, the reduced dissipation inequalities inside 
the volume Vα and on the surface Σ (t) should be defined (see the Supplementary Information for further details). 
Since the VEGF concentration is continuous at the interface, the associated volumetric chemical potentials μα 
should also be continuous, i.e. ⟦μ⟧ =  0. Accordingly, the quasi-static reduced dissipation inequality on Σ (t) (see 
the Supplementary Information) reads

µ σ⋅ ∇ − ⋅ ⋅ ≥ .Σ Σ ΣD cn n v[ ] [ ] 0 (12)c

Under the assumption vΣs =  0, the substitution of (9) and (11) into (12) leads to γ cμ +  Kω vΣn ≥  0. In particular 
in the following we will consider the thermodynamically admissible condition

γ µ + ω = .ΣK v 0 (13)c n

Furthermore, we will assume that the VEGF activates ECs in a region of a nearby capillary where the concen-
trations of the tumor angiogenic growth factor reaches a given threshold4,35, namely c0. Thus, the consumption 
term γc takes the following form

γ γ µ= − − − +KH K c c( ) ( ) (14)c 0

where H is the Heaviside function (i.e. H(− K) =  1 if K ≤  0, else H(− K) =  0), (·)+ is the positive part of its argu-
ment and γ is the uptake of chemical energy at the interface, that in this work we assume to be a constant. The 
previous constitutive assumption allows rewriting eq. (13) as

µ γ
=

ω
− ≤Σ +v c c if K( ) 0, (15)n

2

0

which allows deriving the normal velocity of the capillary wall. We remark that for K =  0 the relation (13) is auto-
matically satisfied, so that vΣn has been extended for continuity also for K =  0. The normal velocity depends on the 
curvature of the interface, since the latest influences the chemical potential at the interface, being

µ µ η= − K(1 ), (16)0
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where μ0 is the nominal VEGF chemical potential and η is a characteristic microscopic length, in accordance with 
the Gibbs-Thompson condition51.

In summary, the mathematical model is given by eq. (7), with boundary conditions (8–9) on the moving dis-
continuity complemented by the absorption term (14), a fixed concentration ct on the boundary of the tumor and 
no-flux conditions on the remaining border of the domain, i.e.

= ∂c c Von , (17)t t

∇ ⋅ = ∂ αD c Vn( ) 0 on , (18)c ext

whereas the interface Σ (t) moves with normal velocity

γµ
η=

ω
− − ≤ .Σ +v K c c for K(1 ) ( ) 0 (19)n

0
2

2
0

In order to perform some numerical simulations, it is useful to derive the non-dimensional system of govern-
ing equations and to obtain the fundamental parameters of the model. Considering the following characteristic 
time tc, length lc, velocity vc and chemical concentration cc:

β β β= = = =+− +− +t l D v D c c, , ,c c c c c c t
1 1

and using the barred notation to denote dimensionless quantities, the system to be solved reads

∂
∂

= ∇ −
+

+ + +c
t

c c Vin , (20)
2

δ∂
∂

= ∇ −
−

− − −c
t

c c Vin , (21)
2

Σ=⟦ ⟧c t0 on ( ) , (22)

λ η∇ ⋅ = − − − − ΣΣ +⟦ ⟧c K KH K c c tn (1 ) ( )( ) on ( ) , (23)0

ξλ η= − − ≤ ΣΣ +v K c c if K t(1 ) ( ) 0 on ( ) , (24)n
2

0

= ∂c V1 on , (25)t

∇ ⋅ = ∂ αc Vn( ) 0 on , (26)ext

where δ =  β −/β+, =c c c/ t0 0 , λ = γμ0/Dc, η η= l/ c, ξ µ ω β= +c D /( )t c0 .
The nondimensionalization procedure leads to the definition of five dimensionless parameters, δ, c0, λ, η, ξ. In 

particular:

•	 δ represents the ratio between the decay of VEGF inside and outside the vessel.
•	 λ is related to the ratio between the rate of absorption and the rate of diffusion of VEGF.
•	 ξ represents the ratio between chemical and mechanical energies driving capillary growth.
•	 c0 is merely the ratio between the threshold required for EC activation and the VEGF concentration at the 

tumor border.
•	 η is the ratio between the microscopic length regulating chemical absorption at the interface and the VEGF 

diffusive length.

Finally the size characterizing the domain of the simulations are made dimensionless with respect to the 
characteristic length lc.

For sake of simplicity, in the following we will omit the barred notation to denote dimensionless quantities.

Results
Finite Element Simulations.  The system of eqs (20–26) has been numerically implemented developing a 
finite element code with the open-source program FreeFem+ + 52. The jump condition (23) at the moving bound-
ary has been introduced in the variational formulation of the problem. The equations for the chemical species 
(20–21) are solved on a triangular grid, fitting at every iteration the moving interface. Given the VEGF concentra-
tion ci at time ti, the curvature of the boundary Ki and the value of the chemical potential μi, the normal velocity 
of the boundary vΣn,i is computed from eq. (24). The nodes belonging to the interface are then explicitly moved 
accordingly to the computed velocity in order to obtain the new position of the discontinuity at time ti+1. Once 
the new position is known, the curvature Ki+1, and the chemical potential μi+1 are updated in order to compute 
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the chemical field at time ti+1, using an implicit-Euler scheme. Then, the mesh is adaptively refined, generating an 
increasing number of grid points in those region close to the higher curvature of the moving interface.

The spatio-temporal dynamics for the vessel formation resulting from numerical simulations is reported in 
Fig. 2a. Initially, a sprout arises from the parent vessel and it soon splits in two or more branches. Some of this 
second-generation branches do not grow sufficiently to give rise to third-generation branches (because the con-
centration of VEGF at their tips is not high enough), whereas some others soon split. The process continues until 
a dendritic structure is formed and the solid tumor is reached. Accordingly to biological observations14,18,47, the 
branching velocity increases as the vessels approach the tumor, due to the increase in the VEGF concentration 
close to the tumour region and the formation of an increased number of branches with higher absolute curva-
tures. The visible higher frequency of branching at the edge of the network as the capillary sprouts approach the 
tumor is biologically known as the “brush border” effect14,18.

Sensitivity analysis.  The growth of the network evolves both temporally and spatially in response to the 
combined effects of angiogenic factors, migratory cues via the ECM, mechanical factors acting at the vessel inter-
face (i.e. the surface tension) and geometric factors, that are summarized in the model dimensionless parameters. 
Therefore, we conducted a sensitivity analysis changing one dimensionless parameter at a time, while keeping the 
other parameters fixed. In particular, Fig. 2b reports the final simulated morphologies for different values of the 
parameter ξ, that drives, along with λ, the velocity of the network. We find that the vessel sprouting is strongly 
favored by smaller values of the parameter ξ, i.e. by low velocities, which is a common feature of growing bio-
logical systems in a diffusion-limited regime41. Since ξ is proportional to the ratio between the chemical energy 
of VEGF diffusion and the mechanical energy of the capillary tip (ω ), small values of ξ correspond to situations 
in which the capillary surface tension is dominant on the diffusion of chemicals. In contrast to the patterns 
emerging in other non-living and living systems39,42,43, here the surface tension does not act as a stabilizing effect 
at small wavelengths, but it rather promotes the formation of lateral ramified branches. Indeed, the instability is 
governed in this problem by the curvature of the interface, similarly to dendritic growth problems41, and the only 
short-scale cutoff is the size of the ECs in the capillary wall.

The parameter η is also very influential for the formation of the capillary network, since it weights the increase 
of VEGF absorption, thus regulating the velocity of the front. The dimensionless η represents the ratio between 
the microscopic length related to the chemical absorption at the interface and the characteristic diffusive length 
inside the volumes. Figure 3a reports the different morphologies obtained varying the parameter η for different 
values of ξ, showing that more branched patterns with sharper tips arise for higher values of η. Indeed, the micro-
scopic length related to the chemical dynamics at the interface is known to give the dimensional information to 
set the characteristic microscopic scale of a pattern in pure solidification41. Actually, smaller values of η signifi-
cantly reduces the contribution of the curvature to the velocity, whereas higher values of this parameter amplify 
even small variations in the curvature, setting the formation of sharper tips.

Sharper and thinner vessel tips can be obtained also increasing the parameter λ (see Fig. 3b), which weights 
the absorption of VEGF at the vessel interface: since the absorption is proportional to the curvature, higher values 
of λ generates a sort of “tip-effect”, sequestering the VEGF on the tips of the vessel and thus hindering the forma-
tion of long later protrusion behind the front-head tip. For small values of λ, the finger-like capillary sprouts tend 
to bend toward each other, as observed in experiments53. This process will eventually lead to numerous tip-to-tip 
and tip-to-sprout fusions known as anastomoses15. In the present model, we do not implement the formation of 
anastomoses, for increased technical complications, and the simulations stops as soon as two branches touch.

Figure 2.  (a)Angiogenesis dynamics in numerical simulations: the initial sprout evolves and soon splits in 
second-generation vessels, which in turn split until a complex tree-like network is formed. The simulations 
have been obtained setting ξ =  10, λ =  1, δ =  500, η =  0.0316, c0 =  0.143 in a domain with dimensionless length 
and height equal to 0.316 and the interface initially placed at xΣ =  0.079. The total dimensionless time of this 
simulation is T =  1.558. (b) Morphological diagram of the simulated capillary morphology for different values 
of the parameter ξ. The simulations were obtained setting λ =  1, δ =  100, η =  0.0316, c0 =  0.3432. We report at 
the bottom the dimensionless time at which each snapshot has been taken. The simulations stopped because 
of either the capillaries reached the tumour (left snapshot) or they formed anastomosis (central and right 
snapshots).
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The effect of varying the parameters β, which is the ratio between the VEGF decay inside the vessel and inside 
the extracellular environment, strongly influence the evolution of the chemical field and the initial condition on 
the VEGF (obtained solving the stationary problem, without absorption on the vessel wall). Therefore in order to 
obtain the same initial thickness of the initial sprout, we have to change the initial value of c0: in particular, as δ 
increases we have to set a smaller threshold c0 in order to observe the formation of branches. In all cases, the time 
required to form the branched vessel network decreases with increasing δ.

Finally, we consider the effect of varying the size of the domain, keeping constant the ratio between the size of 
the capillary, d, and the the total size of the square domain, H (see Fig. 1b). Figure 4 shows that relatively thicker 
branches (with respect to the normalized initial sprout thickness) can be obtained as H increases, highlighting the 
existence of a size effect in the pattern selection.

Physical interpretation of the model results.  The tree-like network structure emerging in the numeri-
cal simulations is somewhat similar to the morphology of crystal fronts in solidification problems, where a stable 
thermodynamic phase propagates into a metastable one. In both cases, the competition is between the diffusion 
of a given field (e.g. thermal or chemical) on one hand, and the microscopic dynamics occurring at the interface 
(such as the surface tension and the chemical kinetics of absorption at the interface) on the other, modulated by 
the ratio between the typical distances involved in the process and the diffusive length. The result of this compe-
tition is the onset of branches and the formation at the macroscopic scale of intricate tree-like structures, which 
closely resemble to the ones experimentally observed54,55. Thus, this work shows that the onset of vessel sprouting 
from the existing vasculature can be reproduced without defining ad-hoc empirical rules for branching, as in 

Figure 3.  (a) Morphological diagram of the simulated capillary morphology for different values of the 
parameter η and ξ, setting λ =  1, δ =  100, c0 =  0.33838 in a domain with dimensionless length and height equal 
to 0.32 and the interface initially placed in xΣ =  0.08. (b) Morphological diagram of the simulated capillary 
morphology for different values of the parameter λ and ξ, setting δ =  100, η =  0.05, c0 =  0.33838 in a domain 
with dimensionless length and height equal to 0.32 and the interface initially placed in xΣ =  0.08. At the bottom 
of each snapshot we reported the dimensionless time at which it was taken.

Figure 4.  (a) Morphological diagram of the simulated capillary network for different values of the parameter 
δ and ξ, setting λ =  1, η =  0.032 in a domain with dimensionless length and height equal to 0.32 and the 
interface initially placed in xΣ =  0.08. The value of c0 changes in order to keep constant the initial sprout size. 
(b) Morphological diagram of the simulated capillary morphology for different dimension of the domain of 
simulation (H), setting λ =  1, η =  0.032 and ξ =  10. The interface is placed at distance H/4 from the left-side of 
the domain and c0 is chosen in order to keep constant the ratio between the initial sprout size and the domain 
dimension H. At the bottom of each snapshot we reported the dimensionless time at which it was taken.
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previous mathematical approaches, but it simply results from the interactions between chemical and mechanical 
phenomena, generating an unstable growth process at the vessel interface.

Unfortunately, a direct quantitative comparison between the numerical simulations and the biological experi-
ments is not straightforward, since not all the data required by the mathematical model, even though measurable 
in principle, are reported in literature.

However, it is useful to compare our results with the available experimental data with respect to the size of the 
domain and the time required for forming the vascular network. The diffusion coefficient inferred from biological 
data, for the vast majority of angiogenic growth factors, is in the order of 10–600 μm2/s 4,56,57, while the decay rate 
of the VEGF in the surrounding tissue is in the order of 0.456–0.65 h−1 56,58. Accordingly, taking Dc =  10 μm2/s 
would results in a computational domain having a width of about 90μm, which is comparable to the value used in 
previous mathematical models3; whereas Dc =  600 μm2/s would represent a width of about 0.7 mm, that is closer 
to the tumor-capillary distance reported in literature5,58. For what concern the dynamics, experiment on the avas-
cular cornea have shown that angiogenetic processes take 2–5 days to form an initial sprout59. Once the sprouts 
are developed, the growth rate of new capillaries is much faster, with an initial growth rate of about 0.22 mm/day 
which increases up to 0.61 mm/day when the network becomes highly branched59. An increasing velocity over 
time has also been reported in previous mathematical models3, precisely from ~0.20 mm/day to ~1 mm/day,  
highlighting the long time required for the initial spouting. These effects are consistent with our numerical results, 
where the initial sprout formation requires a long time, whereas branching accelerates as the new capillaries 
approach the tumor (see the Supplementary Information for further details). Even if our results at this stage do 
not have any intent of being quantitative, the proposed model should be regarded as a proof-of-concept to outline 
a new mechanism of angiogenesis formation.

Discussion
In this work we have presented a theoretical and numerical analysis for studying the well-orchestrated  
sequence of biological events occurring during tumour angiogenesis. In particular, we have proposed a 
thermodynamically-consistent growth model describing the morphology of the new developing vasculature, 
depending on the different geometrical and chemo-mechanical factors involved in the initial stages of network 
formation. The proposed continuous approach couples the diffusion of angiogenic molecules (VEGF) with the 
chemically-driven migration and proliferation of ECs. Unlike existing modelling approaches19–22 we explicitly 
reproduce both the temporal and spatial network evolution taking into account for the chemo-mechanical cues 
(i.e. the surface tension, the variation of the chemical potential across a curved interface) and geometric factors 
(i.e. the capillary to tumour distance). In addition, this application of a mechanistic interface growth model to 
angiogenesis is completely new. Our approach brings novel insights on the role played by physical forces along 
with chemical factors in directing angiogenesis. In particular, five dimensionless parameters, encapsulating the 
geometric, chemical and mechanical cues, are found to characterize the model dynamics: δ, c0, λ, η, ξ. The effects 
of the different parameters on the predicted morphology are studied in the numerical simulations. Angiogenesis 
initiates with a first vessel tip sprouting when the local VEFG concentration reaches a given threshold. Such a 
protrusion undergoes an unstable growth process, with the curvature having a destabilizing effect on the capillary 
motion. Indeed the simulations demonstrate that the both the microscopic chemical kinetics at the interface of 
the capillary, following the Gibbs-Thompson law, and the size effects of the biological domains compete with the 
reaction-diffusion of VEGF in order to determine the occurrence of complex branched patterns. The predicted 
morphologies resulting from the numerical simulations strikingly resemble the tree-like vascular structures 
experimentally observed in vivo and in vitro54,55. Nonetheless, this work should be regarded as a proof-of-concept 
of the fundamental role of physical forces during angiogenesis, since it neglects some molecular processes acting 
at the cellular level. Thus, future studies should focus on the incorporation of the molecular and other cellular 
mechanisms observed in biological experiments (e.g. the Notch signaling16,30,60, the interaction between stalk cell 
and tip cell16,60). Moreover, we remark that in this simulations the concentration of VEGF is kept constant at the 
tumor boundary, whereas time-dependent conditions at the tumor interface can be useful to consider the physi-
ological feedback between the tumor oxygenation due to the onset of the new vasculature and the secretion of 
VEGF in response to hypoxic condition. Taking this feedback mechanism into accoun might affect the dynamics 
of vessel formation as the branches approaches the tumor. It is also worth noticing that the proposed numerical 
implementations should be refined in order to describe the formation of anastomosis and the role played by the 
environmental stress in influencing capillary branching. In fact, despite the mathematical model has been derived 
considering the role of the stress field in the surrounding environment, the simulations have been performed 
considering an external inviscid fluid and a surface tension acting at the interface. By formulating proper hypoth-
eses on the mechanical stress exerted by the surrounding tissue, future works should focus on the role played by 
external mechanical cues on the overall process. Indeed, there is a growing recognition that the balance between 
internally generated and externally applied forces, along with ECM remodelling and mechanical factors con-
nected with blood flow or extravascular mechanical stress are key determinants of a cell’s fate and function and 
are important regulators in postnatal physiological angiogenesis61–65. Nevertheless, mature ECs can develop 
capillary-like networks in cell culture even in the absence of flow or any other externally applied stresses61, 
demonstrating that extrinsic stresses are not strictly necessary for triggering angiogenesis. Furthermore, even if 
the majority of the existing mathematical models of angiogenesis are 2D1,3,4,25, angiogenesis is typically a 3D pro-
cess, with tips sprouting in directions other than that of the propagating vascular front. Thus, future works will 
certainly focus on the 3D implementation of the proposed model. In spite of these limitations, the model provides 
original insights about the influence of the physical and chemical effects on the pattern dynamics during angio-
genesis. In conclusion, the proposed mechanistic approach, possibly combined with biologically more detailed 
diffusion-based mathematical models, has the potential to foster our understanding on the process of vessel for-
mation. A deeper comprehension of the key factors directing angiogenesis is fundamental for many clinical 
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applications, since vessel tortuosity is know to strongly affect the anti-tumor treatment response66,67. Finally, even 
though we focus exclusively on tumour-induced angiogenesis, the proposed model can be useful to model other 
biological processes, such as wound healing68 and tissue optimization in engineering scaffolds69.
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