
Incorporating Local Land Use Regression And Satellite Aerosol 
Optical Depth In A Hybrid Model Of Spatio-Temporal PM2.5 

Exposures In The Mid-Atlantic States

Itai Kloog1, Francesco Nordio1, Brent A. Coull2, and Joel Schwartz1

1Department of Environmental Health - Exposure, Epidemiology and Risk Program, Harvard 
School of Public Health, Landmark Center 401 Park Drive West, Boston MA USA 02215

2Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215

Abstract

Satellite-derived Aerosol Optical Depth (AOD) measurements have the potential to provide 

spatio-temporally resolved predictions of both long and short term exposures, but previous studies 

have generally shown moderate predictive power and lacked detailed high spatio-temporal 

resolution predictions across large domains. We aimed at extending our previous work by 

validating our model in another region with different geographical and metrological 

characteristics, and incorporating fine scale land use regression and nonrandom missingness to 

better predict PM2.5 concentrations for days with or without satellite AOD measures. We start by 

calibrating AOD data for 2000–2008 across the Mid-Atlantic. We used mixed models regressing 

PM2.5 measurements against day-specific random intercepts, and fixed and random AOD and 

temperature slopes. We used inverse probability weighting to account for nonrandom missingness 

of AOD, nested regions within days to capture spatial variation in the daily calibration, and 

introduced a penalization method that reduces the dimensionality of the large number of spatial 

and temporal predictors without selecting different predictors in different locations. We then take 

advantage of the association between grid-cell specific AOD values and PM2.5 monitoring data, 

together with associations between AOD values in neighboring grid cells to develop grid cell 

predictions when AOD is missing. Finally to get local predictions (at the resolution of 50m), we 

regressed the residuals from the predictions for each monitor from these previous steps against the 

local land use variables specific for each monitor. “Out-of-sample” ten-fold-cross validation was 

used to quantify the accuracy of our predictions at each step. For all days without AOD values, 

model performance was excellent (mean “out-of-sample” R2=0.81, year-to-year variation 0.79–

0.84). Upon removal of outliers in the PM2.5 monitoring data, the results of the cross validation 

procedure was even better (overall mean ”out of sample” R2 of 0.85). Further, cross validation 

results revealed no bias in the predicted concentrations (Slope of observed vs. predicted = 0.97–

1.01). Our model allows one to reliably assess short-term and long-term human exposures in order 

to investigate both the acute and effects of ambient particles, respectively.
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1. Introduction

Fine Particulate Matter (PM) is a complex mixture of particles primarily composed of 

sulfate (SO4), nitrates (NO3), ammonium (NH4), elemental carbon (EC), organic 

compounds (OC), and various metals (1). PM originates from a variety of stationary and 

mobile sources and may be directly emitted (primary emissions) or formed in the 

atmosphere by transformation of gaseous emissions (secondary emissions).

Multiple studies have demonstrated the association between both short and long term 

exposures to PM2.5 (particulate matter that is 2.5 micrometers or smaller in diameter) and 

adverse health effects. Multiple health effects have been shown including asthma (2, 3), 

cardiovascular problems (4, 5), respiratory infections (4, 6), mortality (7–9) and lower birth 

weights (10–13). This adverse association has been demonstrated for a wide range of 

concentration levels in various regions of the world, yet an important limitation of most 

previous studies is that they all rely upon a limited number of PM2.5 monitoring sites placed 

within the study area. Because these sites do not measure individual-specific exposure, this 

approach introduces exposure error, and likely biases the effect estimates downward (14). In 

addition, a key limitation is that they are unable to produce estimates in locations without 

monitors nearby, and people who live in more densely populated areas are unlikely to be 

representative of those who do not.

Land use (LU) regression exposure models are commonly used in health studies, yet since 

the LU terms are generally not time varying, their temporal resolution tends to be limited, 

and based on the spatial resolution of the available PM2.5 monitoring network (15–18). Land 

use terms capture traffic and point sources, but spatial smoothing is required to capture 

variation in secondary aerosols. In addition the coefficients of the land use terms are 
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determined by land patterns around ambient monitoring stations, whose locations may be 

non-representative of LU in general in the U.S. These same locations drive the spatial 

smoothing of LU. Hence extrapolation of predictions from these models to other areas 

involves error and may yield biased estimates of exposure. A further limitation of LU 

models is that they do not provide predictions for acute (short term exposure) studies.

Satellite data in general and particularly satellite derived aerosol optical depth (AOD) data 

provides another important tool for monitoring aerosols due to its large spatial coverage and 

reliable repeated physical measurements, particularly for areas and exposure scenarios 

where surface PM2.5 monitors are not available (19–22). We have recently published a novel 

hybrid method to predict daily temporally and spatially resolved PM2.5 across New-England 

for the years 2000–2008 (22). These predictions, which are based on land use regression 

plus a daily calibration of PM2.5 ground measurements and MODIS (Moderate Resolution 

Imaging Spectroradiometer) satellite AOD, allow for the prediction of daily PM2.5 

concentration levels at the resolution of a 10×10 km spatial grid. Model performance was 

excellent, even for days having no AOD data. Ten-fold out-of-sample cross validation 

yielded a mean “out-of-sample” R2 of 0.81. By averaging our estimated daily exposures at 

each location we can generated long term exposures. This enabled us to generate both the 

short term and long term effects of ambient particles, respectively. We have used those 

estimates to assess the association of PM2.5 with both hospital admissions in New England 

and birth weight for all births in Massachusetts.

Although our model performance was excellent, it is important to validate it in another 

region with different geographical and meteorological characteristics. In addition, there is 

room for further methodological improvements in our model. For example, AOD data 

availability is much greater in the summer periods compared to the winter period. This is 

mostly due to heavily clouded days or snow cover in winter periods which results in missing 

AOD data. This non-random missingness of AOD readings could cause selection bias, 

which could in turn negatively affect predictive performance. Also, treating large areas, such 

as the Mid-Atlantic region of the United States, as one region can add additional bias since 

there may be geographic variations in the daily calibration between PM2.5 and AOD. 

Finally, land use regressions typically start with a large number of land use terms, and 

choose a subset by methods that risk overfitting and result in different variable choices in 

different models. In addition, space time interactions are rarely accommodated.

Thus in this paper we extend our previous work in New-England by upgrading and 

validating our model using the Mid-Atlantic area in the eastern part of the USA. 

Specifically, we developed and validated models to predict daily PM2.5 at a 10×10 km 

resolution and at local addresses across the Mid-Atlantic region for the years 2000–2008. 

We updated the model by adding inverse probability weights to account for missing days 

when AOD cannot be included in the primary analysis due to its missingness. We divided 

the Mid-Atlantic area into 7 regions based on the geography of the region and incorporate 

nested day-specific calibration of the AOD-PM2.5 relation by region. Additionally we 

developed an approach that allows us to include all land use and meteorological variables 

and their interactions, with appropriate shrinkage back to their mean effect by category (e.g. 

land use, temporal and interaction).
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2. Material and Methods

2.1 Study domain

The spatial domain of our study included the Mid-Atlantic region in the USA comprising the 

states of Delaware, Maryland, New Jersey, Pennsylvania, Washington D.C., Virginia, New 

York, West Virginia, (Figure 1). They cover an area of 495,486 km2 and have a population 

of 57,303,316 (23). The Mid-Atlantic States include some of the largest metropolitan areas 

in the USA including among others: Baltimore, Washington, Philadelphia, New York, 

Newark and Pittsburgh.

2.2 AOD Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) sits aboard the Earth 

Observing System (EOS) satellites (24, 25). The Terra and Aqua satellites were launched in 

December 18, 1999 and in May 4th, 2002 respectively. The satellites are polar-orbiting 

satellites and operate at an altitude of approximately 700 km. Their sensors scan the swath 

of 2330 km (cross-track) by 10 km (along-track at nadir). For Terra, the local equatorial 

crossing time is approximately 10:30 A.M. while for Aqua it is 13:30 P.M. Both satellites 

perform measurements in the visible to thermal infrared spectrum region. One of the 

fundamental aerosol products from MODIS is spectral AOD (also known as Aerosol Optical 

Thickness-AOT). MODIS level 2 files are produced daily, and represent the first level of 

MODIS aerosol retrieval. Bands 1 through 7 are devised to study aerosols, and a number of 

other bands help with cloud rejection and other screening procedures. The aerosol algorithm 

relies on calibrated, geo-located reflectance Level 1B data (25).

More details about MODIS satellite data have been reported (26, 27). Daily data are freely 

available online through the NASA website (28). For the analysis presented here daily 

MODIS level 2 files from the Terra satellite for the years 2000–2008 were used at the spatial 

resolution of 10 km × 10 km at nadir. MODIS AOD pixel centroids constantly shift daily 

between orbits, thus we created a fixed 10×10 km grid. Daily values of AOD were assigned 

to the grid cell where the AOD retrieval’s centroid was located. Aqua satellite data was not 

used since it was only launched late 2002. Although there are other satellites that measure 

AOD, the MODIS satellite was used since it is the most validated (using AERONET), 

accessible and accurate dataset available today (Remer et al. 2005).

2.3 Monitoring data

Data for daily PM2.5 mass concentrations across the Mid-Atlantic region (see Figure 1) for 

the years 2000–2008 were obtained from the US Environmental Protection Agency (EPA) 

Air Quality System (AQS) database as well as the IMPROVE (Interagency Monitoring of 

Protected Visual Environments) network. IMPROVE monitor sites are located in national 

parks and wilderness areas while EPA monitoring sites are located across the Mid-Atlantic 

including urban areas such as New York city, Washington DC, Baltimore etc. There were 

161 monitors with unique locations operating in the Mid-Atlantic during the study period. 

The Mean PM2.5 across the Mid Atlantic during the study period was 13.59 μg/m3 with a 

standard deviation of 8.52 μg/m3 and a 10.10 μg/m3 interquartile range (IQR).
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2.4 Spatial Predictors of PM2.5

The available spatial predictors for our model were percent of open space, population 

density, elevation, traffic density, PM2.5 point emissions and area-source PM2.5 emissions. 

Percent of open spaces: Percent of open spaces data were obtained through the 2001 

national land cover data (NLCD) multi-resolution land characteristics consortium (MRLC) 

(30). Data were obtained as raster files with 30 m cell size. Percent of open space included 

all areas such as parks, forestry, golf courses, and vegetation planted in developed settings 

for recreation, erosion control, or aesthetic purposes.

Elevation—Elevation data were obtained through the national elevation dataset (NED) 

(31). NED is distributed by the U.S. Geological Survey (USGS) and provides seamless 

raster elevation data of the conterminous United States. The NED is released in geographic 

coordinates at a resolution of 1 arc sec.

Traffic Density—Road data were obtained through the US census 2000 topologically 

integrated geographic encoding and referencing system (TIGER)(32). We calculated the 

total A1 road length (class 1 roads that are hard surface highways including Interstate and 

U.S. numbered highways, primary State routes, and all controlled access highways) across 

the Mid-Atlantic. The A1 roads were intersected with the 10×10 grid cell and the resulting 

attribute tables contained the density of all A1 road segment lengths in the 10 km grid.

PM 2.5 point emissions—PM2.5 point emissions were obtained through the 2005 USEPA 

National Emissions Inventory (NEI) facility emissions report (33). Because the distributions 

of point source emissions were highly right-skewed, the emission values were log 

transformed. Locations reporting zero emissions within the appropriate grid were assigned a 

value of one half of the minimum value among all monitoring locations.

Area-source PM2.5 emissions—Area-source PM2.5 emissions data were obtained 

through the 2005 USEPA -NEI tiered emissions reports (33), which provide estimates of 

total area-source emissions of PM2.5 by county and year. Intersecting source emission areas 

for each 10×10 km grid were weight averaged and similarly log-transformed.

2.5 Temporal Predictors of PM2.5

Meteorologic data—All meteorological variables used in the analysis (temperature, wind 

speed, visibility and relative humidity) were obtained through the national climatic data 

center (NCDC) (34). Only continuous operating stations with daily data running from 2000–

2008 were used (26 stations). Grid cells were matched to the closest weather station for 

meteorological variables.

2.6 Statistical Methods

All modeling was done using the R statistical software version 2.15.0 and SAS (Statistical 

Analysis System) version 9.3.

In our prediction models we accommodate the two most common data types in health 

studies: small area (census areas, postal code areas etc…) geocoded data (SAGD) and 
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residence-specific latitude and longitude geocoded data (RGD). When using SAGD we use 

only our grid cell model (at a 10×10km spatial resolution) while when RGD are available, 

we use a local land use regression component.

To estimate PM2.5 concentrations in each grid cell on each day we run the prediction process 

in four stages. We first summarize the stages here before presenting the regression model 

used at each stage. The stage 1 model calibrates the AOD grid-level observations to the 

PM2.5 monitoring data collected within 10km of an AOD reading by regressing PM2.5 

monitoring data on AOD values and other predictors. Because the relationship between 

AOD and PM2.5 varies day to day (due to differences in mixing height, relative humidity, 

particle composition, vertical profiles etc), this calibration is performed on a daily basis. 

Further, because the mid-Atlantic area of the US is relatively large and this PM-AOD 

relationship can vary spatially, we partitioned mid-Atlantic study area is divided into seven 

regions and assumed this calibration additionally varied by region. In stage 2 we predict 

PM2.5 concentrations in grid cells without monitors but with available AOD measurements 

using the stage 1 fit. This is achieved by simply applying the estimated prediction equation 

obtained from the model fit in stage 1 to these additional AOD values. In stage 3, to estimate 

PM2.5 concentrations in cells where no AOD data is missing, we fit a model that uses 

predicted levels of PM2.5 from stage 2 and spatial associations among PM2.5 levels on a 

given day to estimate daily PM2.5 in cells not having AOD on a given day.

These first three steps are applied to the data at the 10 km × 10km grid cell level. To 

calculate the local PM2.5 concentrations in studies using RGD, we take the residuals of the 

stage 3 model at each monitoring site and regress them against local (50 m buffer) LU terms 

at each monitor. The fitted values from this local regression stage are then added back to the 

grid-level predictions obtained in Stage 3 to produce residence-level predictions.

Stage 1—The base model (stage 1) consists of a mixed model that regresses PM2.5 

monitoring data on grid-level AOD values, temperature, and other land-use regression 

terms. To perform this PM2.5-AOD calibration on a day-specific and region-specific basis, 

the coefficients in this model were assumed to be random effects, meaning these terms vary 

across the population of days and regions according to some random distribution. These 

day-region terms are nested, such that a coefficient for a given region-day combination 

varies randomly around an overall coefficient specific to that day, which itself varies across 

the entire population of days in which AOD is available. This structure is assumed for the 

intercepts, AOD slopes, and temperature slopes in the model.

In addition, a moderately large number of additional spatial, temporal (daily), and spatio-

temporal predictors are included as predictors in the PM2.5 model. Because use of many 

predictors can lead to overfitting and lack of precision of the resulting estimates, we allow 

the effect of each variable to be unique but shrink groups of these effects back to a common 

mean, which represents a form of regularization, or penalization, of the resulting coefficients 

that can stabilize estimation and avoid overfitting. We group these coefficients into the 

spatial terms, the temporal terms, and the spatio-temporal terms, and shrink each set of 

coefficients back towards a mean for each of these three groups of variables. The shrinkage 

is accomplished by treating the coefficient of each variable as a random slope, and shrinking 
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coefficient back to the group-specific mean. We standardize each of these variables to have 

standard deviation 1. Therefore, this mean coefficient, represented in the model as a fixed 

effect, represents the mean effect on PM2.5, averaged across the variables in that group of 

covariates. In the final model we leave only the random slopes for the spatio-temporal terms 

since the separate spatial and temporal terms have a relatively small number of covariates 

and were not statistically significant. However, we present the full model here for cases in 

which more predictors are candidates for inclusion in the model. Taken all together, the first 

stage of the model can be written as:

where PMij is the measured PM2.5 concentration at a spatial site i on a day j; α and uj are the 

fixed and random day-specific intercepts, respectively, AODij is the AOD value in the grid 

cell corresponding to site i on a day j; β1 and vj are the fixed and random day-specific 

slopes, respectively. Temperatureij is the temperature value in the grid the cell 

corresponding to site i on a day j (β2 and kj are the fixed and random slopes for 

temperature).X1mi is the value of the mth spatial predictor at site i, X2mj is the value of the 

mth temporal predictor on day j, and X3mij is the value of the mth spatial-temporal predictor 

at site i on day j. gj(reg) and hj(reg) are the daily random intercepts and AOD slopes specific 
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to each study area region. Here, we assume Σ is a 3 × 3 diagonal matrix with diagonal 

elements σ2
u, σ2

v, σ2
k and ΣREG is a 2 × 2 diagonal matrix with diagonal elements σ2

g, σ2
h.

Second, to accommodate the fact that daily AOD data missingness is not random, the first-

stage model incorporated inverse probability weighting (IPW) to potentially avoid bias in 

the regression coefficient estimates and thus in the resulting predictions. This approach 

effectively up-weights dates and grid cells which are under-represented due to a large degree 

of missing data. To obtain the weights that account for the non-random missingness in AOD 

values, we fit the following model for the probability (p) of observing an AOD value in cell 

i on day j, fit separately from the stage 1 model:

where (p) is the probability of AOD availability on each day in each grid cell in each year. 

We then use the inverse probability weights in the above mixed model. There were no 

observations which had a disproportionate influence in the yearly models.

The stage 1 model was fit to data from each year (2000–2008) separately. To validate the 

first stage of our model, the dataset was repeatedly randomly divided into 90% and 10% 

splits. Predictions for the held-out 10% of the data were made from the model fit of the 

remaining 90% of the data. This “out of sample” process was repeated ten times and cross-

validated (CV) R2 values were computed. To check for bias we regressed the measured 

PM2.5 values against the predicted values in each held out site on each day. Overall temporal 

R2 was calculated by regressing Delta PM against Delta predicted where: Delta PM is the 

difference between the observed PM2.5 at a given site on a given day and the annual mean 

PM2.5 at that location, and Delta predicted is defined similarly for the predicted values 

generated from the model. Overall spatial R2 was calculated by regressing the annual mean 

PM2.5 at a given site against the annual mean predicted PM2.5 at that location.

We also tested the model performance (CV) for a test year (2001) without including AOD 

(only MET and LU variables were regressed against PM2.5 with a random intercept by date 

and a random slope for temperature) and by using a traditional kriging method.

Stage 2—The next stage (stage 2), uses the fit of the stage 1 model to predict a PM2.5 

concentration for each day and grid at which we have an observed AOD value. This resulted 

in yearly datasets with PM2.5 prediction for all day-AOD cell available combinations yet 

still no predictions in day-cell combinations with missing AOD data.

Stage 3—In stage 3 of the model, we estimated daily PM2.5 concentration levels for all 

grid cells in the study domain for days when AOD data were unavailable. Using the PM2.5 

predictions obtained from the first stage of the model as the response, we fit a model 

containing a smooth function of latitude and longitude (of the grid cell centroid) and a 
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random intercept for each cell. This is similar to universal kriging, extended to include the 

mean of the PM2.5 monitors on that day (the average PM2.5 concentrations measured at all 

the available PM2.5 monitors in the region on each day) and random cell-specific slope. To 

allow for temporal variations in the spatial correlation, a separate spatial surface was fit for 

each two-month period of each year. Using this method provides additional information 

about the concentration in the missing grid cells that simple kriging would not. Specifically 

this stage (stage 3) fits the following semiparametric regression model:

where PredPMij is the predicted PM2.5 concentration at a spatial site i on a day j from the 

2nd stage model; MPMj is the mean PM in the relevant region on a day j; α and ui are the 

fixed and grid-cell specific random intercepts, respectively; β1 and vi are the fixed and grid-

cell specific random slopes, respectively. The smooth X,Y is a thin plate spline fit to the 

latitude and longitude, k(j) denotes the two-month period in which day j falls (that is, a 

separate spatial smooth was fit for each two-month period).

To estimate the goodness of fit, we dropped “all observations” at a particular site each time 

(ten times and taking out 10% of specific monitors). Then the cross validation was 

performed against PM2.5 stations that were left out altogether from the analysis. This “out of 

sample” process was repeated ten times and CV R2 values were computed.

Stage 4—Finally, for cases in which health outcomes are resolved to the specific longitude 

and latitude for a given study subject residence, we fit a local PM stage (stage 4) that takes 

the residuals constructed by taking the difference between a given monitored PM2.5 

concentration and the 10km × 10km grid prediction from Stage 3 for the grid in which that 

monitor is located, and regresses these residuals on location-specific predictors of pollution. 

Specifically, we fit the following model

where ResidPMij is the residual at a spatial monitor site i on day j; f1 denotes a penalized 

spline for an interaction between traffic density and population density; f2–f5 denote 

(potentially nonlinear) effects of elevation, percent urbanicity, distance to A1 road, and 

distance to point emissions, respectively, on these residuals, and εij is the error. In contrast to 

stage 1, where land use terms were grid cell averages, for this model land use terms were all 

computed for a 50 m radius about the monitor, to capture local effects. The models used 
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cubic penalized splines within a mixed model framework, as implemented in the GAMM 

function in R. We used the default amount of smoothing for each nonlinear term in the 

model.

We calculated prediction errors for the spatial components in each stage (to be comparable 

to all previous available model which don’t have daily measurements) by subtracting 

retained observations from the model predictions. We estimated the model prediction 

precision by taking the square root of the mean squared prediction errors (RMSPE) (35).

3. Results

Figure 2 presents a scatter plot of the AOD-PM2.5 relationship before (Fig. 2a) and after 

(Fig. 2b) the stage 1 calibration showing the significant fit improvement gained by 

calibrating with our stage 1 model.

Table 1 presents the results from the stage 1 analysis. The yearly models all presented very 

good out-of-sample predictive performance for each year and the entire study period, with a 

mean out of sample R2 of 0.81 (year to year variation 0.76–0.86), and as expected a highly 

significant association between PM 2.5 and the main explanatory variable AOD (Table 1).

In addition the stage 1 results revealed that adding the IPW in the model greatly reduced the 

bias in our cross validation results (Slope of observed vs. predicted = 0.97–1.01).

The spatial and temporal out of sample results also presented very good fits to the held out 

data (Table 1): For the temporal model the mean out of sample R2 was 0.82 (year to year 

variation 0.76–0.87) and for the spatial model the mean out of sample R2 was 0.74 (year to 

year variation 0.69–0.82).

The results for the 2001 test models excluding AOD, showed that using standard LU 

regression models (LU+MET) results in much lower CV predictive power (R2=0.67 

compared to 0.81 in our AOD models). Using traditional Kriging methods our predictive R2 

was even lower (0.53). These results indicate that by using the AOD measurements we can 

improve our model fit quite significantly. The results of the 2001 test model without the 

weights revealed a R2 of 0.79 which is almost 2% less than the model with the weights. Also 

the bias increases a bit without the weights (slope of 0.96 vs 0.97 with the weights).

The stage 3 models are presented in Table 2. All models performed well with a mean out of 

sample R2 of 0.81 (year to year variation 0.78–0.85), which is relatively high considering 

that these were days with neither ground PM data nor satellite AOD data in the grid cells 

being predicted. Again the spatial and temporal out of sample results were very good (Table 

2): For the temporal model the mean out of sample R2 was 0.83 (year to year variation 0.79–

0.85) and for the spatial model the mean out of sample was 0.73 (year to year variation 

0.68–0.77).

Both the stage 1 and stage 3 models yielded very small predictions errors (RMSPE-Root of 

the mean squared prediction errors) −1.09 [μg/m3 and 1.38 [μg/m3 respectively, indicating a 

strong model performance.
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Figure 3 shows the spatial pattern of predicted PM2.5 concentrations from the AOD models, 

averaged over the entire study period. Mean predicted PM2.5 concentrations range from 6.48 

μg/m3 to 20.80 μg/m3 showing a good range of variability for our model. As expected, 

predicted PM2.5 concentrations are higher in urban areas such as New York etc. compared to 

rural areas such as in upper New York. Increased concentrations along major interstate 

highways are also clear.

By incorporating the local stage (stage 4) we see an increase of 1.9% across all years in 

mean prediction performance (R2) of the model (compared to the without the local PM 

stage).

Figure 4 shows the difference of the estimated local pollution (stage 4) from the average 

PM2.5 concentrations at a very fine resolution (200×200m). Figure 4a presents the Baltimore 

Metropolitan area while figure 4b presents the city of New York.

4. Discussion

In this paper we examined the relationship between PM2.5 ground measurements and 

MODIS AOD data in the Mid Atlantic during the period 2000–2008. This study is an 

extension of our previous study (22) which we wanted to validate in a different region with 

different geographic and climatic characteristics. In addition, in the new model we introduce 

some significant methodological improvements in a few key areas. First, by adding IPW into 

the first stage calibration, we addressed the issue of selection bias. To account for the 

varying region characteristics (since the Mid-Atlantic area is a very large area) we divided 

the Mid-Atlantic into 7 regions and incorporate them as nested regions within days in the 

model. This allowed us to better address the different spatial-temporal individual 

characteristics of each separate region and resulted in better predictive performance. Also 

importantly, we improved on how the different LU and MET (Meteorologic) variables were 

treated in the model by developing aggregate LU and MET variables (and all their 

interactions) combining all available LU/MET variables which allow us to include all 

available spatial and temporal predictors, and shrink them back toward their respective 

aggregates, instead of stepwise approaches. This helped eliminate the problems of only 

choosing a subset of available LU/MET terms (often decided subjectively by different 

researchers) and also helped improve prediction performance.

It is important to emphasize that the predictions of our models perform significantly better 

than other prediction models which assumed that the relationship between PM2.5 and 

MODIS AOD data remains constant over time and much better than models using LU 

regression alone (16, 36–38). The use of daily measurements of AOD (as opposed to other 

models) allows better assessment of space time interactions than models that only have 

spatially resolved time invariant LU terms, since we have actual daily spatial measurements 

that can show differences in short term particle concentrations between grid cells. This 

allows us to use the model to make predictions for studies of the acute effects (short term) of 

air pollution as well as chronic (long term) effects, as well as for studies that attempt to 

capture both effects.
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Multiple studies in recent years have presented models predicting PM2.5 including some that 

have established quantitative relationships between satellite-derived AOD and PM2.5 (35, 

39–41). However, all these previous models present either moderate predictive power, or 

lack detailed high spatial and temporal resolution predictions across large domains. For 

example, Yanosky and colleagues (35) developed PM2.5 models which included smooth 

spatial and regression terms of GIS and meteorological predictors. The predictive 

performance was good (CV R2 0.77−0.69) and their model only generates monthly 

predictions. Our model in comparison generates daily predictions with a higher predicative 

performance (CV R2 0.79–0.84).

It is important to note that we noticed a small group of outliers in our data with extremely 

high PM2.5 values corresponding to days with low AOD values. Upon close investigation of 

these outliers we found that they were are all centered around the major Mid-Atlantic 

Highway (the I-95) where the relatively coarse 10×10km grid cell for AOD cannot always 

capture highly polluted days around the highway. The results of the cross validation results 

without these outliers are much better (overall mean out of sample R2 of 0.85 vs. 0.82 with 

the outliers). On most days, our model performs well in these locations, and we speculate 

these outlier days are due to a low level inversion, which our model does not capture. We 

will try to address this in the future by obtaining and incorporating the height of the 

boundary layer data into our models.

Our model could be applied in various disciplines, particularly in epidemiology. Our PM2.5 

exposure model allows us to gain spatial resolution in the acute effects and an assessment of 

long-term effects in the entire population, rather than a selective sample from urban 

locations as commonly done in current epidemiological studies. Studies looking into the 

association between PM 2.5 and mortality, reduced birth weight etc. thus could greatly 

benefit from our models for both chronic and acute effects.

The main limitation of the present study is the relatively coarse spatial resolution of 10 × 10 

km obtained through the MODIS satellite. However, as satellite remote sensing evolves, 

higher spatial resolution data, e.g., 1 × 1 km, should become available which will further 

reduce exposure error. We address this limitation somewhat by using our fourth stage model 

(the local PM step for RGD) where we generate local predictions at individual addresses. 

Another limitation is the lack of data on the composition of AOD particles. Future analysis 

may allow us to develop exposure estimation for specific PM components and other 

pollutants.

In summary, we have clearly demonstrated how AOD can be used reliably to predict daily 

PM2.5 mass concentrations in the Mid-Atlantic area, validating our previous model in 

another area. We have also shown how our model improves further by adding 

methodological improvements, allowing us to address some of the shortcoming of the first 

iteration of the model. Importantly, our model allows us to assess short term and long term 

human exposures in order to investigate both the acute and effects of ambient particles, 

respectively.
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Figure 1. 
Map of the study area showing the full AOD grid, the regions and all PM2.5 monitor station 

across the Mid-Atlantic.
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Figure 2. 
A scatter map of the AOD-PM relationship before and after the calibration.

Kloog et al. Page 17

Environ Sci Technol. Author manuscript; available in PMC 2016 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Mean PM2.5 concentrations in each 10×10 km grid during the entire modeling period (2000–

2008) predicted by the AOD models.
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Figure 4. 
The difference of the estimated local pollution from the average overall annual PM2.5 

concentrations at a very fine resolution (200×200m). Figure 4a presents the Baltimore 

Metropolitan area while figure 4b presents the city of New York.
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Table 2

Prediction accuracy: Ten-folds cross validated R2 for Stage3 PM2.5 predictions (Final prediction model 

including locations without AOD for 2000–2008).

Yearly Dataset CV R2 CV R2
Spatial CV R2

Temporal RMSPEa

2000 0.79 0.76 0.79 1.31 μg/m3

2001 0.83 0.80 0.83 1.22 μg/m3

2002 0.85 0.72 0.85 1.17 μg/m3

2003 0.82 0.80 0.82 1.05 μg/m3

2004 0.80 0.75 0.81 1.14 μg/m3

2005 0.80 0.83 0.80 1.13 μg/m3

2006 0.83 0.80 0.84 1.04 μg/m3

2007 0.83 0.80 0.83 0.88 μg/m3

2008 0.78 0.80 0.78 0.88 μg/m3

Mean 2000–2008 0.81 0.78 0.82 1.09 μg/m3

a
Root of the mean squared prediction errors.
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