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The increasing use of electric lights has modified the natural light environ-

ment dramatically, posing novel challenges to both humans and wildlife.

Indeed, several biomedical studies have linked artificial light at night to

the disruption of circadian rhythms, with important consequences for

human health, such as the increasing occurrence of metabolic syndromes,

cancer and reduced immunity. In wild animals, light pollution is associated

with changes in circadian behaviour, reproduction and predator–prey inter-

actions, but we know little about the underlying physiological mechanisms

and whether wild species suffer the same health problems as humans. In

order to fill this gap, we advocate the need for integrating ecological studies

in the field, with chronobiological approaches to identify and characterize

pathways that may link temporal disruption caused by light at night and

potential health and fitness consequences.
1. Introduction
Within the past century, there has been a rapid and unprecedented increase in

artificial light at night (ALAN) that has modified both the indoor and outdoor

light environment. Given the ubiquitous role that light plays in daily and

seasonal organization of behaviour and physiology, it is reasonable to expect

that any perturbation of the light environment could have far-reaching effects.

Indeed, biological rhythms are fundamental life processes: organisms possess

cell autonomous clocks that are directly or indirectly responsive to light. Bio-

medical research is rapidly providing evidence that exposure to ALAN in

humans and model species can be harmful, and that circadian disruption

might be the underlying mechanism [1]. Several laboratory studies demonstrate

that aberrant light exposure can influence the circadian system, with down-

stream alterations in immune, reproductive, cognitive and metabolic function

[2–4]. All of these systems are critical to fitness. In the wild, animals can be sub-

jected to several other ecological effects of ALAN that are not linked to

physiological changes but can still impact survival [5–7]. However, advance-

ments in the understanding of the mechanisms underlying the health effects

of ALAN in humans and model species have not been paralleled by equal evi-

dence from ecological research: discovering whether wild populations suffer

from the same health consequences of ALAN remains a significant research

objective. Here, we first review the biomedical implications of ALAN, focusing

on circadian disruption as a main underlying mechanism. We then highlight

how the integration of chronobiology and ecology can provide substantial

help to understand the ultimate effects of ALAN.
2. The health effects of artificial light at night
Exposure to ALAN can have direct or indirect physiological effects. Direct

physiological effects often involve the disruption of circadian rhythms, and in
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particular the release of the hormone melatonin, which

orchestrates changes in many physiological processes as a

function of day length, including body mass, metabolic

rate, hormone synthesis and immunity [1]. Well-studied bio-

medical implications of ALAN are obesity and metabolic

disruption. Obesity can result from changes in caloric

intake and energy expenditure, but time of feeding can also

play a significant role. Mice exposed to ALAN shift their

normal nocturnal time of food intake to their inactive part

of the day, and despite equivalent daily caloric intake to

mice exposed to dark nights, they gain more weight and

have impaired glucose tolerance [4]. This has direct impli-

cations for human health: a recent cross-sectional study on

more than 100 000 British women reported a positive associ-

ation between obesity and exposure to ALAN [8]. Mistimed

feeding may also have subsequent fitness consequences, as

it reduces reproductive health in flies [9]. Another postulated

consequence of ALAN is cancer. Indeed, ALAN seems to

promote ageing and tumour growth in rats and to slow

breast cancer therapy [10,11], and epidemiological data

show that ALAN correlates with breast cancer in women

[12]. Although the mechanisms are unclear, suppression of

melatonin is likely involved. ALAN can also have indirect

effects on other physiological processes. For instance, as

many core components of the immune system possess circa-

dian clocks [13], they are likely vulnerable to the effects of

ALAN. Indeed, ALAN suppresses T-cell-mediated immunity

in hamsters [2]. Other indirect circadian effects of ALAN are

associated with sleep deprivation, such as cardiovascular

disease and endocrine disruption [1].

Despite this evidence, potential long-term health conse-

quences of ALAN are difficult to demonstrate experimentally

in humans, and model species have little or no genetic vari-

ation that does not represent the complexity of the natural

world, where associated health costs of ALAN might be

offset by other potential benefits. Indeed, male songbirds

breeding close to street lamps sang earlier in the morning

and were thereby able to increase extra-pair paternity gain

[6], and shorebirds obtained more night-time foraging oppor-

tunities on light-polluted mudflats [7]. Thus, besides clear

effects of ALAN on immediate mortality [5], it remains unclear

whether wild animals might suffer from similar, ALAN-

induced health problems that might compromise reproduction

and survival and eventually reduce fitness.
3. How chronobiology can help ecologists
Classic circadian theory can help ecologists to assess long-

term effects of ALAN on important circadian parameters. A

recent study has found that songbirds living in light-polluted

territories in urban areas had a shorter circadian period

length than conspecifics in dark, rural areas [14]. It is unclear

whether this change is a consequence of masking from light,

after-effects of light exposure on the speed of the circadian

clock, and/or selection for shorter period lengths in urban

areas. In addition, what are the consequences of faster circa-

dian rhythms in the wild? A recent study showed that tau
mutant mice with shorter circadian period length had

reduced survival and fecundity than heterozygous mice

[15], but evidence of links between naturally occurring vari-

ation in circadian periodicity and fitness is scarce. In this

context, an exciting avenue of research would be to assess
whether prolonged exposure to ALAN can produce

evolution of circadian traits in wild populations [16].

A great advantage of captive chronobiology studies is the

possibility to record activity patterns continuously and to

obtain repeated physiological samples to assess other circa-

dian traits such as body temperature and melatonin

secretion. Although this might be complicated to do in the

field, ecologists are starting to use such approaches. For

instance, while biotelemetry tools have been mostly used to

assess animal movement and migration strategies, these can

also be used to record circadian activity. Indeed, automatic

radio-telemetry that allows continuous recording of activity

has revealed links between exposure to ALAN and changes

in activity patterns of wild songbirds [17]. However, the

physiological implications of such changes are mostly

unknown. Given that a substantial portion of the genome is

under circadian regulation [18], to obtain a single physiologi-

cal sample from one wild animal will only provide limited

information, especially if the time of sampling is not con-

trolled for in the subsequent analyses. Tools usually

deployed by ecologists or chronobiologists, such as radio-

telemetry or next-generation sequencing, could help to

resolve this issue: for instance, radio-telemetry can be used

to record body temperature at a fine scale and for multiple

days. While such application has been mostly applied thus

far to study the circadian physiology of arctic mammals

[19], light pollution studies might also benefit from it.

Next-generation sequencing has been widely used by chron-

obiologists to assess the effect of circadian disruption, with

excellent results [18,20]. If applied in mechanistic studies

of light pollution, next-generation sequencing will allow

ecologists to characterize specific pathways affected by

ALAN, and thus identify potential physiological markers.

For instance, recent studies revealed that sleep deprivation

can have profound effects on the circadian expression of the

transcriptome, and in particular of genes involved in

immune and stress responses [18], and that oxalate is a

robust marker of sleep debt [20]. In the wild, ALAN can

disrupt sleep [21], but the potential consequences are

unknown. The integration of experiments in the wild with

metabolic profiling and targeted analysis of specific markers

such as oxalate could provide evidence linking ALAN-

induced sleep deprivation to health-related changes in

physiology.
4. How ecology can help chronobiologists
Given the widespread presence of circadian rhythms in vir-

tually all organisms, chronobiologists have often assumed

that possessing functional circadian clocks must be adaptive.

However, the few experiments performed in semi-natural

settings using transgenic mice have shown contrasting effects

with often surprising results. Indeed, while tau mutant mice

showed reduced survival and reproductive success [15], Per2-
null mice did not have lower survival than heterozygous

individuals, and in the latter study, mice did not show the

predominantly nocturnal behaviour they display in the lab-

oratory [22]. This suggests that unexpected features and

consequences of circadian behaviour may be widespread in

natural populations. This should be of interest of chronobiol-

ogists whose aim is to understand the adaptive nature

of circadian rhythms. Therefore, we advocate the need for
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experimental study systems in the wild where longitudinal

physiological samples can be obtained, circadian activity of

individual animals monitored and fitness measured.

Examples of these systems are already being used to study

the ecological effects of ALAN, and thus could offer impor-

tant insights into the fitness consequences of circadian

disruption [23].

Just as ecologists can use biotelemetry tools to gain

insights into the circadian behaviour of wild species, chrono-

biologists can also benefit from using these techniques to

bring their research into the wild [24]. In particular, the inte-

gration of accelerometers with GPS loggers is the most

promising technique currently available [25]. The greatest

advance allowed by this technology is the possibility to ident-

ify specific behavioural states of tagged animals while

simultaneously recording their exact position in space,

which would be crucial to understanding how activity may

vary between dark- or light-polluted areas. Important circa-

dian behaviours such as foraging and resting could be

easily quantified and, if integrated with measurements of

reproductive success and survival, will offer unique insights

into the adaptive function of circadian rhythms. Some

chronoecologists have already started to follow this path

[6,24], but more studies are needed. Moreover, collaboration

between ecologists and chronobiologists will ensure that

state-of-the-art tools are deployed to analyse biotelemetry

data with respect to biological rhythms [15,24].
5. Conclusion
It is essential that we learn about the effects of modern light-

ing on health, so that we might appropriately manage them.

Many different non-visual responses, including circadian

responses, have different spectral sensitivity, peaking at

short wavelengths between 450 and 490 nm [1]. The recent
shift from sodium lamps (approx. 589 nm) to fluorescent

and LED lights of considerably shorter wavelengths has high-

lighted the need to trade-off economic and health benefits, as

the latter types are increasingly used both indoors and out-

doors. Thus, it may be of interest to compare wild

populations in areas where sodium lamps or LED street

lighting are present.

Besides a few sparse examples, research on the effects of

ALAN has been marked by a lack of connection between

biomedical studies on the circadian effects of ALAN in the

laboratory and ecological studies in the field. We envision

merging the mechanistic approach of chronobiologists with

the possibility of sampling animals in the wild, including

measuring their health and longevity, as the way forward

for scientists interested in the proximate mechanisms as

well as in the ultimate consequences of ALAN. We believe

that researchers in both fields have much to offer to

each other; ecologists will understand how light pollution

can affect wild species, whereas circadian biologists will

appreciate why circadian disruption matters in the real world.
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