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GN, 0000-0002-9240-3020

The cochlear amplifier that provides our hearing with its extraordinary sensi-

tivity and selectivity is thought to be the result of an active biomechanical

process within the sensory auditory organ, the organ of Corti. Although ima-

ging techniques are developing rapidly, it is not currently possible, in a fully

active cochlea, to obtain detailed measurements of the motion of individual

elements within a cross section of the organ of Corti. This motion is predicted

using a two-dimensional finite-element model. The various solid components

are modelled using elastic elements, the outer hair cells (OHCs) as piezoelec-

tric elements and the perilymph and endolymph as viscous and nearly

incompressible fluid elements. The model is validated by comparison with

existing measurements of the motions within the passive organ of Corti, cal-

culated when it is driven either acoustically, by the fluid pressure or

electrically, by excitation of the OHCs. The transverse basilar membrane

(BM) motion and the shearing motion between the tectorial membrane and

the reticular lamina are calculated for these two excitation modes. The fully

active response of the BM to acoustic excitation is predicted using a linear

superposition of the calculated responses and an assumed frequency response

for the OHC feedback.
1. Introduction
The overall dynamics of the cochlea are characterized by the travelling wave

theory [1,2], in which a slow wave, due to the interaction between the stiffness

of the basilar membrane (BM) and the inertia of the fluid in the chambers, pro-

pagates along the cochlea, from the basal to the apical end when the stapes is

driven by an external pressure. The amplitude of the travelling wave gradually

increases, and the wave speed gradually decreases as the BM stiffness reduces

along the length of the cochlea, until it reaches a frequency-dependent position,

called the characteristic place, where the BM resonates at the excitation fre-

quency, after which it decays rapidly. The amplitude of the travelling wave

at the characteristic place is also enhanced, by about 40 dB or more, by the

action of the cochlear amplifier within the organ of Corti, which is believed

to be associated with a feedback loop driven by the electromotility of the

outer hair cells (OHCs) [3].

The precise micromechanical mechanism of the amplification within the

active cochlea is not fully understood as it is difficult to identify the different

contributions of the various cell types [3]. Non-invasive measurements of the

internal motion within the organ of Corti are difficult, particularly in vivo in

the fully active cochlea [4], but measurements with acoustic excitation of the

partly active cochlea [5–8] are possible. Experimental observations of internal

motion of the organ of Corti using in vivo or in vitro preparations have been

reported, for acoustic excitation, by Nilsen & Russell [5], and Lee et al. [9], by

Nowotny & Gummer [9,10] for electrical excitation, by Chan & Hudspeth

[11] for both excitation modes and by Fridberger et al. [6] for static pressure

loading. Even though there is still some debate about the role of the hair

bundle dynamics [12–18], it is widely believed that it is mainly the somatic
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motility of the OHCs that provides the power to drive the

amplification of the vibration within the mammalian organ

of Corti [3,19].

Cochlear models are useful to connect our understand-

ing of the mechanics of the cochlea with incomplete

experimental observations. Modelling the mechanics of the

cochlea allows us to test assumptions about cochlear func-

tion, by comparing responses predicted using models with

experimental observations. With a properly constructed

cochlear model, we are also able to carry out experiments

in silico, from which we can predict the output response to

stimuli without the imperfections due to an experimental

set-up. The key question with any model, however, is the

degree of detail that must be included to simulate the

behaviour of interest. There are also difficulties in extrapolat-

ing directly from experimental observations made in vitro
and in situ to the normal operation of the intact organ

in vivo [20].

A pioneering micromechanical model of the cochlea with

simplified cellular and membrane components of the organ

of Corti embedded was developed by Kolston & Ashmore

[21], using the finite-element method, in which the OHC

activity was modelled by introducing a force acting at the

two ends of the OHCs and the force was determined by

the shear displacement between the reticular lamina (RL)

and tectorial membrane (TM). Similarly, Nam & Fettiplace

[22] developed an elastic micromechanical model of the

organ of Corti to study force transmission and elastic wave

propagation [23], in which OHC somatic and hair bundle

active forces were both considered. Developments of the

finite-element method and in computational power have

allowed newer models to study wave propagation in the

cochlear partition [23–25], mechanical effects of OHC

somatic and hair bundle motility [22,26], fluid–solid inter-

action [27,28] and detailed motion patterns within the

organ of Corti in response to static pressure loading [29].

The active amplification process within the cochlea has

also been studied using either lumped-parameter models

[30–32], or simplified three-dimensional models [21,33–36].

The detailed structures of the organ of Corti are not fully

represented in those models, however, and some do not

model the effect of the cochlear fluids [22,23]. The main

contribution of the present work is to provide some initial

predictions of the detailed motion pattern within the organ

of Corti in the active case, based on a model that is validated

using the available experimental data on passive acoustic or

entirely electrical excitation.

The organ of Corti consists of a multitude of different

specialized cells, which provide the setting of our highly sen-

sitive and selective hearing. All cells are filled and surrounded

by fluid. To account for this, we discretize the volume material

by the finite-element method and so ensure local force, torque

and mass balance. The work presented here is the first model

to implement a feedback loop in a finite-element model of the

cochlea that includes a detailed organ of Corti geometry as

well as fluid–structure interaction, and hence to predict the

internal motion within the organ of Corti for acoustic stimu-

lation in the fully active case. The advantage of the finite-

element method is its capacity to model structures having

complex geometry. In this paper, a finite-element model of a

slice of the guinea pig cochlea is constructed, based on the

two-dimensional anatomy for the apical end in the guinea

pig that was originally used by Baumgart et al. [37] to study
motion within the organ of Corti in response to somatic elec-

tromechanical forces from the OHCs. The micromechanical

model of the organ of Corti is built at micrometre level, with

the finite-element software ANSYS (v. 15.0, 2014). We use the

plane element, plane183, for elastic components, a user-

defined viscous fluid element [38,39] for the perilymph and

endolymph, the piezoelectric element, plane223, for OHCs

walls and the beam element, beam188, for the Deiters cell

rods and the stereocilia. We do not use the fluid79 element,

as it introduces significant elastic stiffness for shear and

rotational strains. The longitudinal fluid flow in the inner

sulcus will add some pressure load on the BM and on the

other neighbouring cells in this area, but is excluded here

due to the restrictions of a two-dimensional model. If the

organ of Corti itself is assumed to be longitudinally locally

reacting, however, then the model can be used to predict its

mechanical admittance at a given position along the cochlea,

which could be incorporated into coupled models that include

the longitudinal fluid coupling [40,41].

The motion within the organ of Corti is first simulated in

response to a static pressure loading on the BM, for compari-

son with the experimental measurements of Fridberger et al.
[6]. Then, the BM motion and the shearing motion between

the TM and RL are calculated when the slice is driven either

acoustically or electrically, and these results are also compa-

red with previous experimental observations [5,9–11]. The

fully active response of the BM to acoustic excitation is then

predicted, assuming small displacements, using a linear super-

position of the calculated responses, with feedback provided

by an appropriately defined gain function for the OHCs.
2. Finite-element model
2.1. Model description
The cochlea cross section has a rich and multi-scaled geometry.

The overall cross section has dimensions of the order of milli-

metres, with the hair cells and supporting cells being on the

micrometre scale [42] and the stereocilia being of the order

of fractions of a micrometre. To handle the geometric com-

plexity, we employ the finite-element method. A numerical

two-dimensional model has been built, based on geometry

from the guinea pig cochlea at a place corresponding to the

characteristic frequency of about 0.8 kHz [37].

The dynamics of the cochlea is characterized by values of

the Reynolds number well below one; furthermore, the

organ of Corti moves by only a very small fraction of its size

[4]. Therefore, the nonlinearities originating from large defor-

mations, which are important in most classical engineering

problems involving flows, can be neglected here. This allows

us to ignore convective and finite-displacements effects, and

thus we have to solve only the linear problem for the mech-

anics for small oscillations. As the frequencies are high, we

retain the inertial term. An efficient approach to computing

the linear and strongly coupled fluid–structure interaction

problem in this complex geometry is the method employed

by Kozlov et al. [38] to study the mechanics of the hair

bundle in its viscous environment in three dimensions. Here,

we use this monolithic approach for the displacement and

pressure variables in two dimensions. This approach differs

from Baumgart et al. [37] as we do not condense out the

pressure degree of freedom on the element level.
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Figure 1. Finite-element model of a cochlear slice (a) taken from a position whose characteristic frequency is about 0.8 kHz in the guinea pig, which was
constructed in ANSYS (v. 15.0, 2014), together with a zoomed in view of the elastic components (b) and (c) illustration of the second domain filled with fluid.
(1) Scala vestibuli, (2) scala media, (3) scala tympani, (4) spiral ligament, (5) outer pillar cell, (6) pillar cell head, (7) inner pillar cell, (8) inner hair cell, (9)
inner sulcus cells, (10) tectorial membrane, (11) Hensen stripe, (12) reticular lamina, (13) outer hair cells stereocilia, (14) outer hair cells, (15) Hensen cells,
(16) basilar membrane, (17) inner hair cell stereocilia, (18) spiral limbus, (19) spiral lamina, (20) Deiters cells and (21) fluid filled region. The highly rigid
cytoskeleton in the Deiters cells region is modelled with beam element, which is referred to as the Deiters cell rod in this paper.
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For the linear mechanics, the momentum balance of the

Newtonian fluid reads

rf

@v

@t
¼ �rpþ hr � ðrvþ (rv)TÞ � 2

3
r � vI

� �
,

with v ¼ @u

@t
,

ð2:1Þ

where t is time, rf is the fluid density, p is the pressure, v is

the velocity vector, u is the displacement vector, h is the

dynamic viscosity and I stands for the second-order identity

tensor. This description must be complemented by a constitu-

tive equation, which is given here by the linear relation

between pressure and displacement to express the compressi-

bility of the fluid, with the bulk modulus K, as

p ¼ �Kr � u: ð2:2Þ

For the elastic elements, we solve the equation for an isotropic

elastic material

rs

@2u

@t2
¼r� E

ð1þyÞðruþðruÞTÞþ Ey
ð1þyÞð1�2yÞr�uI

� �
, ð2:3Þ

with the solid density rs, the Young’s modulus E and the

Poisson’s ratio y as material properties. Damping of the elas-

tic material is implemented by a damping matrix, which is

proportional to the stiffness matrix.

The finite-element method is employed to solve the

equations above for the fluid and solid materials within the

cochlear cross section. For the fluid, the pressure is approxi-

mated by linear basis functions and the displacement by

quadratic basis functions. The basis functions have nodes at

the corners and for the displacements also at the mid-
points of the edges of the element. The implementation fol-

lows Zienkiewicz et al. [43] for the two-field incompressible

elasticity. As the mechanical problem we have to solve is

linear, we use a harmonic time dependence of the form eivt

for the time derivatives involved, where i is the imaginary

unit and v is the angular frequency. This allows us to formu-

late the problem in the frequency domain. Using a weak

formulation and a discretization with the shape functions,

the system of equations for the fluid and solid domain can

be written in one matrix equation as

ð�v2 Mþ iv CþKÞw ¼ f, ð2:4Þ

where M, C and K are the mass, damping and stiffness

matrices, respectively. The vector w contains the displace-

ment degrees of freedom for the whole domain, the

pressure field in the fluid domain and the voltage, and the

vector f represents the external excitation forces. The coupling

of all degrees of freedom represents a monolithic approach to

solve the fluid–structure interaction problem.

There can be fluid flow in the radial direction through the

OHCs and outer pillar cells. To take this into account, we

model the region surrounded by the RL, inner sulcus, BM,

Deiters cells and Hensen cells by two domains, representing

the structure and the fluid respectively, which are coupled to

give the overall finite-element model. Similarly, the fluid flow

in the subtectorial space is not impeded by the presence of

the OHC stereocilia, because these are modelled as beams,

and these degrees of freedom are not coupled to the fluid.

The first domain includes the pillar cells and OHCs and the

second one the fluid filling of the shaded region, as shown

in figure 1c. The two-dimensional model of the cochlea



Table 1. Material properties of some elastic elements in the finite-element
slice model.

components Young’s modulus [Pa]

basilar membrane (BM) 2 � 107

tectorial membrane (TM) 3 � 103

Hensen cells 3 � 103

inner hair cell (IHC) 3 � 103

outer hair cells (OHC) 1 � 105

Deiters cells 3 � 103

Deiters cell rod 1 � 108

spiral ligament 1 � 109

spiral lamina 1 � 109

spiral limbus 1 � 106

pillar cell head 1 � 107

outer/inner pillar cells 1 � 108

reticular lamina (RL) 3 � 108

inner sulcus 3 � 103

stereocilia 1 � 105
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consists of 3095 elements for the elastic components, 5525

elements for the fluid, 18 beam elements for the Deiters cell

rods and the stereocilia on top of the OHCs, 216 piezoelectric

elements for the OHCs walls, and has in total 26 631 nodes.

The discretized geometry is depicted in figure 1.

At the position where the geometry is obtained, the BM is

connected to the spiral lamina on its left-hand side and with

the spiral ligament on the other side. The in vivo boundary

conditions for the BM are complicated and depend on neigh-

bouring tissues and fibres. Homer et al. [44] show that a

simple beam model of the BM is capable of simulating the

BM deflection profile observed by Cooper [45] at all frequen-

cies. For their model, the BM is simply supported at the left

end (at the spiral lamina) and clamped at the other end (at

the spiral ligament). Steele & Puria [46] clamped both ends

in their two-dimensional finite-element model of the organ

of Corti and emphasized that the clamping on the right

side of the BM is important for the guinea pig. Ni & Elliott

[47] showed that the fluid coupling and the coupled response

are not critically dependent on the BM boundary conditions

and the fluid coupling in cochlear models can be reasonably

well estimated by assuming a single, fixed, radial profile. We

assume here that the BM of the present model is clamped at

its two ends, which is consistent with the model of Steele &

Puria [46]. For the fluid elements used here, the outer edges

in the scala vestibuli and scala tympani are implicitly pressure

release, to reflect the openings generally required when the

experimental measurements, used to validate the model,

were made in excised cochlear sections.
2.2. Material properties
The elastic moduli of the different cell types vary by several

orders of magnitude. For example, the modulus of TM is of

the order of kilopascals in the apical turn [27], but the bone

of the partition and walls is of the order of gigapascals [48].

Generally, with knowledge of the protein fibres and their

arrangement, an estimate can be made for the effective

stretching and bending stiffness of a particular component.

However, uncertainty remains, for example, in the volume

fraction of protein in a particular component, the cross-links

and in the stiffness of the ground substance. The important

material properties of the model used here are listed in

table 1, which are tuned to obtain the resonant frequency

which is the same as the corresponding characteristic fre-

quency, and are within the range of measurements and

models reported by Cai & Chadwick [27], Steele & Puria

[46], Scherer & Gummer [49], Strelioff & Flock [50] and

Frank et al. [51]. The parameters were manually adjusted and

an order of magnitude estimate was usually sufficient, as the

response of the model was robust to smaller variation in

these parameters.

Poisson’s ratio of components is taken to be y ¼ 1/2–E/6K,

where E is Young’s modulus of each elastic component and

the bulk modulus of the fluid, K, is equal to 1 GPa. The density

for all components is similar to water; 1 � 103 kg m23. The factor

used to obtain the damping from the stiffness matrix is 0.1 for all

elastic components. This was tuned to the typical phase change

over frequency of a travelling wave near the resonant frequency.

The dynamic viscosity of the cochlear fluid is set to 1 mPa.s and

its bulk modulus is equal to 1 GPa. The OHCs are modelled with

a piezoelectric wall and are filled with fluid. In practice, the

material properties will depend on many factors and would
need to be carefully tuned when used to model other positions

along the cochlea.
3. Motion in the organ of Corti
3.1. Coordinates and sign conventions
The cross section of the cochlea contains the BM, TM, OHCs,

RL and other types of cells, reflecting its complex geometry

and composition. It is necessary to define local coordinates

and a sign convention for describing the motion within the

fine structures of the cochlear. In order to compare simulation

results with those measured in experiments, we assume that

vertical motion is normal to the observing surface, whereas

radial motion is perpendicular to the vertical motion, as

shown in figure 2 for different observing components.

Upward vertical motion is defined to be positive, which cor-

responds to motion towards the scala vestibuli. These

definitions are similar to those used in experiments [9,11],

which enables us to directly compare model prediction

with them. It is difficult to exactly match the coordinate

system in the model with that of the experiments, however,

so that there may always be some angle between these two

coordinate systems.
3.2. Static response
As a preliminary validation of the overall material properties

and geometry of the model, the static elastic response is first

calculated, to compare with experimental observation [6] and

other numerical models [29]. A positive static pressure load-

ing, in the scala tympani, is uniformly applied at the bottom

of the BM corresponding to a negative pressure difference

between the scala media and the scala tympani.

Under the influence of this static pressure, the whole

organ of Corti moves towards the scala vestibuli, as shown

in figure 3. The BM shows a slightly asymmetric radial
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mode shape, with maximum displacement around the third

row of the OHCs. The RL moves as a stiff plate without

much bending and is pivoting around a point close to the

inner hair cell (IHC). The magnitude of the RL displacement

grows linearly from the IHC towards the third row of the

OHCs. A relative shearing motion can also be observed

between the TM and the RL, as seen in the deflection of the

OHCs stereocilia. The displacement pattern of the results

from this two-dimensional slice model qualitatively agree

with those from the experiment reported by Fridberger

et al. [6] and the numerical model reported by Steele et al. [29].
3.3. Dynamic response to acoustic stimulus
To simulate sound-induced motion within the organ of Corti,

a sinusoidal pressure difference is applied uniformly across the

BM at different frequencies. Figure 4 shows the resulting

motion at different positions within the organ of Corti as a

function of excitation frequency. This indicates that the RL

moves as a rigid plate pivoting against a point close to the

IHC at low frequencies, because the different parts of the RL

all move in phase. The displacement close to the IHC shows

the smallest amplitude. The TM upper surface moves as a

unit at low frequencies as well, below about 1 kHz, each
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position moving in phase. BM motion shows a first-order

bending mode, which is similar to that with the static pressure

loading. The displacement peak at resonance in this single slice

is, however, considerably less than the overall maximum dis-

placement that occurs in the fully coupled cochlea, because

the latter is due to the enhancement of the travelling wave

over some longitudinal distance, as discussed above. To com-

pare with experimental measurements [7,11], we focus on

motion at the characteristic frequency. It should be noted

that at this stage the model is only capable of reproducing

the passive response to acoustic stimulus and care needs to

be taken when comparing the results with those obtained

from in vitro measurements [7,11], in which the cochlea
remains partially active, and the degree of activity may not

be well controlled [3].

Figure 5 shows a plot of displacement in response to a

sinusoidal acoustic stimulus at 0.8 kHz, which is approxi-

mately the same as the characteristic frequency of the

cochlear slice. The TM moves as a single unit and the overall

displacement gradually increases outward to the point at the

outermost extent and is minimal at the spiral lamina end. The

BM displacements increase linearly from the feet of the IHC

to the feet of the outer pillar cells and the amplitude peaks

close to the third row of the OHCs. The pivot point of the

BM is at the feet of the inner pillar cells. The TM displacement

is about 0.6 of the BM, which is close to non-invasive
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measurement of a nearly passive cochlea at high sound

intensities [9].

The RL also shows a pivoting motion with the centre close

to the IHC region. Displacements of the RL increase linearly in

the direction of the OHCs. The OHC displacements have simi-

lar orientation, which implies that OHCs are barely deformed.

These are consistent with the observations of Fridberger &

Boutet de Monvel [7], in which motion within the organ of

Corti was measured under passive condition. This was ensured

by a high-level excitation and a drug to block the OHC electro-

motility. A clear shear motion of the stereocilia can also be seen

in figure 5, in which inward radial motion of structures along

the RL leads to outward deflection of hair bundles.

Detailed motion patterns at different position along the RL,

TM and BM are plotted in figure 6, to compare with those

observed by Chan & Hudspeth [11]. The vertical motion, in

the y-direction, is perpendicular to the surface of RL, TM or

BM, which are positive for movement towards the scala

vestibuli.

Although the measuring positions might be at slightly

different positions in the model and in the experiment, they

still show a reasonable qualitative agreement. The predicted

TM vertical displacement shows good agreement with

those from the experiment, in both amplitude and phase.

The BM vertical displacement was measured with fewer

positions in the experiment and begins to show a phase

difference compared with the model at positions beyond

the second row of OHCs. The predicted amplitude of the

radial response of the RL shows a significant difference

with that measured in these experiments. The decrease

from the innermost position to the outmost position that

was observed in the experiment is not present in the model,
which may be caused by some remaining OHC motility in

the experiment.
3.4. Dynamic response to electrical stimulus
In order to study the effect of OHC somatic electromotility, a

sinusoidal voltage is applied, in phase, across the walls of

each OHC, which are modelled using piezoelectric elements.

The thickness of the OHC wall will thus be modulated, which

changes the axial length of the cell, because the intracellular

fluid is nearly incompressible. The OHCs elongation and con-

traction correspond to polarization and depolarization, and

these simulation results are compared with experiments in

which the OHCs are driven electrically.

There are several significant phenomena that are observed

when the model is driven electrically. First, the resonant fre-

quency in the case of electrical excitation is about 1.2 kHz,

which is about a half octave higher than that in the passive

acoustic case, as will be illustrated in figure 10. The increase

in resonant frequency may be because the fluid loading on

the organ of Corti, when driven electrically is less than

when driven acoustically, because less fluid is displaced

[52]. In the case of electrical excitation, parts of the BM

move up, while another part moves down and consequently

less fluid has to be moved further away from the BM in com-

parison with the in phase motion of the BM for the pressure

load. Second, the RL motion at the IHC is out of phase with

that at the second row of the OHCs (OHC2), as shown in

figure 7. This is consistent with the measurements of

Nowotny & Gummer ([9], figure 6a,b for example) for the

mechanical responses of the organ of Corti of the guinea

pig cochlea, at the characteristic frequency, to electrical
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Figure 8. The exaggerated deflection plot inside the organ of Corti when the OHCs are elongated due to electrical excitation at 1.2 kHz (animation in electronic
supplementary material).
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excitation in vitro. Third, the RL and the BM are moving in

opposite directions when the OHCs expand, as shown in

figure 8. The largest motions are found in the OHC region,

where the OHC electromechanical force is coupled directly

to the RL and, thus drives the other regions of the organ of

Corti, in agreement with the experimental observation [9].

The RL motion at the IHC is predicted to be about 11 dB

smaller than at the second row of the OHCs (OHC2), as

shown in figure 7, which is in a similar range to that

measured by Nowotny & Gummer [9], in which the differ-

ence is 7.8+ 5.7 dB in the third turn of the guinea pig

cochlea. The predicted vibration patterns of the RL and the

TM in response to electrical stimulation are also shown in

figure 7, together with the vibration patterns taken from

fig. 2A in [9]. The TM is seen to show in-phase vertical

motion along its long axis in agreement with the experi-

mental data. The simulation results of the RL vertical

displacements over all observed radial positions show similar

vibration patterns to the experiment, except that the RL peak

occurs at the second row of OHCs in the experiment rather

than at the third row of OHCs in the simulation.
Figure 8 shows a plot of the overall deformation within the

organ of Corti in response to OHCs electrical excitation at

1.2 kHz, which is similar to that seen for excitation at

0.8 kHz. Unlike for the passive acoustic excitation, the

normal TM displacement is greater than the BM displacement

[11]. Furthermore, the BM exhibits a second-order bending

mode, which is in contrast to the first-order mode in the pas-

sive case. The arcuate and pectinate zones of the BM move out

of phase with each other, as observed by Nuttall et al. [53] in

the in vivo measurement of electrically driven BM movements

in the guinea pig cochlea.
4. Fully active linear response to acoustic
stimulus

The active process within the organ of Corti, created by the

somatic motility of the OHCs, can be represented using a

block diagram, as shown in figure 9.

With no OHC feedback and assuming linearity, the BM

displacement, wBM, and the average shear motion of the



wBM
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H

GOS

GOB

OHC feedback

GAS

GABPA

VOHC

Figure 9. Block diagram of the cochlear electromechanical feedback system.
The organ of Corti vibration due to either acoustic or electrical stimulation
produce both BM motion, wBM, and a shear motion, wST, between the RL
and the TM at the middle OHCs position in proportion to the receptances
GAB, GAS, GOB and GOS. The shear motion of the OHC stereocilia, wST, is
assumed to generate the active OHCs force via the OHC frequency response, H.

Table 2. Value for the electrical parameters used in the OHC feedback loop
in the slice model [30].

parameter value unit

g 0.9: active

0: passive

—

g 7.2 � 107 V m21

1/Rm 1.3 mS m21

Cm 3.7 mF m21
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OHC stereocilia, wST, can be written as the superposition of

responses due to the acoustic pressure difference excitation,

PA, and the electrical excitation due to all the OHCs, VOHC,

wBM ¼ GABPA þ GOBVOHC ð4:1Þ

and

wST ¼ GASPA þ GOSVOHC, ð4:2Þ

where a negative pressure difference PA or positive VOHC,

driving a contraction of the OHC, generates an upward

wBM. In the simulation all three OHCs are driven with the

same voltage, VOHC. The complex transfer responses GAB,

GAS, GOB and GOS represent the receptances (displacement

per unit pressure or voltage) of the BM motion, and of the

shearing motion between the TM and RL, when driven

either acoustically, by pressure difference PA, or electrically,

by VOHC.

The action of the OHCs is shown as a feedback path in

figure 9: from the stereocilia shear displacement, wST, to the

OHC electrically excitation, VOHC. In normal forward trans-

duction, the stereocilia of the OHCs convert mechanical

stimuli into electrical responses. In reverse transduction, the

voltage inside the OHCs evokes a mechanical response.

These two forms of transduction are combined together

into an overall OHC feedback path in figure 9. The frequency

responses of the individual receptances (in figure 9) can be

calculated from the passive finite-element model and these

are plotted in figure 10. The response of the BM due to acous-

tic excitation, GAB, clearly shows the characteristic frequency

of this slice model, which is around 0.8 kHz, although other

well-damped resonances also contribute to all the responses.

Its response to electrical excitation, GOB, shows a resonance at
about 1.2 kHz, however, which is about half an octave above

the characteristic frequency, as noted above.

In the closed loop, the OHC tresponse due to the feedback

is defined to be

VOHC ¼ HwST, ð4:3Þ

where H is a complex feedback response, which depends on

the properties of the OHCs. A simple model of this feedback

response [30,54] is given by

H ¼ gg
1þ ivRmCm

, ð4:4Þ

where g is the normalized level of active amplification, Rm is

the OHC electrical resistance, Cm is its electrical capacitance

and g is an overall gain. This overall gain is chosen so

that the closed loop system is on the edge of instability

with g ¼ 1, as calculated by plotting the Nyquist plot of

GOS(iv)H(iv), in which GOS(iv) has been calculated up to

20 kHz to complete this plot. The stability properties of this

isolated slice will be different to those of the coupled cochlea,

but because even the most sensitive slice preparation has not

been observed to spontaneously oscillate, it is reasonable to

assume that an appropriate value of feedback gain is below

that which causes instability, and a value of g ¼ 0.9 has

been used here to represent the fully active cochlea. The

values of the assumed OHC parameters are listed in table 2.

Substituting equation (4.3) into (4.2) allows the closed

loop OHC response to be calculated, when driven by the

acoustic excitation, as

VOHC ¼
GASH

1� GOSH
PA: ð4:5Þ

The BM displacement, wBM, in the closed loop is thus given,

using equation (4.1), as

wBM ¼ GAB þ GOB
GASH

1� GOSH

� �
PA: ð4:6Þ

Equation (4.5) can be used to predict the fully active

response of the BM, using the individual responses calculated

from the passive finite-element model and the assumed

OHC response.

It should be noted that at low frequencies H is positive,

because an excitatory displacement of the OHC stereocilia

generates a positive current and hence a positive voltage,

depolarization, in the OHC. GOS is negative, however,

because a positive OHC voltage causes it to contract and so

move the stereocilia in the inhibitory direction. The feedback

loop formed by the OHCs thus generates negative feedback

at low frequencies, as emphasized by Khanna & Hao [55]

and Lu et al. [56] for example.
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Figure 12. The exaggerated deflection plot inside the organ of Corti, calculated with 1 Pa acoustic pressure excitation at 0.85 kHz, when the OC is under fully active
condition (animation in electronic supplementary material).
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Figure 11 shows the magnitude and phase of the BM dis-

placements, calculated using equation (4.6), in response to

acoustic excitation when the system is passive, g ¼ 0, and

active, g ¼ 0.9. In the active case, the amplitude of the RL

in the OHC region falls by about 54%, whereas the peak

BM response is predicted to be about 27% greater than that

of the passive model. In the measurements of Fridberger &

Boutet de Monvel [7], when a drug is not used to block

OHC electromotility, the amplitudes of the RL fall by about

32%, whereas the amplitudes of the BM increase by 50%
comparing with a passive cochlea. It should be emphasized,

however, that the amplification in a single slice will not be the

same as that seen in the coupled cochlea, where the activity of

the cochlea basal to the characteristic place has been shown to

significantly amplify the passing wave [57,58]. The internal

motion of the organ of Corti under the fully active condition

is calculated by adding together that due to a purely acoustic

excitation and that due to an OHC voltage excitation given by

equation (4.5), as shown in figure 12, and a movie of this is

included in the electronic supplementary material, as are
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movies for the static pressure loading, the individual acoustic

and electrical stimulations. The relative internal motion under

the fully active condition is seen to be quite similar to that for

just electrical stimulation, indicating that the OHC somatic

forces make a significantly larger contribution to the BM

movement than the acoustic pressure alone, even though

the former is required to initiate motion. The radial distri-

bution of BM displacement is similar to that observed in

[59]. It is striking that the deflection of the OHC’s stereocilia

is significantly reduced, by about 20 dB, by the action of the

feedback loop, as seen in the animation of the fully active

cochlea in figure 12. This can only be achieved if the

normal motion of the RL is also smaller in this position.

The OHCs are driven quite hard to maintain this condition,

however, so that the RL motion above the IHCs still has

significant motion. Unfortunately, this two-dimensional

simulation does not give a realistic prediction of the motion

of the IHC stereocilia, due to the flow of fluid in the subtec-

torial space, so no conclusions can be drawn at this

stage about the change in IHC excitation under these fully

active conditions.

The active response of this two-dimensional model does

not completely reflect the biological amplification process in

the three-dimensional cochlea, because the slice model does

not, for example, include fluid longitudinal coupling, the full

three-dimensional orientation of the OHC or the nonlinearity

of the OHC response, which are all important to the overall

cochlear response. In general, however, this linear combination

of the cochlear responses to acoustic and electrical excitations

does provide a way of predicting the fully active response of

a cochlear slice, as would be observed in in vitro experiments

at low levels, and can be used to simulate the complete

internal motion of the organ of Corti under these conditions.
5. Conclusion
The motions within the organ of Corti have been simulated

using a two-dimensional linear finite-element model of a slice

of the cochlea, under either acoustic or electrical excitation,

and these have been shown to be similar to those observed in

experiments. The advantages of the finite-element models are
its power of incorporating detailed anatomical structures and

the consequent avoidance of the assumptions and simplifica-

tions inherent in lumped-parameter models [31,32,54].

A linear combination of the responses of our cochlear

model to different types of excitation is then used to predict

the active linear response to acoustic excitation. The relative

motion within the organ of Corti is thus predicted for the

fully active cochlear slice model. This formulation allows the

active response of the cochlea to be calculated at a relatively

low computational cost. It also provides the opportunity of

extending this work to take into account the nonlinearity of

the OHC. If the nonlinearity is assumed to be confined to

the OHC electromotility, so that the individual receptances

within figure 9 remain linear, time domain versions of these

responses can be calculated based on the computed frequency

responses. This opens up the possibility of nonlinear time

domain simulations of the organ of Corti, using a nonlinear

model of the OHC response. The effect of local longitudinal

coupling could also be considered by extruding the slice into

a three-dimensional segment, with a finite length in the longi-

tudinal direction. Ultimately, wave propagation could be

modelled, either using a full three-dimensional model of the

entire cochlea, or by coupling the local responses of a

number of micromechanical segments with an overall fluid

coupling model. The behaviour of the local feedback within

each slice, when coupled to the responses of adjoining slices

could then be predicted, to help understand the transmission

of wave energy along the cochlea. In this way, modelling

methods could be used to complement the existing experimen-

tal measurements and further contribute to our understanding

of the mechanics of the cochlea.
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