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Viruses are ecologically important, yet environmental virology is
limited by dominance of unannotated genomic sequences repre-
senting taxonomic and functional “viral dark matter.” Although
recent analytical advances are rapidly improving taxonomic anno-
tations, identifying functional dark matter remains problematic. Here,
we apply paired metaproteomics and dsDNA-targeted metagenomics
to identify 1,875 virion-associated proteins from the ocean. Over one-
half of these proteins were newly functionally annotated and repre-
sent abundant and widespread viral metagenome-derived protein
clusters (PCs). One primarily unannotated PC dominated the dataset,
but structural modeling and genomic context identified this PC as a
previously unidentified capsid protein from multiple uncultivated
tailed virus families. Furthermore, four of the five most abundant
PCs in the metaproteome represent capsid proteins containing the
HK97-like protein fold previously found in many viruses that infect
all three domains of life. The dominance of these proteins within our
dataset, as well as their global distribution throughout the world’s
oceans and seas, supports prior hypotheses that this HK97-like pro-
tein fold is the most abundant biological structure on Earth. Together,
these culture-independent analyses improve virion-associated protein
annotations, facilitate the investigation of proteins within natural
viral communities, and offer a high-throughput means of illuminating
functional viral dark matter.
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Microorganisms are central to the Earth’s ecosystem func-
tion (1), and it is becoming increasingly evident that viruses

substantially influence microbially driven processes through mor-
tality and manipulation of metabolism via viral-encoded metabolic
genes (reviewed in ref. 2), including those involved in photosyn-
thesis (3) and most of central carbon metabolism (4). However,
holistic understanding of marine viruses has been limited in part
by the dominance of “unknown” genomic sequences encountered
when surveying viral communities in nature.
This “viral dark matter” in metagenomes manifests as an in-

ability to obtain functional or taxonomic annotations for most
(63–93%) of surveyed sequence space (5), as well as an inability
to taxonomically annotate the vast majority (>99%) of viral
populations observed in nature (6). Emerging approaches, such
as comparison of metagenomes using shared k-mers (7), protein
clusters (PCs) (8), and viral populations (6), enable ecological
inferences without annotation (reviewed in ref. 9), but further
conclusions are hindered by most viral PCs and populations
remaining unknown. Taxonomic viral dark matter occurs due to
limited representation of viruses in reference databases—86% of
1,531 sequenced genomes of bacterial and archaeal viruses were
isolated from only 3 of 61 known host phyla (10). Some progress
is being made using traditional isolation and genome-sequencing
techniques to obtain reference genomes for both abundant
(11, 12) and rare, but ubiquitous (13), marine viruses. However,
identifying viral genomic information within microbial genomic
datasets and using genome- and network-based analytics to
classify these previously unidentified sequences is already rapidly
increasing the number of available and classified viral reference

genome sequences (10). With the emerging deluge of novel and
diverse single-cell genomic datasets that contain viruses (14, 15),
such methods are likely to uncover viruses for all known phyla in
short order, which should presumably greatly illuminate taxonomic
viral dark matter.
In contrast, high-throughput advances to resolve our un-

derstanding of functional viral dark matter are lagging. Exami-
nation of viral genomic sequence space organized into PCs based
on similarity has revealed that the global virosphere (the catalog
of genes encoded by viruses) is now well sampled in the upper
oceans (6) and likely contains less than 3.9 million proteins (16).
Although the abundance of viral PCs is becoming well understood,
the functions of these PCs remain poorly characterized.
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A promising approach to annotate portions of functional viral
dark matter could be to elucidate which predicted proteins encode
viral structural components. Computationally, artificial neural net-
works have been used to predict viral capsid and tail proteins from
metagenomic data, which has been validated through in vivo ex-
pression and visualization of four putative viral structural genes (17).
Experimentally, divergent structural proteins from cultivated viral
isolates have been annotated using mass spectrometry (MS)-based
proteomics (13, 18–20). Metaproteomics has now emerged as a
powerful tool to investigate microbial communities (21, 22), and here
we apply this approach to marine viral communities to identify virion-
associated proteins and facilitate annotation of the structural com-
ponents of viral dark matter, generating new insights regarding the
structural proteins in natural viral communities.

Results and Discussion
Metaproteomic Datasets for Investigating Wild Marine Viruses.High-
throughput experimental MS-based proteomics was applied to
four purified marine viral communities from the Mediterranean
Sea, Indian Ocean, and Atlantic Ocean (Table S1) collected
through the Tara Oceans Expedition (23). After using several
experimental approaches to generate metaproteomes (Table S2; see
experimental overview in Fig. S1), we selected the sample prepa-
ration method that minimized keratin contamination and auto-
tryptic peptides [filter-aided sample preparation 2 (FASP2)] and the
mass spectrometer that produced the most peptide spectra (LTQ
Orbitrap Velos Pro). We then evaluated three analytical search
pipelines to compare these MS-derived peptide spectra against as-
sembled contigs from their paired dsDNA viral metagenomes in-
cluded in the Tara Oceans Viromes (TOV) dataset (6) (Fig. S1).
Among these pipelines, TPP with X! Tandem enabled the identi-
fication of the most spectra, nonredundant proteins (i.e., the distinct
nonidentical proteins those spectra represent), and PCs (defined as
groups of proteins with 60% similarity across 80% coverage; Table
S3). Furthermore, 26% of the total spectra were only identified
using the TPP with X! Tandem pipeline, and only 8% of total
spectra were not identified using this pipeline (Fig. S2A). Finally,
the distribution of annotated spectra within the viral functional and
taxonomic categories was highly similar among all three pipelines
(Fig. S2B; Morisita’s Index of 1.0 for each pairwise comparison).
We thus generated the Quantitative Dataset consisting of the
peptide spectral abundances and annotations obtained only from
the FASP2 sample preparation method, the LTQ Orbitrap Velos
Pro mass spectrometer, and the TPP with X! Tandem pipeline to
quantitatively investigate viral protein abundances (Fig. S1).
The Quantitative Dataset consisted of 15,270 spectra represent-

ing 697 nonredundant proteins in 296 PCs (Table S3; Dataset S1).
The majority (74% of spectral counts) of proteins in this dataset
facilitated annotation of previously unannotated virion-associated
proteins (i.e., “newly annotated”; Fig. 1). Taxonomically, 24% of the
proteins were annotated as belonging to tailed phages (myoviruses,
podoviruses, and siphoviruses; Fig. 1). However, there were very
few tail proteins in the dataset; among the proteins with previous
functional annotations, the majority (23%) were identified as capsid
proteins and <1% were identified as tail proteins (Fig. 1), resulting
in ∼100-fold more capsid than tail proteins. Two prior proteomic
studies of marine phage isolates show that, although all ORFs an-
notated as tail proteins were detected in the proteomes of myovi-
ruses infecting Synechococcus and Prochlorococcus (24), five of the
nine putative tail proteins were not detected in Cellulophaga
siphoviruses (13). This suggests that, even in isolates, MS-based
proteomic methods may miss tail proteins—presumably due to loss
during phage isolation or deficiencies in sample preparation
method (i.e., inefficient digestion with trypsin due to limited K/R
residues in these specific proteins or excessive digestion due to
having too many K/R residues). In this complex community case
using metaproteomics, lower conservation of tail proteins relative to
capsids may also hamper their identification through annotation
using reference databases (see discussion regarding conservation of
viral-associated proteins below).

Collectively, experimentation with two sample preparation
methods, three mass spectrometers, and three analytical search
pipelines, generated additional peptide spectra beyond the
Quantitative Dataset (Fig. S1). Due to the methodological differ-
ences, these data could not be combined quantitatively; however,
they did provide expanded identification of virion-associated pro-
teins in the four marine viral communities because not all methods
identified the same proteins. The resulting Inclusive Dataset (see
overview in Fig. S1) contained 1,875 nonredundant proteins grouped
into 574 PCs (Table S4), which is ∼2.7- and ∼1.9-fold more pro-
teins and PCs, respectively, than the Quantitative Dataset. Of
these proteins, most (991 nonredundant proteins; 53% of the
Inclusive Dataset) were again newly identified as virion-associated
proteins (Fig. 1), providing functional annotation to 677,376 pre-
viously unannotated viral metagenomic reads from these samples,
identified here as “structural” based on similarity to peptide spectra
using the three analytical search pipelines. The metaproteomes in-
cluded 176 proteins (9% of the Inclusive Dataset) previously seen
in viral isolate experimental proteomes and identified as “viral-
associated” or structural (e.g., ref. 13) (Fig. 1). In addition, the
metaproteomes provided annotation for 84 previously unannotated
hypothetical proteins in viral isolate genomes (4% of the Inclusive
Dataset; Fig. 1).
To further examine the utility of metaproteomic analyses in

natural viral samples, we first investigated whether the meta-
proteomes included proteins within the dominant PCs from the
paired viral metagenomes. Of the 200 most abundant PCs in the
viral metagenomes of each sample, 9% (72 of 800 PCs total) were
experimentally detected in the metaproteomic Inclusive Dataset,
including 47 PCs that had no prior functional annotation (Fig. 2).
We next examined TOV-generated viral populations (i.e., contigs
grouped based on similarity of ≥80% of their genes at ≥95%
nucleotide identity) (6) for the presence of PCs detected in
the metaproteomes. This showed that the metaproteomic PCs in
the Inclusive Dataset were detected in viral populations from the

Fig. 1. Virion metaproteomics helps annotate previously unknown viral
proteins. Functional annotations and their associated taxonomic annotations
(linked by dashed lines) are presented for the Quantitative Dataset based on
protein spectral abundances generated from one method and one analytical
search pipeline, as well as the Inclusive Dataset that includes all proteins iden-
tified using all methods and analytical search pipelines combined. Annotations
are based on the top BLASTP match (e value < 0.001) against the viral RefSeq
database (full annotation details in Dataset S1). The “Capsids” category includes
proteins annotated as head–tail connectors, necks, and portals, whereas the
“Other” functional category includes scaffolding proteins and enzymes such as
proteases. Hypothetical proteins in genomes of viral isolates are functionally
annotated as “Newly annotated” but have a taxonomic annotation.
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paired viral metagenomes that spanned a large range of population
abundances—identifying proteins in the most abundant viral pop-
ulations, as well as rare populations (Fig. 3A). Applying these
same analyses to all 5,476 viral populations detected in the larger,
globally distributed TOV dataset (6) revealed that metaproteome-
detected PCs were found in populations spanning a large range of
abundances across as many as 36 of the 43 samples (Fig. 3B).
Together, this combined information (Figs. 1–3) suggests that met-
aproteomics is a powerful approach to inform annotation of pre-
viously unknown genomic content as structural genes in both isolates
and variably abundant populations in natural viral communities.

Dominant Protein Clusters in Viral Metaproteomes. Within the Quan-
titative Dataset, one PC (CAM_CRCL_773, previously identified in
the Global Ocean Sampling expedition, Pacific Ocean Viromes, and
TOV datasets) (5, 6, 25) was by far the most abundant, representing
57.5% of spectral counts (Fig. 4A). Given this PC’s dominance, we
applied network analysis to the 400 protein members of this PC in
the Inclusive Dataset, which showed two clearly separated groups
divergent by ∼30% amino acid identity (Fig. 4B). Within this PC,
only 10 of the 400 constituent proteins were previously annotated
(as capsid proteins of siphoviruses JD024 and D3112 that infect
Pseudomonas), which represented only 1.6% of the PC’s spectral
counts derived from the Quantitative Dataset (Fig. 4B and Dataset
S1). This PC thus included the majority (79%) of the previously
unannotated spectra in the Quantitative Dataset (Fig. 1). In silico
structural modeling of representative sequences from this PC sug-
gested both groups represent major capsid proteins from phages
similar to one another (the lambdoid phages HK97, ref. 26, and
BPP-1, ref. 27; Fig. 4 C and D); however, these best fits were rel-
atively weak (template modeling scores, TM scores, lower than the
accepted cutoff of 0.5) (28). Thus, this dominant PC appears to be a
major capsid protein of previously unexplored marine viruses.
The next four most abundant PCs in the Quantitative Dataset

contained a total of 9.8% of the spectral counts (Fig. 4A) and were
predominantly annotated as capsid proteins by sequence similarity
(Dataset S1) and structural modeling (Fig. S3) of their total ORFs
present within the Inclusive Dataset. The most abundant of these
four PCs, CAM_CRCL_625, was a T4-like major capsid protein by
consensus annotation of the PC’s component ORFs (29) and also
by structural modeling (30). Moving in order of decreasing spectral
abundance, PCs CAM_CRCL_14716 and TARA_183056 were
both functionally and taxonomically unannotated by sequence
similarity; however, by structural modeling, both had best fits to a

capsid protein of cyanophage Syn5 (31), although the TM score for
the latter PC was below the recommended cutoff of 0.5 (28). Fi-
nally, PC TARA_207964 was annotated as a capsid protein from
phage HMO-2011 (which infects Ca. Puniceispirillum marinum of
the SAR116 clade) (11) by similarity, but was annotated as the
major capsid protein of cyanophage P-SSP7 (32) by structural
modeling, likely because there is currently no reference structure
available in the modeling database for phage HMO-2011. Collec-
tively, this combination of ORF annotation and structural mod-
eling thus suggested that, of the top five most abundant PCs
(which comprised approximately two-thirds of the spectra in the
Quantitative Dataset), at least four were capsid proteins. This is
consistent with the dominance of capsids in the annotated portion
of the metaproteomes (Fig. 1), and with our understanding of
virion structural proteins usually being dominated by capsid
proteins in proteomes of viral isolates (13, 24).
We next sought to examine the global-scale distribution of these

five most abundant metaproteome-detected PCs, by examining
their presence in previously-identified TOV viral populations (6).

Fig. 2. Viral metagenomes place metaproteomics data into broader com-
munity context. Rank abundance of the 200 most abundant PCs in each
sample’s viral metagenome (by normalized metagenome read counts). PCs
detected in the metaproteomic Inclusive Dataset are identified in red, and
those that were thereby newly annotated as virion-associated proteins are
denoted with asterisks. The number of metaproteome-detected PCs is
reported in parentheses for each sample.

Fig. 3. Metaproteome-detected PCs are found in viral populations with a
range of abundances and spatial distributions. Viral populations are from
the TOV dataset (6). (A) Abundance of viral populations containing meta-
proteome-detected PCs (using the Inclusive Dataset) in the four samples with
metaproteomes. (B) Abundance of viral populations versus the number of
samples in which they are detected, with populations containing meta-
proteome-detected PCs (using the Inclusive Dataset) indicated. Populations
originating from a sample with a metaproteome are also indicated, with
“originating” defined as that population having the maximum coverage in
one of those four samples from which metaproteomes were generated.
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The dominant metaproteome-detected PC (CAM_CRCL_773)
was present in a total of 93 viral populations collectively found
in every TOV sample across seven oceans and seas (Fig. 5). In
contrast, the four next most abundant PCs were present in sub-
stantially fewer populations and showed somewhat more restricted

geographic distributions. One PC (TARA_183056) was found in
10 populations that were present in every oceanic region examined
except the Southern Ocean. Two PCs (CAM_CRCL_625 and
TARA_207964) were found in 5 and 11 viral populations, re-
spectively, predominantly present only in the Indian and Atlantic
Oceans, and the Mediterranean and Red Seas. Finally, one PC
(CAM_CRCL_14716) was present in only one viral population
that showed the most geographic restriction, with the highest
abundance from the Indian Ocean, where two of the four meta-
proteomic samples were collected, but low or nonexistent abundance
in the remaining locations. Thus, the five most abundant PCs in the
four metaproteomes from three stations are present in viral pop-
ulations with both widespread and regionally restricted distributions.

Conservation of Virion-Associated Proteins. Conservation of struc-
tural similarity in viral capsid proteins, even in the absence of
nucleotide sequence similarities, has long been recognized (33,
34). It is thus notable that the model-predicted structural simi-
larities of the five most abundant PCs in the Quantitative Dataset
(Fig. 4A) are to capsid proteins that all contain the HK97-like fold,
including siphophage HK97, HK97-like phage BPP-1, myophage
T4, podophage Syn5, and siphophage P-SSP7 (Fig. 4 C and D and
Fig. S3) (27, 30, 31, 34). This HK97-like capsid protein fold has
been found in viruses infecting organisms from all three domains
of life (35) and is suggested to be the most abundant biological
structure on Earth, based on the high abundance of total viruses
(e.g., refs. 30, 34, and 36). The data presented here support that
assertion: not only do the most abundant PCs in the meta-
proteomes (representing 67% of the Quantitative Dataset; Fig. 4)
seem to contain this protein fold, four out of five of these PCs also
appear widely distributed in the upper oceans as shown in our
analysis of the TOV viral populations (Fig. 5).
To further investigate conservation in virion-associated proteins,

selective constraints of the PCs from the Inclusive Dataset were
examined using the ratio of nonsynonymous to synonymous poly-
morphisms (pN/pS), which has proven powerful for analysis of
microbial metagenomic datasets (37, 38). Average pN/pS ratios for
PCs in the metaproteome were significantly lower than those de-
termined for all viral metagenome-derived PCs (0.67 vs. 0.84; P <
0.001, Mann–Whitney U test; Fig. 6). For comparison, viral meta-
genome PCs previously annotated as capsids also had relatively low
pN/pS ratios (average, 0.48), whereas ratios for annotated tail
proteins were higher (average, 0.69). Together, this information
suggests stronger overall negative selection for virion-associated

Fig. 4. Investigating a dominant unknown protein cluster. (A) Percentage
of spectral counts within each PC from the Quantitative Dataset, focusing on
the five most abundant PCs. (B) Network diagram showing amino acid se-
quence diversity and taxonomic affiliation for the 400 protein members in the
Inclusive Dataset comprising the most abundant PC, CAM_CRCL_773. Line
thickness (edge weights) correspond to amino acid identity, calculated as the
number of identical residues within the alignment. Proteins used for structural
modeling (C and D) are outlined in thick black. Taxonomic affiliation based on
PC annotation is indicated by color. (C) Representative structural model for the
group of amino acid sequences on the Left of the network diagram using the
I-TASSER prediction server. The best-fit template was major capsid protein 2FS3
(C score, −4.81; 24% identity; TM score, 0.10) of Enterobacteria phage HK97,
which infects Escherichia coli. (D) Representative structural model for the group of
amino acid sequences on the Right of the network diagram using the I-TASSER
prediction server. The best-fit template was major capsid protein 3J4U (C score,
−2.16; 24% identity; TM score, 0.43) of the HK97-like Bordetella phage BPP-1.

Fig. 5. Global distributions of viral populations con-
taining abundant metaproteome PCs. Relative abun-
dance of all TOV viral populations that contain the five
most abundant metaproteome-detected PCs (one PC
per panel, in order of decreasing abundance; Fig. 4A;
one sample per bar with the seven oceans and seas
distinguished by color). The total number of TOV
viral populations containing each PC is reported in
parentheses after the PC name. Sample names include
Tara Oceans station number and depth category
(DCM, deep chlorophyll maximum; Mes, mesopelagic;
SUR, surface). Samples used for metaproteomics in
this study are indicated by asterisks and have bold
black outlines on the bar graphs. Note differing y-axes
scales. See Fig. S4 for a map of all station locations.
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proteins (i.e., increased maintenance of their gene sequences), es-
pecially capsid proteins, relative to other viral genome-encoded
proteins. This is analogous to previous observations of conservation
in housekeeping genes in microorganisms (e.g., ref. 38) and un-
derscores the importance of capsid protein structure maintenance
to virion fitness.

Genomic Context for Experimentally Detected Viral Proteins. Geno-
mic context frequently improves gene-specific functional and tax-
onomic interpretations. We thus examined the genomic context of
the five most abundant metaproteome-detected PCs via their five
longest associated contigs per PC in the TOV dataset (Fig. 7 and
Dataset S2). The most abundant PC (CAM_CRCL_773) was
present in contigs where few (24–29%) ORFs were annotated and
also showed no taxonomic consensus, the latter of which is consistent
with >99% of TOV viral populations (6). However, this genomic
context did show that CAM_CRCL_773 was present within a geno-
mic region containing ORFs encoding for a tail fiber, baseplate, and a
terminase, as well as three additional unannotated PCs that were also
detected in the metaproteome. Within these contigs, the presence of
two tail genes and the significant similarities to tailed virus genes for
the majority (90–100%) of annotated ORFs indicates that this
dominant PC may belong to previously-unidentified Caudovirales.
In contrast, the second most abundant PC (CAM_CRCL_625)

was present in contigs that were predominantly taxonomically

annotated (58–100% of their ORFs), mainly as genes of Myoviridae
infecting highly abundant hosts such as Pelagibacter, Synechococcus,
and Prochlorococcus (Fig. 7 and Dataset S2). This PC was again
found within a genomic region containing multiple tail and
capsid proteins and two terminase subunits. Collectively, this ge-
nomic context combined with the sequence-based and structural
modeling-based annotations (above) provides strong evidence that
CAM_CRCL_625 is a capsid protein of myoviruses.
The third and fourth most abundant PCs (CAM_CRCL_14716

and TARA_183056) were found in predominantly unannotated
contigs (11–29% of ORFs annotated; Fig. 7; Dataset S2). The
former (CAM_CRCL_14716) was present in only one TOV contig,
consistent with its more restricted geographic distribution (Fig. 5).
Although the annotations present in both of these PCs’ contigs did
not allow taxonomic consensus to be reached, each PC occurred
within genomic regions containing other metaproteome-detected
PCs. Furthermore, the genomic context for TARA_183056 in-
cluded a terminase gene as well tail fiber genes, suggesting it may
belong to another unidentified Caudovirales.
Finally, the fifth most abundant PC (TARA_207964) was present

in predominantly annotated contigs (57–78% annotated ORFs) in
which the consensus taxonomy (56–91%) was podophage HMO-
2011, a phage infecting a SAR116 bacterium (11) (Fig. 7 and
Dataset S2). This matches this PC’s annotation reported above via
its component metagenomic ORFs. This PC was also present in a
well-annotated genomic region that included a metaproteome-
detected PC (TARA_40991) annotated as a portal protein, sup-
porting the annotation of this PC (TARA_207964) as capsid
protein of podophage HMO-2011.

Conclusions
In summary, this study establishes environmental metaproteomics
as a high-throughput strategy for shedding light on viral dark
matter in two ways: (i) defining formerly unannotated proteins as
structural, and (ii) revealing which of these proteins are most
abundant thereby focusing further inquiry (e.g., structural mod-
eling). The 1,875 viral proteins observed in these metaproteomes
allowed us to newly annotate 991 proteins as primarily structural.
Surprisingly, the majority (67%) of the metaproteomic spectra
were derived from just five environmentally dominant PCs. With a
combination of sequence- and structural modeling-based annota-
tion, these PCs are now predominantly identified as putative
capsid proteins of tailed viruses containing the most abundant bi-
ological structure on Earth, the HK97-like protein fold. Further-
more, analysis of metaproteomic PCs facilitated understanding of
increased selective pressures on genes encoding virion-associated
proteins (e.g., capsids). Although this study focused on dsDNA
viruses, the approach is generalizable to ssDNA and RNA viruses,

Fig. 6. Selective constraints in viral-associated proteins. Distribution of av-
erage pN/pS ratios for all viral metagenome PCs (blue), viral metagenome PCs
with consensus annotations as either tails (pink) or capsids (orange), and experi-
mentally detected PCs in the metaproteome (green; from the Inclusive Dataset).
Green dots highlight the position of the five most abundant PCs in the Quanti-
tative Dataset, with their order of abundance indicated in parentheses (Fig. 4A).

Fig. 7. Genomic context for abundant metaproteome-derived PCs. Genome maps are presented for the most abundant TOV contigs that contain the five
most abundant metaproteome-detected PCs in the Quantitative Dataset (Fig. 4A). Boxes represent ORFs within contigs, with metaproteome-detected PCs
outlined in thick red lines and other viral structural proteins in thick black lines. Contig names include Tara Oceans station number, depth (DCM, deep
chlorophyll maximum; SUR, surface), and a unique numeral identifier; RC indicates reverse complement of the contig. Broad taxonomic annotations are
indicated by the color of the boxes, and selected functional annotations are presented; see Dataset S2 for full annotations.
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which currently require generation of separate metagenomes. Thus,
this large-scale annotation strategy and the findings presented here
will help guide the experimentation needed to refine structural
annotations and offer glimpses of the viral metagenomic dark
matter that obfuscates our understanding of the most abundant
biological entities on Earth: viruses.

Methods
A detailed description of all metaproteomic, metagenomic, and bioinformatic
procedures is provided in SI Methods.
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