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Abstract

Type 2 diabetes (T2D) is a heterogeneous complex disease affecting more than 29 million 

Americans alone with a rising prevalence trending toward steady increases in the coming decades. 

Thus, there is a pressing clinical need to improve early prevention and clinical management of 

T2D and its complications. Clinicians have understood that patients who carry the T2D diagnosis 

have a variety of phenotypes and susceptibilities to diabetes-related complications. We used a 

precision medicine approach to characterize the complexity of T2D patient populations based on 

high-dimensional electronic medical records (EMRs) and genotype data from 11,210 individuals. 

We successfully identified three distinct subgroups of T2D from topology-based patient-patient 

networks. Subtype 1 was characterized by T2D complications diabetic nephropathy and diabetic 

retinopathy; subtype 2 was enriched for cancer malignancy and cardiovascular diseases; and 

subtype 3 was associated most strongly with cardiovascular diseases, neurological diseases, 

allergies, and HIV infections. We performed a genetic association analysis of the emergent T2D 

*Corresponding author. joel.dudley@mssm.edu. 

Author contributions: Conceived and designed the study: L.L. and J.T.D. Performed the TDA and statistical analysis: L.L. Analyzed 
the EMRs: L.L. Analyzed the genotyping data: L.L. and W.-Y.C. Contributed VarDi analysis tools: R.C. Contributed Biobank 
genotyping data: J.T.D., O.G., and E.P.B. Contributed clinical interpretation: L.L. and R.T. Wrote and edited the paper: L.L., W.-Y.C., 
J.T.D., B.S.G., O.G., and R.T.

Competing interests: The authors declare that they have no competing interests.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/7/311/311ra174/DC1
Fig. S1. Age distributions for overall, female, and male populations.
Table S1. Clinical features.
Table S2. Patient characteristics across entire Biobank cohort.
Table S3. Significant SNPs specific for each T2D subtype.
Table S4. Genes and variants.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDDK, NCI, or 
NIH.

HHS Public Access
Author manuscript
Sci Transl Med. Author manuscript; available in PMC 2016 April 28.

Published in final edited form as:
Sci Transl Med. 2015 October 28; 7(311): 311ra174. doi:10.1126/scitranslmed.aaa9364.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subtypes to identify subtype-specific genetic markers and identified 1279, 1227, and 1338 single-

nucleotide polymorphisms (SNPs) that mapped to 425, 322, and 437 unique genes specific to 

subtypes 1, 2, and 3, respectively. By assessing the human disease–SNP association for each 

subtype, the enriched phenotypes and biological functions at the gene level for each subtype 

matched with the disease comorbidities and clinical differences that we identified through EMRs. 

Our approach demonstrates the utility of applying the precision medicine paradigm in T2D and the 

promise of extending the approach to the study of other complex, multi-factorial diseases.

INTRODUCTION

Type 2 diabetes (T2D) is a complex, multifactorial disease that has emerged as an increasing 

prevalent worldwide health concern associated with high economic and physiological 

burdens. An estimated 29.1 million Americans (9.3% of the population) were estimated to 

have some form of diabetes in 2012—up 13% from 2010—with T2D representing up to 

95% of all diagnosed cases (1, 2). Risk factors for T2D include obesity, family history of 

diabetes, physical inactivity, ethnicity, and advanced age (1, 2). Diabetes and its 

complications now rank among the leading causes of death in the United States (2). In fact, 

diabetes is the leading cause of nontraumatic foot amputation, adult blindness, and need for 

kidney dialysis, and multiplies risk for myocardial infarction, peripheral artery disease, and 

cerebrovascular disease (3–6). The total estimated direct medical cost attributable to 

diabetes in the United States in 2012 was $176 billion, with an estimated $76 billion 

attributable to hospital inpatient care alone. There is a great need to improve understanding 

of T2D and its complex factors to facilitate prevention, early detection, and improvements in 

clinical management.

A more precise characterization of T2D patient populations can enhance our understanding 

of T2D pathophysiology (7, 8). Current clinical definitions classify diabetes into three major 

subtypes: type 1 diabetes (T1D), T2D, and maturity-onset diabetes of the young. Other 

subtypes based on phenotype bridge the gap between T1D and T2D, for example, latent 

autoimmune diabetes in adults (LADA) (7) and ketosis-prone T2D. The current categories 

indicate that the traditional definition of diabetes, especially T2D, might comprise additional 

subtypes with distinct clinical characteristics. A recent analysis of the longitudinal Whitehall 

II cohort study demonstrated improved assessment of cardiovascular risks when 

subgrouping T2D patients according to glucose concentration criteria (9). Genetic 

association studies reveal that the genetic architecture of T2D is profoundly complex (10–

12). Identified T2D-associated risk variants exhibit allelic heterogeneity and directional 

differentiation among populations (13, 14). The apparent clinical and genetic complexity 

and heterogeneity of T2D patient populations suggest that there are opportunities to refine 

the current, predominantly symptom-based, definition of T2D into additional subtypes (7).

Because etiological and pathophysiological differences exist among T2D patients, we 

hypothesize that a data-driven analysis of a clinical population could identify new T2D 

subtypes and factors. Here, we develop a data-driven, topology-based approach to (i) map 

the complexity of patient populations using clinical data from electronic medical records 

(EMRs) and (ii) identify new, emergent T2D patient subgroups with subtype-specific 
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clinical and genetic characteristics. We apply this approach to a data set comprising matched 

EMRs and genotype data from more than 11,000 individuals. Topological analysis of these 

data revealed three distinct T2D subtypes that exhibited distinct patterns of clinical 

characteristics and disease comorbidities. Further, we identified genetic markers associated 

with each T2D subtype and performed gene- and pathway-level analysis of subtype genetic 

associations. Biological and phenotypic features enriched in the genetic analysis 

corroborated clinical disparities observed among subgroups. Our findings suggest that data-

driven, topologic alanalysis of patient cohorts has utility in precision medicine efforts to 

refine our understanding of T2D toward improving patient care.

RESULTS

T2D-specific patient network

We developed and applied an unsupervised, topology-based approach that uses EMR-

derived clinical data to infer a patient-patient similarity network as the computational model 

to represent a complex patient population. In the resulting patient-patient network, patients 

(nodes) are connected to one another by edges if they exhibit clinical similarity across many 

clinical dimensions (for example, laboratory tests). Patients who exhibited very high degrees 

of similarity were grouped into single nodes (see Materials and Methods). We identified two 

distinct clusters in the resulting patient-patient network (Fig. 1A) that contained 3889 and 

7321 unique patients (the left and right clusters, respectively). The left cluster (n = 3889) 

was significantly enriched [least absolute shrinkage and selection operator (LASSO), P < 

0.05] for endocrine and metabolic diseases, immunity disorders, infectious disease, mental 

illness, diseases of the circulatory and genitourinary systems, and symptoms/signs/ill-

defined conditions and factors that influence health status. The right cluster (n = 7321) was 

significantly enriched for complications of pregnancy, respiratory diseases, and unclassified 

E code (external causes of injury) (15). Next, we identified T2D patients in the network to 

evaluate the heterogeneity of T2D patient groups across the patient-patient topology. We 

used a previously validated EMRs and genomics (eMERGE) network electronic 

phenotyping algorithm (16, 17) to define the T2D phenotype (n = 2551) and evaluated the 

network for topological enrichment of T2D patients. The red areas in Fig. 1A indicate that 

T2D patients are enriched in that particular location in the network, where the color scheme 

reflects the P value from hypergeometric enrichment analysis of topological enrichment (see 

Materials and Methods). We observed multiple distinct clusters or subnetworks of T2D 

patient enrichment.

We then rebuilt the patient-patient network, using the same topology analysis pipeline, with 

only the 2551 T2D patients identified with the T2D electronic phenotyping algorithm. The 

filtering step resulted in 73 clinical features that were used for topological inference of the 

patient-patient similarity network (table S1). From the resulting patient-patient network, we 

identified three completely segregated clusters with 762 (subtype 1), 617 (subtype 2), and 

1096 (subtype 3) patients, respectively (Fig. 1B). We evaluated the network for enrichment 

of gender and did not observe any elevated enrichment of male or female patients in any of 

the clusters, suggesting that gender is not an organizing factor in the topology.
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To assess the reproducibility of the T2D subtypes identified from the patient-patient 

network, we examined the performance on random samplings of training and test sets. First, 

we randomly split the 2551 T2D patients into two groups, with two-thirds as a training set 

and one-third as a test set. We then rebuilt the patient-patient network using the same 73 

clinical features, distance metrics, and filter functions from the topology analysis pipeline. 

These steps were repeated 10 times. Last, we calculated the average of the precision 

[positive predictive value (PPV)] and recall (sensitivity) for the 10 tests, for training and test 

sets individually. The average precisions were 100, 91, and 98%, and the average recalls 

were 99, 96, and 94% for subtype 1, subtype 2, and subtype 3, respectively, in the training 

sets. In the test sets, the average precisions were 100, 90, and 97%, and the average recalls 

were 99, 96, and 93% for subtype 1, subtype 2, and subtype 3, respectively. The overall 

accuracy was 96% for both the training sets and test sets.

Significant characteristics and clinical features specific to T2D subtypes

We identified 33 clinical variables significantly specific to subtype 1 (n = 761) compared to 

both of the two other subtypes individually or combined. Three of these variables 

overlapped with clinical variables that were also specific to subtype 3, resulting in 29 

variables unique to subtype 1. In addition, we identified 3 and 11 clinical variables 

significantly specific to subtype 2 (n = 617) and subtype 3 (n = 1096), respectively, with one 

shared variable. The only variable the three subtypes had in common was insulin 

administration (Table 1, A to C).

Patients in subtype 1 were the youngest (59.76 ± 0.45 years) and were notable for features 

classically associated with T2D, such as the highest BMI (33.07 ± 0.29 kg/m2) and highest 

serum glucose concentrations at point-of-care testing (POCT) (193.69 ± 11.45 mM). 

Patients in subtype 1 had the lowest complete blood count, including the lowest white blood 

cell counts (5.32 ± 0.57 × 109/liter), neutrophil counts (2.50 ± 0.58 × 109/liter), eosinophil 

counts (0.09 ± 0.02 × 109/liter), and mean platelet volumes (9.97 ± 0.37 fl). In addition, 

patients in subtype 1 had a considerably lower platelet count, with more than 50% of 

patients below the reference range (98.36 ± 17.86 × 109/liter). Adding to this curious 

hematological finding was a prolonged pro-thrombin time at POCT (29.18 ± 3.64 s), which 

corresponded to an elevated international normalized ratio (INR) (2.57 ± 0.34). Patients in 

subtype 1 also displayed the highest serum albumin (4.27 ± 0.02 g/dl) and lowest creatinine 

(1.0 ± 0.02 mg/dl) levels. Although these patients had better kidney function compared to 

those in the other two subtypes, estimated glomerular filtration rate (GFR) was below the 

reference range (72.26 ± 1.47 ml/min/1.73 m2; range, 17.3 to 149.7). In addition, patients in 

subtype 1 had the highest total blood CO2 (26.6 ± 0.13 mmHg) and fewer respirations per 

minute (16.65 ± 0.16), and lower prescription rates for calcium channel blockers (CCB; 

19.55%), angiotensin II receptor blockers and angiotensin-converting enzyme inhibitors 

(ARB/ACEI, 48.16%) (commonly prescribed for hypertension), dipeptidyl peptidase 4 

inhibitor (DPP4, 1.05%), and metformin (MET, 6.43%) (the last two are both prescribed for 

T2D).

Patients in subtype 2 had the lowest weight (85.17 ± 1.14 kg) compared with those in the 

other subtypes. Patients in subtype 3 had the highest systolic blood pressure (135.7 ± 0.7 
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mmHg), serum chloride levels (102.03 ± 0.11 mEq/liter), and troponin I levels (0.36 ± 0.09 

μg/liter) and were more often prescribed ARB/ACEI (62.96%) for the treatment of 

hypertension and statins (56%) for cholesterol reduction. A full list of variables that were 

significantly specific to each subtype is provided in Table 1(A to C).

Disease comorbidity associated withT2D subtypes

We applied the disease Clinical Classifications Software (CCS; see Materials and Methods) 

(18) on more than 7000 ICD-9-CM (International Classification of Diseases, Ninth 

Revision, Clinical Modification) diagnosis codes in our cohort to aggregate the large number 

of ICD-9-CM codes into a manageable number of either 281 single-level disease categories 

or 18 level 1 (broader) categories in the multilevel disease categories. By adjusting patient 

age, gender, and self-reported race, we found that the patients in subtype 1 (n = 762) were 

more likely to associate with the following ICD-9-CM codes: diseases in the “other upper 

respiratory infections” [relative risk (RR), mean, 1.68; range, 1.34 to 2.11]; immunization 

and screening for infectious disease (RR, 1.65; range, 1.32 to 2.06); diabetes mellitus with 

complications (RR, 1.50; range, 1.22 to 1.84); other skin disorders (RR, 1.41; range, 1.13 to 

1.76); and blindness and vision defects (RR, 1.32; range, 1.04 to 1.67), than were the other 

two subtypes (Table 2A). Patients in subtype 2 (n = 617) were more likely to associate with 

diseases of cancer of bronchus: lung (RR, 3.76; range, 1.14 to 12.39); malignant neoplasm 

without specification of site (RR, 3.46; range, 1.23 to 9.70); tuberculosis (RR, 2.93; range, 

1.30 to 6.64); coronary atherosclerosis and other heart disease (RR, 1.28; range, 1.01 to 

1.61); and other circulatory disease (RR, 1.27; range, 1.02 to 1.58), than were the other two 

subtypes (Table 2B). Patients in subtype 3 (n = 1096) were more often diagnosed with HIV 

infection (RR, 1.92; range, 1.30 to 2.85) and were associated with E codes (that is, external 

causes of injury care) (RR, 1.84; range, 1.41 to 2.39); aortic and peripheral arterial embolism 

or thrombosis (RR, 1.79; range, 1.18 to 2.71); hypertension with complications and 

secondary hypertension (RR, 1.66; range, 1.29 to 2.15); coronary atherosclerosis and other 

heart disease (RR, 1.41; range, 1.15 to 1.72); allergic reactions (RR, 1.42; range, 1.19 to 

1.70); deficiency and other anemia (RR, 1.39; range, 1.14 to 1.68); and screening and 

history of mental health and substance abuse code (RR, 1.30; range, 1.07 to 1.58) (Table 

2C).

Significant disease–genetic variant enrichments specific to T2D subtypes

We next evaluated the genetic variants significantly associated with each of the three 

subtypes. Observed genetic associations and gene-level [that is, single-nucleotide 

polymorphisms (SNPs) mapped to gene-level annotations] enrichments by hypergeometric 

analysis are considered independent of the clinical phenotype–based network topology, 

because patient genetic data were not used in the determination of the patient-patient 

network topology. We identified 1279, 1227, and 1338 genetic variants specific to subtypes 

1, 2, and 3, respectively, using a hypergeometric enrichment approach (see Materials and 

Methods) (significant SNPs are shown in table S3, A to C). After mapping the variants to 

gene regions, we identified 425, 322, and 437 unique genes specific to subtypes 1, 2, and 3, 

respectively. We used a comprehensive human disease–SNP association database (VarDi) 

(19) to assess the agreement between genetic-disease associations and disease comorbidities 

associated with each subtype. We analyzed the enrichment of phenotypes including both 
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diagnosis (for example, diabetic nephropathy) and laboratory measurements (for example, 

creatinine levels) associated with the genetic variants at the gene level.

We observed 27 gene-phenotype associations enriched (hypergeometric analysis, P ≤ 0.05) 

among the genetic variants unique to subtype 1 (Table 3A and Fig. 2). Many of the enriched 

gene-level phenotype annotations have known associations with T2D, such as increased 

serum retinol levels (20), increased B cell counts (21), increased albumin-to-creatinine ratios 

(22), increased diabetes mellitus, increased serum alanine transaminase levels (23), 

increased diabetic nephropathy (22, 24), increased leptin receptor (a single-transmembrane 

domain receptor) (25), increased serum levels of mannose-binding lectin (26), increased 

forced expiratory volume (27), and increased serum vitamin D concentrations (28). A 

complete list of subtype 1–specific enriched phenotypes is displayed in Table 3A.

We observed 25 gene-phenotype associations significantly enriched among the genetic 

variants unique to subtype 2. The four enriched gene-level phenotype annotations for 

subtype 2 were related to either cancer or treatment of cancer including bleomycin 

sensitivity, epirubicin-induced adverse drug reactions, stem cell transplantation, and 

follicular lymphoma. In addition, we identified two cardiovascular phenotypes, left 

ventricular internal diastolic dimensions and atrial fibrillation. The enriched gene-level 

phenotypes matched with patient comorbidities associated with subtype 2 (Table 3B and 

Fig. 2), suggesting a possible link between observed disease comorbidities and underlying 

subtype genetics.

We observed 28 gene-phenotype associations significantly enriched among the genetic 

variants unique to subtype 3 (Table 3C and Fig. 2). Ten phenotypes were related to mental 

and neurological diseases, including spinocerebellar ataxia type 1, intraventricular septal 

thickness, anxiety disorders, cognitive decline, dementia, impaired play skills, intelligence, 

depression, θ power of electroencephalogram, and HIV-associated neurocognitive disorders. 

Three were related to the cardiovascular system, including heart rate interval (RR), 

peripartum cardiomyopathy, and atrial fibrillation. Increased serum vitamin D 

concentrations (28) were recently implicated as a risk factor for T2D and also were enriched 

in subtype 1. Furthermore, two phenotypes, allergy and response to statins, were enriched 

for genetic variants that matched with the identified clinical variables and phenotype 

comorbidities specific to subtype 3, including cardiovascular disease and mental illness. 

Disease comorbidities and clinical variables associated with subtype 3 matched particularly 

well with the gene-level phenotype enrichments. A complete list of enriched phenotypes for 

subtype 3 is shown in Table 3C.

The network of genetic variants in gene-level and associated phenotypes for the three T2D 

subtypes is shown in Fig. 2 (produced with Cytoscape 3.2.0) (29).

Significant pathway and toxicity functions specific to T2D subtypes

We assessed the toxicity functions and signaling pathways for gene-level enrichments 

unique to each subtype (425, 322, and 437 gene-level enrichments specific to subtypes 1, 2, 

and 3, respectively) using Qiagen’s Ingenuity Pathway Analysis (IPA) program. Canonical 

pathways include metabolic and cell signaling pathways that have been curated from the 
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literature by IPA. We identified five, two, and six canonical pathways to subtypes 1, 2, and 

3, respectively (P < 0.01), by Fisher’s exact test right-tailed for enrichment.

Pathways that were enriched in subtype 1 were fatty acid β-oxidation III, which is increased 

in diabetic liver disease (30), acetate conversion to acetyl-CoA, which is involved in the 

metabolism of carbon sugars (31–33), and cAMP (adenosine 3′,5′-monophosphate)–

mediated signaling, which normalizes glucose-stimulated insulin secretion in uncoupling 

protein 2–overexpressing pancreatic β cells (34). Two pathways were associated with 

disease comorbidities for subtype 1, including netrin signaling, which acts in a protective 

role during diabetic nephropathy (35), and GABA (γ-aminobutyric acid) receptor signaling, 

which can often be detected early in the course of diabetic retinopathy (36, 37).

Pathways enriched in subtype 2 include those involved in pattern recognition receptors in 

the recognition of bacteria and viruses, which might explain why patients in subtype 2 had 

an increased prevalence of tuberculosis. We also found an enrichment for thrombopoietin 

signaling, which activates a number of secondary messengers that promote cell survival, 

proliferation, and differentiation (38). Increased thrombopoietin levels might contribute to 

the development and progression of coronary artery disease (39, 40).

Pathways enriched in subtype 3 include α-adrenergic signaling, which is implicated in 

diverse physiological functions, in particular those of the cardiovascular and central nervous 

systems (41, 42); synaptic long-term depression (43); CREB (cAMP response element–

binding protein) signaling in neurons, which has a well-documented role in neuronal 

plasticity and long-term memory formation in the brain (44) as well as therapeutic potential 

for patients who have Alzheimer’s disease (45); glutamate receptor signaling, which has 

been implicated in brain pathologies in neurological diseases (46); hepatic fibrosis and 

hepatic stellate cell activation; and sperm motility. The complete list of pathways and their 

related genes for all subtypes are shown in Table 4.

Enriched toxicity functions included hepatotoxicity, nephrotoxicity, cardiovascular toxicity, 

and clinical pathology endpoints. We identified nine, three, and three toxicity functions 

enriched in subtypes 1, 2, and 3, respectively (P < 0.01). In subtype 1, four of the nine 

functions are related to renal dysfunction, including glomerular injury, renal hypertrophy, 

renal proliferation, and renal degeneration, suggesting that diabetic nephropathy exists in the 

subtype 1 cohort (47, 48). The remaining five functions are related to liver dysfunction, 

which match the two liver enzymes, alanine transaminase levels and aspartyl phenylalanine 

levels, identified by VarDi (19). Surprisingly, subtypes 2 and 3 were both associated with 

cardiac arteriopathy, even though they were associated with different sets of genes. Most 

toxicity functions that are related to cardiovascular disorders and liver fibrosis match the 

findings that both cohorts have high risk for cardiovascular diseases, as deduced on the basis 

of disease comorbidities from the EMRs and genetic variant associations by VarDi (19). The 

complete list of enriched toxicity functions for all subtypes and their related genes are listed 

in Table 5.

Together, these results suggest that the current clinical definition of T2D subsumes more 

nuanced subtypes whose definition and recognition might inform important clinical 
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distinctions. Furthermore, the genetic findings suggest that these differences between T2D 

subtypes are potentially rooted in biological differences that relate to the observed clinical 

differences, and these biological differences might suggest new opportunities for biomarker 

discovery or improving our understanding of disease mechanisms.

DISCUSSION

Previous efforts to analyze or mine large clinical populations with associated genome-wide 

genotyping information have largely focused on replicating known clinical genotype-

phenotype correlations, or discovering new correlations from more narrowly defined clinical 

phenotypes that can be extracted from EMRs (49, 50). Previous efforts to develop and apply 

phenome-wide association study (PheWAS) approaches represent a new approach in which 

data from EMRs are integrated and used for systematic discovery of new clinical genotype-

phenotype correlations (51). However, the goal of PheWAS is to discover new pleiotropic 

genotype-phenotype associations—that is, to identify many clinical phenotypes linked to a 

single genetic locus. The goal of our study was to develop a precision medicine approach to 

characterize the complexity of T2D patient populations through data-driven, topological 

analysis of patient-patient similarity across clinical phenotype traits. Our approach is distinct 

from previous efforts in that we developed and applied a patient-centric clinical phenotype 

similarity network and then used the topology of the resulting patient-patient similarity 

network to define patient subgroups, which were subsequently used as the basis of clinical 

and genotype risk factor associations.

We hypothesized that topological analysis of patient populations in high-dimensional 

clinical phenotype space may identify meaningful subpopulations of T2D patients. We 

focused our analysis on T2D patients, who are of high clinical importance and the most 

prevalent disease group in the population. We identified 2551 T2D patients in our outpatient 

cohort as determined by the eMERGE T2D electronic phenotyping algorithm (16, 17). 

Using our data-driven, topology-based approach, we identified three distinct subtypes of 

T2D. Subtype 1 comprises ~30% (n = 761) of the overall T2D cases and was enriched for 

diabetic nephropathy and diabetic retinopathy, both microvascular complications. Subtype 2 

comprises ~24% (n = 617) of all T2D cases and was enriched for cancer malignancy and 

cardiovascular diseases. Subtype 3 comprises ~43% (n = 1096) of all T2D cases and 

associated most strongly with cardiovascular diseases, neurological diseases, allergies, and 

HIV infections. Macrovascular complications are generally best averted by stringent control 

of blood pressure and low-density lipoprotein. We identified 1279, 1227, and 1338 SNPs, 

which mapped to 425, 322, and 437 genes, specific to subtypes 1, 2, and 3, respectively. The 

enriched phenotypes and biological functions defined at the gene level for each subtype 

matched with the disease comorbidities and clinical differences that we identified through 

EMR-based topology data analysis (TDA). This observed agreement is likely meaningful 

mechanistically because the genetic data were not used to inform patient subgroup topology.

The patient-patient network representation was constructed using cosine distance metric 

with two filter functions to assess the similarity of the clinical variables from EMRs. The 

clinical data set comprises more than 500 clinical variables represented in the EMRs, 

including patient demographics, laboratory tests, and medication orders.
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The observed differences in comorbidity and genetic associations between T2D subtypes 

might serve as useful features for informing the clinical characterization of T2D patients. 

We found several notable associations between disease diagnosis categories and T2D 

subtypes. We used CCS developed by the U.S. Agency for Healthcare Research and Quality 

(AHRQ) (18) to narrow down more than 7000 ICD-9-CM diagnosis codes in our cohort to 

higher-order single-level disease categories (n = 281) that include exclusively mental health 

and substance abuse (CCS-MHSA) general categories, which were more useful for 

presenting data at a descriptive statistical categorical level than using individual ICD-9-CM 

codes. Patients in subtype 1 associated most with prototypical microvascular diabetic 

complications, namely, diabetic nephropathy and diabetic retinopathy, which was supported 

by both clinical data and genotype data independently. In support of a genetic etiology for 

subtype 1 phenotype manifestation, the ACE gene, which encodes angiotensin I converting 

enzyme and was specifically associated with this cohort (Table 3A and Fig. 2), has been 

implicated in diabetic nephropathy (52, 53) and also in platelet aggregation (53). 

Accordingly, this association could reasonably suggest a mechanism to explain the lower 

platelet counts observed in subtype 1 patients (54). In addition, we extracted hemoglobin 

A1c (HbA1c) levels from our EMRs and found that patients in subtype 1 had the highest 

HbA1c levels compared with other two groups (7.68 ± 1.75, 7.45 ± 1.87, and 7.47 ± 1.78 in 

subtypes 1, 2, and 3, respectively, P < 0.05), which confirmed that subtype 1 was most 

likely enriched with microvascular diabetic complications best prevented by glycemic 

control (55).

Patients in subtype 2 were more likely to associate with cancer of the bronchus and lung 

(RR, 3.76; range, 1.14 to 12.39) and malignant neoplasm without specification of site (RR, 

3.46; range, 1.23 to 9.7). Epidemiological studies have demonstrated an association between 

T2D and cancer (56). To try to unravel a putatively causal ordering for this disease link, we 

compared the first diagnosis dates for both diseases in our cohort to determine whether one 

more often predated the other. We identified 40% patients who were diagnosed with T2D 

before any instance of cancer and 60% of patients who were diagnosed with a cancer before 

T2D. This pattern indicates that T2D can be either the risk factor for or consequence of 

many forms of cancer (56, 57). Patients in subtype 3 were most likely to be associated with 

cardiovascular diseases and mental illness according to clinical data and genotype data 

independently. These patients were more often prescribed the top psychiatric medications to 

treat anxiety and depression (58), with 3.4% (P = 0.01) and 8.3% (P = 0.02), compared with 

other two subtypes from χ2 tests, respectively, as well as insulin treatment (45%, P < 

0.0001). The 61 patients diagnosed with HIV infection could have a poorer response to 

therapy for diabetes because antiretroviral agents and chronic inflammation could adversely 

affect glycemic control (59). To address any potential bias from HIV infection or treatment, 

we removed these HIV patients from the cohort and reanalyzed the data using the LASSO 

algorithm (60). Except for allergies, disease comorbidities remained the same, dismissing 

the possibility of HIV infection bias and exhibiting the robustness of our methodology. 

Furthermore, the FHIT gene, which encodes the fragile histidine triad protein and was 

specifically associated with the subtype 3 cohort, has been associated with allergy and 

neurological disorders, including anxiety and depression (Table 3C and Fig. 2) (61–63), 

indicating that FHIT could be a driver for these conditions and could explain why patients 
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who had allergies also had an increased rate of suicide (64–67). Although patients in 

subtypes 2 and 3 had significantly lower BMIs than those in subtype 1 (P < 0.0001, Table 

1B), both were enriched for cardiovascular morbidity, whereas patients in subtype 1 were 

not. A recent study showed that weight loss does not reduce the rate of cardiovascular events 

in obese adults with T2D (68, 69). These data suggest that the cardiovascular morbidity seen 

in patients in subtypes 2 and 3 might be independent from obesity and potentially driven by 

genetic variants. Another interesting finding along these lines is our observation that 

hypertensive macrovascular variants were associated with subtypes 2 and 3, whereas 

hyperglycemic microvascular variants were associated with subtype 1.

Our study has several potential limitations. We identified 2551 T2D patients on the basis of 

an eMERGE algorithm (16, 17) from an 11,210 genotyped outpatient cohort. The sample 

size is relatively modest for identifying risk variants from a genome-wide association study 

(GWAS) point of view. Given that we investigated 38 million variants, it was a great 

challenge to control for false discovery rate. In our study, however, we derived our genetic 

data from more than ~10,000 published GWAS at the P < 1 × 10−6 significance level. The 

stringency of this inclusion criterion adds a measure of control to the procedure because 

subtype enrichments were identified using these disease-associated variants.

Another limitation is the lack of a deep consideration for the temporal aspects of disease 

trajectories. In analyzing the EMRs in Mount Sinai Medical Center (MSMC), we cannot 

always be clear when and where the first diagnosis of disease took place. Specifically, we 

cannot determine whether the patient had been diagnosed beforehand in other hospitals and, 

if so, how long the patient had the diagnosed disease before his or her first observed ICD-9-

CM diagnosis. One possible solution is to explore the integration of insurance claims data. 

We will explore an extension of our analytical framework that incorporates temporal 

analysis in future studies.

In addition, T2D inclusion and exclusion criteria were precisely refined by the eMERGE 

algorithm (16, 17), and the other disease categories developed by AHRQ were all based on 

the current ICD-9-CM diagnosis code. Furthermore, CCS developed by AHRQ (18) only 

assigns one disease classification of a disease. As of now, only 20 phenotypes have been 

validated by eMERGE (70) using iteratively refined phenotype algorithms incorporating 

both structured and unstructured data to achieve high PPVs to identify true cases and 

controls from EMRs.

Our approach combines imputed variant information from the whole genome with high-

dimensional EMRs, which facilitates pinpointing the differences between clinical and 

genetic factors specific to each subtype. This provides a tractable framework that enables 

initial steps toward the T2D redefinition informed by genetic markers. Our genetic analysis 

used the imputed variants from the 1000 Genome Projects, not limiting the variants in the 

genotyping arrays. This strategy offers better coverage on the intergenic and noncoding 

regions when investigating the associations between variants and phenotypes. The 

Encyclopedia of DNA Elements (ENCODE) project has shown that ~95% of known 

variants within sequenced genomes and 88% of those variants from GWAS fall outside of 

coding regions (71), and a functional SNP most strongly supported by experimental 
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evidence is an SNP in the linkage disequilibrium region (72). The technique of imputation 

uses information of haplotypes from a more comprehensive whole-genome sequencing 

study (the 1000 Genome Projects) to infer variants that were not profiled by the original 

technology (73). With the information on variants from the whole genome, we were able to 

identify more variants associated with subtypes as well as to achieve better mapping of the 

identified variants to published GWAS.

Our study offers several important conclusions for translational research. First, our approach 

demonstrates the utility and promise of applying the precision medicine paradigm in T2D, 

and can be extended toward the study of other complex, multifactorial diseases. Next, our 

study demonstrates the utility of using higher-dimensional clinical data to first define the 

complex topology of a clinical phenotype before genetic marker discovery. This stands in 

contrast with previous precision medicine efforts that begin with molecular stratification and 

rely on established clinical phenotype definitions. Furthermore, the subtype-specific genetic 

factors identified by this study can be further explored through additional population genetic 

and experimental work to evaluate their utility for identifying subtype-specific biomarkers 

or to improve understanding of T2D disease mechanisms. Last, incorporation of the 

temporal dimension in future development of our topology-based approach might provide 

additional insight into the complexity of T2D patient populations along the natural history of 

disease and inform disease prevention efforts.

MATERIALS AND METHODS

Study design

The aim of our study was to develop a precision medicine approach to better understand and 

to characterize the complexity of T2D patient populations through data-driven, topological 

analysis of patient-patient similarity across clinical phenotype traits. We performed 

topological analysis for the data set, which comprises EMRs and genotype data from 11,210 

individuals from MSMC’s large outpatient population. T2D and non-T2D control 

phenotypes were defined by the eMERGE phenotyping algorithm (16, 17). We assessed the 

disease comorbidities and human disease–SNP association for each subtype in T2D, as well 

as the enriched phenotypes and biological functions at gene level for each subtype.

Patient population

We recruited and analyzed 11,210 unique patients who are consented participants in the 

Mount Sinai BioMe Biobank Program, an ongoing, EMR-linked bio- and data repository. 

The data set comprises adult patients recruited nonselectively from MSMC’s large 

outpatient population. Participants are predominantly recruited from local diverse 

communities in New York with 46% Hispanic, 32% African American, 20% European 

white, and 2% others as self-reported. The data were composed of 6857 (61%) females and 

4350 (39%) males, and the average age is 55.5 years for overall, female, and male 

populations (fig. S1). The overall characteristics of 11,210 Biobank patients are shown in 

table S2. The individuals represented in the clinical data set are drawn from diverse racial, 

ethnic, and socioeconomic backgrounds. The EMR data are deidentified, and this study was 

governed by institutional review board approval and informed consent.
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Genotype data processing and identification of genetic variants and genes

A total of 11,210 unique patients were genotyped for genome-wide Illumina OmniExpress 

and Illumina Human Exome BeadChip arrays. We used a default GenCall score cutoff of 

0.15 in GenomeStudio (v2011.1) as recommended by Illumina. Quality control was 

performed by zCall (74) for SNP quality. SNPs were removed if they had (i) a call rate of 

<95%, (ii) no minor alleles, (iii) Hardy-Weinberg equilibrium within population (P < 5 × 

10−5), and (iv) removed A/T and G/C SNPs and any SNPs that deviate from 1 kg (<40% 

versus >60% and vice versa). After quality control for call quality and population 

equilibrium, the genotype data were phased by ShapeIt v2 r644 (75), yielding 850,067 

SNPs, and then imputed by IMPUTE2.3 (73) using the 1000 Genomes Project (76) version 3 

and integrated variant set (August 2012) as the reference panel, resulting in 38,068,758 

variants. A complete list of the number of variants, in coding regions, and genes in both 

original genotype and the imputed data using genome build GRCh37/hg19 is shown in table 

S4. The rationale for using the 1000 Genomes Project as reference panel for imputation is 

that it contains the largest sample size of most diverse ethnicity background. Given the 

diversity in the Mount Sinai Biobank patients, using the 1000 Genomes Project allows us to 

identify the closest individuals for each patient and impute for genotypes that were not 

profiled in the original array. We mapped the imputed variants to gene regions by SnpEff v2 

r644 (77) and AILUN [(78); http://ailun.stanford.edu] using human genome assembly 

(GRCh37/hg19) reference genome (UCSC Genome Browser, http://genome.ucsc.edu). The 

imputed variants data covering variants originally profiled by the genotyping arrays as well 

as variants observed in the 1000 Genomes Projects were then used for association analysis.

Clinical phenotype data

We generated a pseudo cross-sectional data set from our deidentified patient records using 

the following phenotypic logic scheme. Using the initial enrollment date into the BioMe 

program (D1) as an anchor, we populated all (first) laboratory values, vitals, and specified 

medications ±30 days from D1. We collected the last laboratory/vital/medication date (D2) 

where the upper bound of the D2 date was constrained to D1 +30 days, and the lower bound 

constrained to D2 = D1. In most cases, D2 = D1. We then populated all ICD-9-CM codes 

for patients, where ICD-9-CM date ≤ D2 date. We then populated all medication orders for 

patient, where medication orders date ≤ D2 date. The data set also includes self-reported 

demographic data collected at D1.

T2D and non-T2D control phenotypes were defined by an electronic phenotyping algorithm 

that was developed by the eMERGE network (16, 17) based on ICD-9-CM diagnosis codes, 

laboratory tests (LONIC), prescribed medications (RxNorm), physician notes (natural 

language processing), and family history. Interim results were vetted by subject matter 

experts (SMEs) to verify that the queries were capturing the specified data appropriately. 

Adjustments to the queries were implemented iteratively as per the feedback received. Once 

the SMEs were satisfied with the algorithm components, the separate queries were packaged 

into a single job flow and executed against the base population datamart, resulting in the 

identification of cases and controls. We randomly selected samples of 100 cases and 100 

controls for manual chart review by clinical experts from the endocrinology division at 
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Mount Sinai Hospital and performance statistics generated. The algorithm achieved a PPV 

of 96% for cases and 100% for controls.

The processed data were then assembled into a data matrix of n patients by P clinical 

variables. The data set used for analysis represented 11,210 individual patients, 505 clinical 

variables (480 of which were clinical laboratory measures), and 7097 unique ICD-9-CM 

codes (1 to 218 per patient). On average, there were 64 clinical variables collected per 

patient (range, 25 to 212). To avoid overfitting, we selected the clinical variables with at 

least 50% of patients who had the values, resulting in 73 variables to perform the analysis 

(table S1).

Disease classification

Each individual patient had at least one ICD-9-CM code diagnosis at the time his or her 

DNA sample was collected. CCS is a tool that was developed at AHRQ for clustering 

patient diagnoses and procedures into a manageable number of clinically meaningful 

categories (18). The single level of CCS is used to classify all diagnoses and procedures into 

unique groups based on the patient’s ICD-9-CM codes. The multilevel characterization of 

CCS is used to group single-level CCS categories into broader body systems or condition 

categories (for example, “Diseases of the Circulatory System,” “Mental Disorders”). The 

multilevel system has four levels of groupings for diagnoses, and we use the highest, most 

broad level to examine and assess general groupings for the disease category (18). In our 

study, we used 281 mutually exclusive single-level and 18 multilevel categories (broadest 

level) from CCS to map the disease categories based on their ICD-9-CM codes.

TDA pipeline

We developed a novel TDA-based approach to perform unsupervised clustering of patients 

using various clinical features to produce a patient-patient network organized according to 

the high-dimensional clinical phenotype similarity among patients. We use Ayasdi 3.0 (79, 

80) (http://ayasdi.com, Ayasdi Inc.) to perform the TDA analysis. We used TDA pipeline for 

overall patients, random samplings of training and test data sets. A cosine distance metric 

was used to assess the similarity of the data points based on clinical variables (Eq. 1). Two 

filter functions, L-infinity centrality and principal metric singular value decomposition 

(SVD1), were used to generate the patient-patient network based on clinical variables. L-

infinity centrality is defined for each data point y to be the maximum distance from y to any 

other data point in the data set. It produces a more detailed and succinct description of the 

data set than a typical scatter plots display (80). Large values of this function correspond to 

points that are far from the center of the data set. SVD1 also was used in the data matrix to 

obtain subspaces within the column space, and dimensionality reduction is accomplished by 

projection on these subspaces (80). This is done with standard linear algebraic techniques 

when possible, and when the number of points is too large, numerical optimization 

techniques are used.
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(1)

where D1 and D2 represent two individual data points.

Statistical analysis

We used Ayasdi 3.0 (79, 80) (http://ayasdi.com, Ayasdi Inc.) to perform TDA for generating 

the patient-patient network. We used Qiagen’s IPA program version 24390178 (IPA, 

Qiagen, http://qiagen.com/ingenuity) to assess the toxicity functions and pathways for 

significant genes associated with each subtype. For imputed SNPs, we performed 

hypergeometric analysis to identify the significant SNPs associated with each subtypes 

based on their allele frequency and then examined the disease enrichment associated with 

the genes mapped from SNPs. The goal of performing hypergeometric tests is to identify 

genes that are highly associated with each subtype, which would lead to distinct phenotypes 

associated with each subtype. Such analysis is by nature different from traditional GWAS, 

where the goal is to identify disease-causing variants. Therefore, the hypergeometric test P 

values were used as an association measure instead of the evaluation of significance for 

individual SNPs. Similar analysis can also be seen in gene set–based gene expression 

analysis such as gene set enrichment analysis (81). We used our curated VarDi (19) to assess 

the significance of the genotype-phenotype enrichment. VarDi (19) is composed of 24,435 

variants mapped to 3694 unique genes in 904 distinct phenotypes with a significant level (P 

< 1 × 10−6) from over ~13,000 GWAS, and we used P < 1 × 10−6 to identify variants from 

VarDi (19). LASSO provides stability and robustness statistics, which are used to inform 

consistency and sparsity. LASSO seeks a model that not only fits well but also is “simple” to 

avoid large variation, which occurs in estimating complex models (60). We used the LASSO 

algorithm with corrected Akaike information criterion statistic (AICC) (Eq. 2) (82) for 

feature selection and logistic regression for RR estimate of disease comorbidities based on 

CCS disease classification. We used analysis of variance (ANOVA), two-tailed t test, or χ2 

tests to compare multiple or two-class continuous or categorical clinical variables. Data were 

presented as means ± SE. Statistical analyses and random samplings were carried out using 

SAS 9.3.2 (SAS Institute) and R 2.15.1 (83). We used Cytoscape 3.2.0 (29) to visualize the 

networks for the significant genotype-phenotype association identified from VarDi (19) 

specific to each of the T2D subtypes.

(2)

where k is the number of parameters in the model, and n is the sample size.
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Fig. 1. Patient and genotype networks
(A) Patient-patient network for topology patterns on 11,210 Biobank patients. Each node 

represents a single or a group of patients with the significant similarity based on their 

clinical features. Edge connected with nodes indicates the nodes have shared patients. Red 

color represents the enrichment for patients with T2D diagnosis, and blue color represents 

the non-enrichment for patients with T2D diagnosis. (B) Patient-patient network for 

topology patterns on 2551 T2D patients. Each node represents a single or a group of patients 

with the significant similarity based on their clinical features. Edge connected with nodes 

indicates the nodes have shared patients. Red color represents the enrichment for patients 

with females, and blue color represents the enrichment for males.
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Fig. 2. Genotype-phenotype network for three subtypes in T2D
The network consists of the significant association between phenotypes and genetic variants 

at gene level specific to three T2D subtypes (subtype 1 in blue, subtype 2 in orange, and 

subtype 3 in pink). Phenotypes (oval) and genes (triangle) are connected by gray lines (P 

value). Oval nodes in dark green indicate the shared phenotypes across subtypes. The edge 

width reflects the significance of the P value for enrichment. The size of the node reflects 

the amount of associated genes or phenotypes. This network was visualized using Cytoscape 

3.2.0.
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Table 2

Significant associated disease categories.MHSA, mental health and substance abuse; LCI, lower confidence 

interval; UCI, upper confidence interval.

(A) Significant disease categories associated with T2D subtype 1

Disease category RR 95% LCI 95% UCI P value

Other upper respiratory infections 1.68 1.34 2.11 <0.0001

Immunizations and screening for infectious disease 1.65 1.32 2.06 <0.0001

Diabetes mellitus with complications 1.50 1.22 1.84 0.0001

Other skin disorders 1.41 1.13 1.76 0.003

E codes: place of occurrence 1.38 1.08 1.77 0.01

Blindness and vision defects 1.32 1.04 1.67 0.02

Other screening for suspected conditions (not mental disorders or infectious diseases) 1.28 1.04 1.58 0.02

Screening and history of MHSA codes 0.74 0.59 0.94 0.01

Other circulatory disease 0.68 0.54 0.87 0.002

Acute and unspecified renal failure 0.63 0.42 0.94 0.02

Pulmonary heart disease 0.60 0.37 0.98 0.04

Deficiency and other anemia 0.57 0.45 0.71 <0.0001

E codes: adverse effects of medical care 0.55 0.38 0.79 0.001

Coronary atherosclerosis and other heart disease 0.51 0.40 0.64 <.0001

Peri-, endo-, and myocarditis; cardiomyopathy (without tuberculosis or sexually transmitted 
disease)

0.48 0.28 0.82 0.01

Aortic, peripheral, and visceral artery aneurysms 0.36 0.21 0.64 0.0004

HIV infection 0.22 0.12 0.38 <0.0001

(B) Significant disease categories associated with T2D subtype 2

Disease category RR 95% LCI 95% UCI P value

Cancer of bronchus: lung 3.76 1.14 12.39 0.03

Malignant neoplasm without specification of site 3.46 1.23 9.70 0.02

Tuberculosis 2.93 1.30 6.64 0.01

Coronary atherosclerosis and other heart disease 1.28 1.01 1.61 0.04

Other circulatory disease 1.27 1.02 1.58 0.03

Age 1.01 1.00 1.02 0.003

Allergic reactions 0.70 0.57 0.85 0.0004

Other screening for suspected conditions (not mental disorder or infectious disease) 0.64 0.52 0.79 <0.0001

Disorders of lipid metabolism 0.56 0.45 0.70 <0.0001

E codes: struck by; against 0.41 0.18 0.92 0.03

Peritonitis and intestinal abscess 0.12 0.02 0.88 0.04

(C) Significant disease categories associated with T2D subtype 3

Disease category RR 95% LCI 95% UCI P value

HIV infection 1.92 1.30 2.85 0.001

E codes: adverse effects of medical care 1.84 1.41 2.39 <0.0001

Aortic and peripheral arterial embolism or thrombosis 1.79 1.18 2.71 0.01
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(C) Significant disease categories associated with T2D subtype 3

Disease category RR 95% LCI 95% UCI P value

Hypertension with complications and secondary hypertension 1.66 1.29 2.15 <0.0001

Coronary atherosclerosis and other heart disease 1.41 1.15 1.72 0.001

Allergic reactions 1.42 1.19 1.70 0.0001

Deficiency and other anemia 1.39 1.14 1.68 0.001

Screening and history of MHSA codes 1.30 1.07 1.58 0.01

Diabetes mellitus with complications 0.80 0.67 0.96 0.02

E codes: place of occurrence 0.71 0.56 0.89 0.003

Other upper respiratory infections 0.73 0.57 0.92 0.01

Blindness and vision defects 0.71 0.57 0.88 0.002

Other skin disorders 0.68 0.55 0.83 0.0003

Sci Transl Med. Author manuscript; available in PMC 2016 April 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 27

Table 3

Significant phenotypes.

(A) Significant phenotypes with disease–genetic variant enrichments specific to T2D subtype 1

Phenotypes Gene symbol P

Albumin-to-creatinine ratios ACE 1.00 × 10−27

Aspartyl phenylalanine levels ACE 1.00 × 10−27

B cell count LAMB4 1.00 × 10−27

Chronic heart failure LEPR 1.00 × 10−27

Crypt frequency SEMA3A 1.00 × 10−27

Dyslexia CLSTN2 1.00 × 10−27

Hypercholesterolemia BTN2A1 1.00 × 10−27

Mannose-binding lectin levels MBL2 1.00 × 10−27

Prominence of right endocanthion TMTC2 1.00 × 10−27

Retinol levels FFAR4 1.00 × 10−27

Phosphorylated τ 181 protein levels MTUS1, UNC5C 5.53 × 10−3

Angiotensin-converting enzyme activity ACE 1.32 × 10−2

Diabetes mellitus BTN2A1 1.32 × 10−2

Entorhinal cortical volume F13A1 1.32 × 10−2

Multiple system atrophy SNCA 1.32 × 10−2

N-acetylornithine levels ALMS1 1.32 × 10−2

Otosclerosis TGFB1 1.32 × 10−2

Pelvic organ prolapse ZFAT 1.32 × 10−2

Tanning ability MC1R 1.32 × 10−2

Vitamin D concentrations GC 1.32 × 10−2

Diabetic retinopathy PLXDC2, HS6ST3 2.32 × 10−2

Alanine transaminase levels ZNF827 3.66 × 10−2

Diabetic nephropathy ACE 3.66 × 10−2

Left ventricular wall thickness GRID1 3.66 × 10−2

Leptin receptor LEPR 3.66 × 10−2

Forced expiratory volume ZSCAN31, TNS1 5.00 × 10−2

Platelet response to aspirin intervention therapy ZNF583, GLIS3 5.00 × 10−2

(B) Significant phenotypes with disease–genetic variant enrichments specific to T2D subtype 2

Phenotypes Gene symbol P

Alcohol and nicotine codependence PLEKHG1 1.00 × 10−27

Bleomycin sensitivity SAMD12 1.00 × 10−27

Epirubicin-induced adverse drug reactions MCPH1 1.00 × 10−27

Follicular lymphoma SV2B 1.00 × 10−27

Lactose intolerance ST5 1.00 × 10−27

Pronasale to left alare distance CACNA2D3 1.00 × 10−27

Stem cell transplantation NLRP3 1.00 × 10−27
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(B) Significant phenotypes with disease–genetic variant enrichments specific to T2D subtype 2

Phenotypes Gene symbol P

Geographic atrophy HTRA1, CFH 6.57 × 10−4

Brain CDH4 7.58 × 10−3

Left ventricular internal diastolic dimensions SLC35F1 7.58 × 10−3

Mean platelet volume ARHGEF3 7.58 × 10−3

Polypoidal choroidal vasculopathy CFH 7.58 × 10−3

Psychosis ZNF804A 7.58 × 10−3

Suicidal behavior GFRA1 7.58 × 10−3

Tanning ability HERC2 7.58 × 10−3

Total τ protein levels CDH4 7.58 × 10−3

Meningococcal disease TMPRSS15, CFHR3, CFH 7.79 × 10−3

Keratoconus SOX5, MACROD2 1.76 × 10−2

Meningioma CHN2 2.14 × 10−2

Polycystic ovary syndrome DENND1A 2.14 × 10−2

Primary sclerosing cholangitis GAS7 2.14 × 10−2

Atrial fibrillation CAV1, HCN4 2.64 × 10−2

Age-related macular degeneration PLEKHA1, HTRA1, IL8, CFH 3.09 × 10−2

Open-angle glaucoma ADAMTSL1, CAV1 3.71 × 10−2

Phosphorylated τ 181 protein levels CHN2 4.04 × 10−2

(C) Significant phenotypes with disease–genetic variant enrichments specific to T2D subtype 3

Phenotypes Gene symbol P

Gallbladder cancer CNTN4, DCC 1.00 × 10−27

Allergy FHIT 1.00 × 10−27

B cell chronic lymphocytic leukemia CD38 1.00 × 10−27

Lymphoid interstitial pneumonitis FGF14 1.00 × 10−27

Osteoporosis ALDH7A1 1.00 × 10−27

Peripartum cardiomyopathy AKAP13 1.00 × 10−27

RR interval GPR133 1.00 × 10−27

Spinocerebellar ataxia type 1 ATXN1 1.00 × 10−27

Intraventricular septal thickness EXT1, CERS6 1.65 × 10−3

Endometrial cancer SLC8A1 1.40 × 10−2

HIV-associated neurocognitive disorders SLC8A1 1.40 × 10−2

Response to statin ASB18 1.40 × 10−2

Uterine leiomyoma TNRC6B 1.40 × 10−2

Vitamin D concentrations DAB1 1.40 × 10−2

Anxiety disorders SDK2, FHIT 2.50 × 10−2

Cognitive decline CTNND2 3.86 × 10−2

Dementia ABCA1 3.86 × 10−2

Estrone levels ESR1 3.86 × 10−2

Impaired play skills DCC 3.86 × 10−2
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(C) Significant phenotypes with disease–genetic variant enrichments specific to T2D subtype 3

Phenotypes Gene symbol P

Gallbladder cancer CNTN4, DCC 1.00 × 10−27

Intelligence CNTN4 3.86 × 10−2

Myopia MIPEP 3.86 × 10−2

Plasma progranulin levels DNAH11 3.86 × 10−2

Polycystic ovary syndrome THADA 3.86 × 10−2

Renal cell carcinoma ITPR2 3.86 × 10−2

Theta power of electroencephalogram ST6GALNAC3 3.86 × 10−2

Central corneal thickness COL5A1, FNDC3B 4.00 × 10−2

Atrial fibrillation C9orf3, SYNE2 5.00 × 10−2

Depression FHIT, BICC1 5.00 × 10−2

Sci Transl Med. Author manuscript; available in PMC 2016 April 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 30

Table 4

Canonical pathways at gene level for each T2D subtype.ns, not significant.

Canonical pathway Subtype 1 Subtype 2 Subtype 3 Genes

Fatty acid β-oxidation III 1.1 × 10−3 ns ns ECI1, ECI2

Acetate conversion to acetyl-CoA 3.5 × 10−3 ns ns ACSL1, ACSL2

Netrin signaling 6.2 × 10−3 ns ns ABLIM1, PRKG1, UNC5B, UNC5C

GABA receptor signaling 8.8 × 10−3 ns ns ADCY8, ALDH5A1, GABBR1, GABRR2, GPHN

cAMP-mediated signaling 9.2 × 10−3 ns 2.0 × 10−2 Subtype 1: ADCY8, AKAP12, CAMK1D, CNGB1, 
CNGB3, GABBR1, MC1R, PDE3A, PKIA, RGS7
Subtype 3: AKAP13, CAMK4, CHRM5, GNAI3, 

HTR1D, PDE4B, PDE6A, PRKAR2B, RAF1

Role of pattern recognition receptors in 
recognition of bacteria and viruses

ns 1.8 × 10−3 ns CXCL8, MAPK10, NLRP3, OAS1, OAS3, PRKCD, 
PRKCH

Thrombopoietin signaling ns 6.8 × 10−3 ns GAB2, PRKCD, PRKCH, SOS1

α-Adrenergic signaling ns ns 1.2 × 10−3 CAMK4, GNAI3, GYS1, ITPR2, PRKAR2B, RAF1, 
SLC8A1

Synaptic long-term depression ns ns 1.4 × 10−3 GNA11, GNAI3, GRID2, GRM1, ITPR2, PLA2G4C, 
PLA2R1, PPP2R5B, RAF1,

CREB signaling in neurons ns ns 1.4 × 10−3 CAMK4, GNA11, GNAI3, GRID2, GRIK4, GRM1, 
ITPR2, POLR2I, PRKAR2B, RAF1

Glutamate receptor signaling ns ns 4.2 × 10−3 CAMK4, GRID2, GRIK4, GRM1, PICK1

Hepatic fibrosis/hepatic stellate cell 
activation

3.0 × 10−2 ns 4.0 × 10−3 Subtype 1: BCL2, COL19A1, COL28A1, IGF1R, 
IL1RAP, LEPR, TGFB1, TGFB2

Subtype 3: BAX, COL15A1, COL25A1, COL4A4, 
COL5A1, COL5A3,COL9A3, FGF2, KLF12, MYH7B

Sperm motility ns ns 7.3 × 10−3 CAMK4, ITPR2, PDE4B, PLA2G4C, PLA2R1, 
PRKAR2B, SLC12A2
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Table 5

Toxicity functions at the gene level for each T2D subtype.

Toxicity functions Subtype1 Subtype2 Subtype3 Genes

Biliary hyperplasia 3.5 × 10−3 ns ns CFTR, PKHD1

Glutathione depletion in liver 3.5 × 10−3 ns ns LEPR, TGFB1

Liver fibrosis 3.5 × 10−3 ns ns TGFB1, LEPR, TGFB2, PKHD1

Glomerular injury 4.7 × 10−3 ns ns FYN, TGFB1, LEPR, RARA, TNS1, PKN1, PTGER1, BCL2

Renal hypertrophy 4.7 × 10−3 ns ns TGFB1, LEPR, RARA, BCL2

Liver damage 5.1 × 10−3 ns ns SLC10A1, TGFB1, IGF1R, GABBR1, SERPINA1, CD274, PARK2, 
PTGER1

Liver inflammation/hepatitis 5.1 × 10−3 ns ns AKAP12, SLC10A1, TGFB1, PDE3A, IGF1R, GABBR1, CD274, 
PARK2

Renal proliferation 7.6 × 10−3 ns ns PRKG1, TGFB1, UNC5B, TTLL4, CRK, ZNF512B, DLC1, BCL2, 
UNC5C, AFF1

Renal degeneration 8.0 × 10−3 ns ns TGFB1, TNS1, BCL2

Cardiac arrhythmia ns 1.0 × 10−3 ns KCND3, HCN4, KCNG2, KCNQ1, CNTN5

Bradycardia ns 4.9 × 10−3 ns HCN4, KCNQ1

Cardiac arteriopathy ns 9.3 × 10−3 4.8 × 10−6 Subtype 2: SAMD12, KALRN, ITGA8, PDE5A, DOCK4, CNTN6, 
PRKCH, CSMD2, CPEB3, CNTN5

Subtype 3: CERS6, CLIC5, ZMYM2, CDCP1, ABCG1, FRMD4A, 
PDE4B, PTPRM, ABCA1, F2, SPATA5, AKAP13, MCF2L, PBX3, 

CNTNAP5, FMN2, CACNA2D1, SLC8A1, ESR2

Liver fibrosis ns ns 3.3 × 10−3 FGF2, PLAUR, BMP7, CC2D2A, F2, HSPB1

Congenital heart anomaly ns ns 5.8 × 10−3 DNAH11, BICC1, PDS5B, INVS
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