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Abstract Mammalian target of rapamycin (mTOR) is a

protein serine/threonine kinase that controls a wide range

of growth-related cellular processes. In the past several

years, many factors have been identified that are involved

in controlling mTOR activity. Those factors in turn are

regulated by diverse signaling cascades responsive to

changes in intracellular and environmental conditions. The

molecular connections between mTOR and its regulators

form a complex signaling network that governs cellular

metabolism, growth and proliferation. In this review, we

discuss some key factors in mTOR regulation and mech-

anisms by which these factors control mTOR activity.
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Introduction

TOR, target of rapamycin, is an atypical serine/threonine

kinase that was originally identified in the yeast Saccha-

romyces cerevisiae and later in human, mouse and other

eukaryotic cells [1, 2]. Rapamycin, in complex with a

cytosolic protein FKBP12, specifically binds to TOR and

interferes with its function [3, 4]. For most of eukaryotic

cells, inhibition of TOR by rapamycin results in growth

arrest. The drug-affected cells withdraw from cell cycle

and become unresponsive to growth factor and nutrient

stimulation [5]. However, the sensitivity of each type of

cells to rapamycin varies [6]. Lymphocytes and certain

types of cancer cells are among those highly susceptible to

rapamycin inhibition. This differentiated sensitivity allows

the use of rapamycin and its derivatives (rapalogs) to

selectively block the growth and proliferation of unwanted

cells without affecting normal ones in the human body,

leading to the development of rapalogs as immunosup-

pressive drugs and recently as anti-cancer agents [7].

Hence, ever since its identification, TOR has been at the

center of extensive studies driven by our desire to under-

stand fundamental mechanisms governing cell growth and

by the clinical applications of TOR inhibitors.

In mammals the homologs of the yeast TOR are col-

lectively referred to as mammalian target of rapamycin

(mTOR). Like its counterparts in other organisms, mTOR

exists in two distinct complexes termed as mTOR complex

1 (mTORC1) and complex 2 (mTORC2), both of which

contain several components that are conserved from yeast

to human [8, 9]. Despite the presence of mTOR in both

complexes, only mTORC1 is sensitive to rapamycin inhi-

bition [8]. However, prolonged rapamycin treatment still

affects mTORC2 function, presumably by preventing new

mTORC2 generation [10].

Being the target of rapamycin, mTORC1 has been the

main focus in most mTOR-related studies. As discussed

below, mTORC1 is regulated by an array of diverse

intracellular and environmental cues, including those of

growth factors, mitogens, phosphatidic acid (PA), energy,

nutrient and stresses (Fig. 1). Upon receiving and inte-

grating upstream signals, mTORC1 in turn controls a

wide range of growth-related cellular processes, including
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translation, transcription, autophagy and hypoxic adapta-

tion [5]. In contrast, mTORC2 is involved in controlling

Akt activity and in regulating cell-cycle-dependent orga-

nization of actin cytoskeleton [11]. The mechanisms for its

regulation have only begun to be revealed. In the following

sections, we discuss many recently emerged factors

involved in mTOR regulation with emphasis on those

directly in contact with mTOR or mTOR complexes.

mTOR

Mammalian target of rapamycin is responsible for the

catalytic activity of both mTORC1 and mTORC2. It is

a *289-kDa multi-domain protein that belongs to the

family of the phosphatidylinositol 3-kinase (PI3-K)-related

kinases (PIKK). Members of this kinase family are char-

acterized by their large sizes ([2,500 amino acids) and a

C-terminally located kinase domain that is structurally

related to PI3-K [12]. In addition to the kinase domain,

mTOR also contains an N-terminal region that is mainly

composed of tandem repeats of the HEAT motif, an

a-helix-like structure mediating protein–protein interaction

[13]. The middle part of mTOR comprises the FAT domain

that is found among all the members of the PIKK family

and is believed to be involved in interaction with other

proteins [14]. The last *30 residues of mTOR form the

FATC domain, which consists of an a-helix and a disulfide-

bonded loop, which can be regulated by cytosolic redox

potential [15]. The FKBP12–rapamycin complex binds to a

region lying between the FAT and the kinase domains [16].

Binding of the complex to mTOR is thus not expected to

directly affect the kinase activity of mTOR (Fig. 2).

Mammalian target of rapamycin is phosphorylated at

multiple sites, including Ser2448, Ser2481, Thr2446 and

Ser1261. Phosphorylation at Ser2448 is mediated by p70

ribosomal S6 kinase (S6K) and occurs predominantly to

mTOR in mTORC1 [17–19]. Ser2481 is an autophospho-

rylation site. Phosphorylation at this site happens mainly to

mTOR in mTORC2 and is insensitive to acute rapamycin

treatment [19, 20]. Thr2446 is phosphorylated presum-

ably by cAMP activated protein kinase (AMPK), and the

phosphorylation levels increase upon nutrient withdrawal

and decrease upon insulin stimulation [21]. Ser1261 was

identified recently as a site whose phosphorylation pro-

motes mTORC1 activity and is required for mTOR

autophosphorylation at Ser2481 [22]. In all the cases

examined, phosphorylation of mTOR appears to alter its

kinase activity rather than its association with other com-

ponents in the mTOR complexes [19, 23].

mTORC1

mTOR complex 1 is sensitive to rapamycin and thus is

responsible for all the rapamycin-sensitive processes in

mammalian cells. It consists of mTOR, regulatory associ-

ated protein of mTOR (raptor) and mLST8 (mammalian

lethal with sec13 protein 8, also known as GbL), all of

which are essential for the function of the complex (Fig. 3)

[8, 24, 25].

mLST8 is the only mTOR partner found in both

mTORC1 and mTORC2. It is a 36-kDa protein composed

entirely of seven WD40 repeats, which are short seq-

uence motifs of *40 amino acids, often terminating in a

Fig. 1 The signaling network that controls mTOR. mTOR exists in

two distinct complexes, mTORC1 and mTORC2. The function of

mTORC1 is regulated by signaling pathways responsive to amino

acids sufficiency, growth factor stimulation and changes in energy

levels. These pathways converge either on mTORC1 itself or on the

TSC1/TSC2 complex, making up a complex signaling network. The

proximal regulators of mTORC1 include Rheb and Rag small

GTPases as activators and FKBP38 and PRAS40 as inhibitors. The

S6K-directed phosphorylation of IRS-1 constitutes a feedback loop

that downregulates the signaling activity from insulin receptors to Akt

and mTOR. The mechanisms involved in mTORC2 regulation remain

elusive. Arrows depict activation and T bars inhibition

Fig. 2 A schematic presentation of mTOR structures. mTOR is a

large protein kinase containing multiple-functional domains. The

kinase domain is located at the C-terminus and is responsible for the

catalytic activity of mTORC1. The HEAT motif region located at the

N-terminus and the FAT domain in the middle are involved in

mediating mTOR interaction with other proteins. The FRB domain is

where the FKBP12 and rapamycin complex binds, which is within the

region that binds to FKBP38. mTOR is also phosphorylated by

several kinases, including itself
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tryptophan-aspartic acid (W-D) dipeptide [26]. mLST8 has

been found to associate with the kinase domain of mTOR

and stimulate mTOR kinase activity [25]. However, it

appears to be dispensable for association of mTOR with

raptor, and hence may not play a critical role in mTORC1

function [27].

Raptor, also known as p150 TOR-scaffold protein, is the

unique component of mTORC1. It acts as an adapter pro-

tein in mTORC1 by binding and presenting substrates to

mTOR [24, 28]. Raptor is a large protein with a Mw of

*150 kDa that contains an N-terminal RNC (raptor

N-terminal conserved) domain followed by three HEAT

repeats and seven WD-40 repeats in the C-terminus of the

protein [24, 25]. Analysis of the interaction between the

yeast TOR and Kog1, the yeast counterpart of raptor,

reveals that the C-terminal WD40 repeats of Kog1 bind to

the N-terminal HEAT repeats of TOR, and the RNC

domain is in proximity to the TOR kinase domain. The

RNC domain is thus likely to function in bringing in sub-

strates into the vicinity of the catalytic region [29]. Raptor

binds to a sequence motif, commonly referred to as the

TOR signaling motif (TOS), which is found in all known

substrates of mTORC1, including S6K, 4E-BP1 and

PRAS40 [30, 31]. Mutations in TOS motif of S6K and

4E-BP1 that abolish the binding with raptor also eliminate

the ability of these polypeptides to be phosphorylated by

mTORC1 in cells. In addition to TOS motif, 4E-BP1

contains another raptor-interacting motif (RAIP) that is

required for its binding with raptor and efficient phos-

phorylation by mTORC1 in cells [32, 33]. Recently, a new

raptor interacting motif, SAIN (Shc and IRS-1 NPXY-

binding) domain, has been found in insulin receptor sub-

strate-1 (IRS-1), which mediates the mTORC1-dependent

phosphorylation of IRS-1 at Ser636 and Ser639 [34].

Besides its function to bring protein substrates to

mTOR, raptor itself is also phosphorylated at multiple sites

by several kinases, including AMPK, p90 ribosomal S6

kinase (RSK) and mTORC1. AMPK phosphorylates raptor

on two well-conserved serine residues, Ser722 and Ser792.

The phosphorylation recruits binding of 14-3-3 to raptor,

resulting in inhibition of mTORC1 activity [35]. RSK

phosphorylates raptor at three sites, including Ser719,

Ser721 and Ser722. Phosphorylation at these sites has been

shown to promote mTORC1 kinase activity [36]. In addi-

tion, a few mTORC1-directed phosphorylation sites have

been found in raptor. Mutations in one of the sites, Ser863,

attenuate the effect of small GTP-binding protein Ras-

homology enriched in brain (Rheb) on mTORC1 activation

[37]. Collectively, these findings suggest that raptor is able

to integrate various signals for mTOR regulation.

The function of mTORC1 has been implicated in many

cellular processes by the nature of their sensitivity to rap-

amycin inhibition. However, only a few direct substrates of

mTORC1 have so far been identified. Among them, 4E-

BP1 and S6K are two well-characterized targets. As such,

the mTORC1-directed phosphorylation of both proteins is

commonly used as an indicator for mTORC1 activity in

cells. 4E-BP1 is a translation repressor, which binds and

inhibits the translation initiation factor 4E (eIF-4E), a key

factor for translation of 50 capped mRNAs, among which

are transcripts encoding growth promoting factors, such as

Myc, cyclin D1, vascular endothelial growth factor

(VEGF) and signal transducer and activator of transcription

3 (STAT3) [38]. mTORC1 phosphorylates 4E-BP1 at

several sites, including Thr37, Thr46, Ser65, Thr70 and

Ser83 [39–41]. Phosphorylation at Thr37 and Thr 46

appears to prime 4E-BP1 for additional phosphorylation at

the other sites, which leads to its dissociation from eIF-4E

[42]. S6K is phosphorylated by mTORC1 at Thr389 within

a hydrophobic motif that links its catalytic domain with

the C-terminal autoinhibition domain [40, 43, 44]. This

phosphorylation permits further phosphorylation by phos-

phoinoside-dependent kinase 1 (PDK1) at Thr229 in the

activation loop of the kinase domain of S6K, resulting in its

activation [45, 46]. Once activated, S6K phosphorylates

ribosomal protein S6, a protein required for translation of

50 terminal oligopyrimidine (TOP) mRNAs encoding

ribosomal proteins and elongation factors. Although

mTORC1 is likely to have many other substrates, 4E-BP1

and S6K are the key factors contributing to the ability of

mTORC1 to promote increased cell size [47].

In addition to S6 protein, S6K also phosphorylates

several other proteins, including IRS-1, glycogen synthase

kinase 3 (GSK3), translation elongation factor 2 (eEF2)

kinase and pro-apoptotic protein Bad [48–52]. Of these

targets, phosphorylation of IRS-1 is of great importance in

mTOR regulation. IRS-1 binds to insulin receptor or

Fig. 3 Two mTOR complexes and their functions. mTORC1 is

composed of mTOR, mLST8, raptor and PRAS40. Its function is

involved many growth-related processes and oxygen adaptation and is

sensitive to rapamycin. mTORC2 shares mTOR and mLST8 with

mTORC1, but contains a few other unique components, including

rictor, mSIN1 and PRR5
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insulin-like growth factor-1 (IGF-1) receptor and is

required for activation of PI3-K in response to insulin or

IGF-1 stimulation [53]. S6K phosphorylates IRS-1 at

Ser302, which disrupts its interaction with the receptors,

leading to a blockage in insulin signaling to Akt and mTOR

[50, 54]. The S6K directed phosphorylation of IRS-1 thus

constitutes a negative feedback that downregulates the

signaling activity from insulin receptor to mTOR (Fig. 1).

mTORC2

mTOR complex 2 shares mTOR and mLST8 with mTORC1.

However, it contains several unique components, includ-

ing rapamycin-insensitive companion of mTOR (rictor),

mammalian stress-activated protein kinase-interacting

protein 1 (mSIN1) and proline-rich repeat protein-5

(PRR5) or PRR5-like (also known as protor1 and protor 2)

(Fig. 3) [55–60]. The association of rictor to mTOR is

critical for mTORC2 kinase activity and requires the

presence of mLST8 and mSIN1, which makes the two

proteins indispensable for mTORC2 function [27, 55, 60,

61]. PRR5 and its close homolog PRR5L are two newly

discovered mTORC2 components. These proteins bind to

rictor or mSIN1, but are not essential for mTORC2 stability

or kinase activity [56, 58]. In addition to the components of

mTORC2, rictor has also been shown to interact with other

proteins, such as integrin-linked kinase (ILK), Myo1c and

heat shock protein 70 (Hsp70) [62–64]. The significance of

these interactions is unclear. It is possible that rictor,

through interaction with these proteins, acts as an adaptor

to bring mTORC2 to its targets. Alternatively, these pro-

teins may function as regulators to control mTORC2

through rictor.

The FKBP12–rapamycin complex does not bind to

mTORC2. Hence, mTORC2 is insensitive to acute rapa-

mycin treatment [8, 57]. However, prolonged treatment

with rapamycin has been found to disrupt mTORC2

assembly in some cell lines, resulting in decreased levels

of functional mTORC2 [10, 65]. The effect of rapamycin

may be mediated by the drug-induced dephosphorylation

of rictor and mSIN1 [66, 67]. It has been found that short-

term treatment with rapamycin triggers dephosphoryla-

tion of rictor and mSIN1 exclusively in the cytoplasm,

but does not affect mTORC2 assembly. Prolonged rapa-

mycin treatment leads to complete dephosphorylation

and cytoplasmic translocation of nuclear rictor and

mSIN1, which correlates with reduction in mTORC2

levels [66, 67].

Two major functions have been ascribed to mTORC2,

including regulation of Akt and cell cycle-dependent

organization of actin cytoskeleton. mTORC2 phosphory-

lates Akt at Ser473 in its C-terminal hydrophobic motif,

which, in conjunction with PDK1-mediated phosphoryla-

tion at Thr308, drives full activation of Akt [61]. mTORC2

regulates actin cytoskeleton through a mechanism that

involves the small GTPases Rho and Rac, although the

molecular details of the regulation remain elusive [9, 57].

In addition, mTORC2 has been found to phosphorylate

PKC and serum- and glucocorticoid-induced protein kinase

1 (SGK1), and may by involved in controlling cell size

[68–71]. Thus, mTORC2, like its partner mTORC1, has

pleiotropic roles in cell growth control.

TSC1 and TSC2

TSC1 and TSC2 were originally identified as two tumor

suppressor genes. Inactivating mutations of the genes cause

tuberous sclerosis complex syndrome, an inherited genetic

disorder that is manifested by occurrence of tumor in

multiple organs [72, 73]. Early studies suggested that the

gene products, TSC1 and TSC2, also known as hamartin

and tubrin, form a heterodimeric complex that displays a

GTPase-activating protein (GAP) activity [74–76]. How-

ever, the function of the TSC1/TSC2 complex remained

unclear until genetic studies in Drosophila ascribed a role

for the complex in cell size control and placed it in a

pathway that converges the insulin signaling from Akt to

mTOR and S6K [77–79]. Subsequent studies in Drosophila

identified small GTPase Rheb as a downstream target of

TSC1 and TSC2 and upstream of TOR [80, 81]. Bio-

chemical analyses confirmed Rheb as a bona fide effector

of the TSC1/TSC2 complex [82–84]. In mammalian cells,

coexpression of TSC1 and TSC2 reduces the levels of

GTP-bound Rheb, while insulin stimulation increases the

levels in a PI-3K-dependent manner [85]. These seminal

studies in Drosophila and mammalian cells established a

signaling scheme underlying insulin-stimulated mTOR

activation that involves, in a sequential order, PI3-K, Akt,

the TSC1/TSC2 complex, Rheb and mTOR (Fig. 1).

TSC2 is a 180-kDa protein that contains a GAP

homology domain at its C-terminus. When assayed in vitro,

TSC2 stimulates GTP hydrolysis of Rheb, but not other

related small GTPases [82, 86]. TSC1 does not possess any

GAP activity and is not required for that of TSC2 in vitro.

However, in cells TSC1 appears to be essential for TSC2

function, as mutations in TSC1 have been found to reduce

the function of the TSC1/TSC2 complex [86, 87]. TSC1

contains a transmembrane (TM) domain and is involved in

targeting the TSC1/TSC2 complex to membrane structures

[74, 88]. The membrane association allows the complex to

directly interact with Rheb and modulate its GTP hydro-

lysis activity [84].

TSC2 is phosphorylated by multiple kinases involved

in various signaling pathways, including Akt, AMPK,
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RSK and extracellular signal-regulated kinase (ERK). In

response to growth factor, such as insulin stimulation,

TSC2 is phosphorylated by Akt at multiple sites,

including Ser939, Ser981 and Thr1462 [79, 89–91]. A

mutant TSC2 lacking these phosphorylation sites acts

dominantly in cells to block Akt signaling to mTOR,

suggesting that the Akt-directed phosphorylation is to

downregulate the function of TSC2. However, the phos-

phorylation does not appear to affect the GAP activity of

TSC2 directly. Instead, it creates binding sites for a

cytosolic protein, 14-3-3, which binds to phosphorylated

TSC2 and inhibits its function [88]. The mechanism by

which 14-3-3 downregulates TSC2 function is not fully

understood. Some studies have suggested that binding

with 14-3-3 prevents TSC2 from associating with TSC1

and thus reduces the function of the TSC1/TSC2 complex

toward Rheb [79, 90], while others show that 14-3-3 may

directly inhibit TSC2 function without disrupting the

TSC1/TSC2 complex [89, 91].

In addition to being a target of Akt, TSC2 is also

phosphorylated at Ser1345 by AMPK. Unlike the Akt-

directed phosphorylation, which leads to inhibition of

TSC2 function, the AMPK-directed phosphorylation

enhances the GAP activity of TSC2 and consequently

downregulates of mTORC1 [92]. As part of intracellular

energy-sensing pathway, AMPK is activated when intra-

cellular ATP is depleting and AMP levels arise [93]. The

AMPK-dependent regulation of TSC2 thus couples intra-

cellular energy levels to mTORC1 activity. The AMPK-

dependent phosphorylation at Ser1345 also promotes

subsequent phosphorylation at Ser 1337 and Ser1341 by

glycogen synthase kinase 3b (GSK3b). These coordinated

phosphorylation events lead to full activation of the GAP

activity of TSC2 [92, 94]. Since GSK3b is a component in

the Wnt signaling pathway, the GSK3b-directed phos-

phorylation links the pathway to mTORC1 regulation,

whereby an activated Wnt signaling pathway, which

inhibits GSK3b activity [95], is able to enhance mTORC1

activity by repressing GSK3b-dependent activation of

TSC2 [92, 94].

TSC2 is also phosphorylated by ERK and RSK in

response to mitogen stimulation and Ras activation. Acti-

vated ERK phosphorylates TSC2 at Ser664, which causes

dissociation of TSC2 from TSC1 and impairs its function

[96, 97]. RSK phosphorylates RSC2 at Ser1798, resulting

in inhibition of TSC2 function. The mechanism for the

inhibition is not clear. However, it has been found to be

additive to the inhibitory effect of Akt-directed phosphor-

ylation [98, 99].

The ability to receive phosphorylation by multiple

kinases and alter its GAP activity accordingly provides a

mechanism for TSC2 to integrate signals from various

signaling pathways for mTOR regulation.

Rheb

Ras-homology enriched in brain was identified as a gene

whose expression was induced in rat brain by synaptic

activity and growth factor stimulation [100, 101]. Rheb is a

small GTPase that is structurally more close to Ras than to

other small GTPases. The regions in Rheb involved in GTP

binding are highly similar to those in Ras. Particularly, the

core effector domain of Rheb, the region that involves in

targeting and binding to downstream effectors, shares six out

of nine identical and two similar amino acid residues with

that of Ras. It is thus believed that the action mechanism of

Rheb is similar to that of Ras, which involves binding to its

effector through the effector domain in a GTP-dependent

manner [102, 103]. One striking difference, however, is that

Rheb contains an arginine residue at position 15 rather than a

glycine residue that is present at the corresponding site in

Ras. This difference results in a low intrinsic GTPase activity

in Rheb, which correlates with a relatively high level of

GTP-bound Rheb in cells [102, 104, 105].

The activity of the small GTPases of Ras family depends

on their nucleotide-binding states, which are regulated

reciprocally by their cognate GAPs and guanine nucleotide

exchange factors (GEFs) [102]. The GAP for Rheb has

been shown to be the TSC1/TSC2 complex, which binds

GTP-bound Rheb and stimulates GTP hydrolysis [82–84,

86]. However, the identity of the Rheb GEF remains elu-

sive, although recent studies have suggested that the

translationally controlled tumor protein (TCTP) may fill

this role [106, 107].

Because the GAP activity of the TSC1/TSC2 complex is

regulated by Akt- and AMPK-dependent phosphorylation

of TSC2, the nucleotide-binding state of Rheb is expected

to be controlled by these kinases, which couples, respec-

tively, growth factor and energy signals to the TSC1/TSC2

complex. In support of this notion, insulin has been shown

to regulate the nucleotide-binding states of Rheb through

TSC2 [85, 108, 109]. However, whether Rheb is regulated

by amino acids is controversial. Studies have shown that

starving cells for amino acids reduces the levels of GTP-

bound Rheb, while re-addition of amino acids increases the

levels in the cells, suggesting that Rheb is regulated by

amino acid conditions [109]. In contrast, two other studies

have failed to detect any significant changes in the nucle-

otide-binding states of Rheb upon re-addition of amino

acids to amino acid-starved cells [83, 110]. It is worth

noting that in the latter cases, the GTP/GDP loading assays

were done against overexpressed recombinant Rheb, while

in the first cases, the assays were against endogenous Rheb

or recombinant Rheb expressed at levels similar to those of

the endogenous protein [108, 109]. When overexpressed in

cells, Rheb stays largely in GTP-bound state, and its

activity for mTOR activation becomes insensitive to amino
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acids [104, 108, 111], which raises a possibility that the

overproduced Rheb rendered it unresponsive to changes in

amino acid conditions in these studies. Since there is no

evidence suggesting that the function of the TSC1/TSC2

complex is affected by amino acid conditions. If amino

acids regulate Rheb, they may do so through TSC-inde-

pendent mechanisms. One possibility is that amino acids

control Rheb through a putative GEF of Rheb. Importantly,

while Rheb is largely GTP-bound in tsc2 null cells, starv-

ing the cells for amino acids still results in mTORC1

inactivation, which suggests that amino acids are able to

control mTORC1 activity independent of Rheb [108].

Although this finding does not answer whether Rheb is

regulated by amino acids, it makes the issue less significant

in mTOR regulation.

Overexpression of Rheb has been shown to activate

mTORC1, and the activation is dominant over the effect of

serum or amino acid withdrawal, suggesting that Rheb is a

proximal activator of mTORC1 [80, 82]. Indeed, recom-

binant Rheb has been found to associate with mTOR, and

this association is stimulated by amino acids [112]. How-

ever, the association does not appear to be GTP-dependent.

It has been shown that Rheb mutants devoid of nucleotide-

binding associate more strongly with mTOR than wild-type

or active Rheb. Despite this, the kinase activity of mTOR

has been found to be higher when it is copurified with

recombinant wild-type Rheb than with inactive mutants,

suggesting that the ability of Rheb to stimulate mTOR

relies on its activity. Consistent with the notion, it has been

found that GTP-loaded Rheb, when added to partially

purified mTORC1 in vitro, increases its kinase activity

[113, 114]. These findings strongly support that Rheb is

able to bind to mTOR and stimulate its activity. However,

evidence is lacking showing that Rheb directly binds with

mTOR [112, 114, 115].

FKBP38

FKBP38, also known as FKBP8, belongs to the peptidyl

prolyl cis/trans isomerase (PPIase) family of FK506-

binding protein (FKBP) [116, 117]. Members of this pro-

tein family share a PPIase or PPIase-like domain,

commonly referred to as the FKBP-C domain, and function

as chaperones to facilitate protein folding and functions

[118, 119]. The prominent member is FKBP12, which

consists of entirely the FKBP-C domain and serves as the

receptor for rapamycin [120, 121]. FKBP38 contains a

N-terminally located FKBP-C domain, a tetratricopep-

tide repeat (TPR) motif sitting in the middle of the protein,

a putative Ca2?/calmodulin (CaM)-binding site lying

immediately adjacent to a TM domain at the very C-ter-

minus. The TPR motif is found in other members of the

FKBP family proteins and is believed to be involved in

mediating protein–protein interaction. The Ca2?/CaM-

binding site is responsible for binding with CaM in a Ca2?

dependent manner. The TM domain in FKBP38 is unique

among all the FKBP proteins, which is required for

anchoring FKBP38 to mitochondria, where it functions

[122–125].

FKBP38 has been suggested to be the endogenous

inhibitor of mTOR [126]. In cells, the expression levels of

FKBP38 have been found to correlate inversely with the

activity of mTORC1 [114, 127, 128]. In vitro, recombinant

FKBP38 has been shown to inhibit mTORC1 kinase

activity [126, 128]. FKBP38 inhibits mTORC1 by directly

binding to mTOR. The FKBP-C domain of FKBP38, the

region that is highly similar to FKBP12, is responsible for

the binding. On the other hand, the minimal region in

mTOR that is capable of binding with FKBP38 comprises

amino acids 1967–2191, which embraces the FKBP12–

rapamycin-binding (FRB) domain (amino acids 2015–

2114). These attributes suggest that FKBP38 acts in the

same way as the FKBP12–rapamycin complex to interfere

with mTOR function. In accordance with this notion, it has

been found that FKBP38, like the FKBP12–rapamycin

complex, does not associate with mTORC2 [126].

The interaction of FKBP38 with mTOR is regulated by

Rheb, which binds directly to FKBP38 and prevents it from

interaction with mTOR [126]. Unlike its association with

mTOR, the binding of Rheb with FKBP38 is GTP-depen-

dent. It has been shown that Rheb binds to FKBP38

strongly when loaded with GTP, but weakly when loaded

with GDP in vitro [126]. Rheb interacts with FKBP38

through its effector domain within the switch I region.

Mutations in the effector domain impair the ability of Rheb

to interact with FKBP38 and eliminate the ability of Rheb

to stimulate mTORC1 [129]. This effector domain-medi-

ated and GTP-dependent binding is a common mechanism

for other members of the Ras family of small GTPases to

interact with their targets [102], indicating that Rheb elicits

its signaling activity as do by other members of the Ras

family and that FKBP38 is a bona fide effector of Rheb

[129].

Rheb binds to the FKBP-C domain in FKBP38, the same

region that interacts with mTOR. However, the interaction

of FKBP38 with Rheb and that with mTOR are not

mutually exclusive. A dominant inactive mutant of Rheb,

D60K, has been shown to bind to FKBP38 without dis-

placing mTOR [126]. It is likely that Rheb controls

FKBP38 allosterically in a GTP-dependent manner,

resulting in the release of mTOR from its inhibition.

The binding of Rheb with FKBP38 in cells is regulated

by growth factor and amino acid conditions. In cells

starved for serum or amino acids, Rheb exhibits a weak

binding with FKBP38, which is strongly stimulated upon
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re-addition of the omitted ingredients. Accompanied with

the increased binding of Rheb with FKBP38 is a reduction

in the association of FKBP38 with mTOR. These obser-

vations suggest that growth factors and amino acids control

the association of FKBP38 with mTOR through Rheb,

presumably by modulating its nucleotide-binding states

[126]. The same observations also support a signaling

model in which Rheb activates mTORC1 by antagonizing

the inhibitory effect of FKBP38 on mTOR (Fig. 4). Con-

sistent with this scheme, it has been shown that addition of

recombinant GTP-loaded Rheb blocks the inhibitory effect

of FKBP38 on mTORC1 activity in vitro [128].

Although the model provides a logical explanation for

the role of Rheb and FKBP38 in mTOR regulation, con-

troversies exist. One major concern is that the inhibitory

effect of FKBP38 overexpression on mTORC1 activity has

been found to be modest [114, 127, 130], which has led to

the suggestion that FKBP38 is not the sole mediator of

Rheb in mTORC1 regulation and that Rheb may control

mTORC1 through both FKBP38-dependent and indepen-

dent mechanisms [131].

TCTP

Activity of the Ras family of small GTPases is normally

regulated by their cognate GAPs and nucleotide exchange

factors (GEFs) [102]. With the identification of the TSC1/

TSC2 complex as the GAP for Rheb, the search for its GEF

has drawn extensive attention. Recently, TCTP, a highly

conserved protein in eukaryotes, has been suggested to be

the long-sought GEF for Rheb [106]. TCTP, also called

histamine-releasing factor (HRF), is a key protein in the

process of tumor reversion and well conserved through

phylogeny as a pro-survival, growth-stimulating and anti-

apoptotic factor [132]. Hsu et al. [106] showed that in

Drosophila, dTCTP acts upstream of dS6K, and down-

regulation of dTCTP reduced cell size, cell number and

organ size. Importantly, they found that dTCTP displayed a

guanine nucleotide exchange activity toward Rheb in cells

and in vitro. Consistent with these findings, Dong et al.

[107] demonstrated that human TCTP accelerated its GDP

release in vitro and activated the mTORC1 pathway in

cells. However, the identity of TCTP as Rheb GEF has

been challenged by several other studies in mammalian

cells showing that TCTP is unable to interact with Rheb in

vitro and is largely ineffective in regulating S6K phos-

phorylation in cells [130, 133, 134]. The reason for these

discrepancies is not clear. Further independent studies are

needed to clarify the role of TCTP in controlling mTORC1

signaling.

PRAS40

PRAS40 was originally identified as a proline-rich Akt

substrate that is capable of binding to 14-3-3 upon

phosphorylation by Akt [135]. It was later recognized as a

component of the mTORC1 complex by mass spectrom-

etry analysis of proteins associated with mTOR [136].

PRAS40 has been shown to associate with raptor and

inhibit mTORC1 kinase activity both in vitro and in cells

[58, 113, 137, 138]. Furthermore, the association of

PRAS40 with mTORC1 increases under conditions that

inhibit mTOR signaling, such as nutrient or serum

deprivation or mitochondrial metabolic inhibition [136].

These findings suggest that PRAS40 is an inhibitor of

mTORC1. Intriguingly, while overexpression of PRAS40

inhibits mTORC1 activity, knocking down the expression

of PRAS40 also reduces the insulin-stimulated S6K

phosphorylation. These findings suggest that the role of

PRAS40 in mTORC1 function is not simply inhibitory

[136, 139].

PRAS40 contains a TOS motif that is involved in

binding with raptor. This motif is commonly found in

mTORC1 substrates, such as S6K and 4E-BP1, indicating

that PRAS40 is a substrate of mTORC1. Hence, it has been

suggested that PRAS40 inhibits mTORC1-directed phos-

phorylation of S6K and 4E-BP1 by competing with these

proteins for raptor binding [137, 138]. PRAS40 is phos-

phorylated by mTORC1 at several sites, including Ser183,

Ser212 and Ser221 [138–140]. Phosphorylation at Ser183

Fig. 4 A model for the role of FKBP38 in mTORC1 regulation.

FKBP38 inhibits mTOR activity through direct binding to mTOR. In

GTP-bound form, Rheb interacts with FKBP38 and liberates

mTORC1 for activation. The action of Rheb is terminated by the

TSC1/TSC2 complex, which promotes the hydrolysis of bounded

GTP to GDP. Reloading of Rheb with GTP by a putative guanine

exchange factor repeats the cycle
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and Ser221 appears to reduce the association of PRAS40

with raptor and relieve its inhibition on mTORC1 [138,

139], which may constitute a positive feed-forward

mechanism for mTORC1 activation, such that a suboptimal

mTORC1 signaling activity potentiates its further activa-

tion by reducing PRAS40 association.

PRAS40 is also phosphorylated at Thr246 by Akt in

response to insulin stimulation. The Akt-directed phos-

phorylation creates a docking site for 14-3-3, which binds

to PRAS40 and interferes with its association with

mTORC1 [113, 137]. This Akt-PRAS40 connection counts

for the second mechanism, in addition to Akt-TSC2-Rheb

signaling axis, whereby Akt activates mTORC1 and

explains why in Drosophila Akt is able to maintain a

normal development in the absence of TSC2 [141]. In

addition, Thr246 has also been found to be phosphorylated

by PIM1, a serine/threonine kinase that has diverse

biological roles in cell survival, proliferation and differ-

entiation [142]. Like the Akt-directed phosphorylation, the

phosphorylation by PIM1 also reduces the association of

PRAS40 with mTORC1 and increases the mTORC1-

directed phosphorylation of 4E-BP1 and S6K [143].

IKK

Inhibitor of nuclear factor jB (NFjB) kinase (IKK) com-

plex is a key component in the tumor necrosis factor a
(TNFa)/NF-jB signaling pathway that is involved in sys-

temic inflammation [144]. It consists of three tightly

associated subunits, IKKa, IKKb and IKKc, of which

IKKa and IKKb serve as the catalytic subunits and IKKc is

the regulatory subunit [145]. IKK is activated by proin-

flammatory cytokines, such as TNFa and lipopoly-

saccharide (LPS) [146]. In addition to activation of IKK,

TNFa has been known to stimulate mTORC1 activity

[147]. However, the underlying mechanism remained

unclear until a recent finding that IKKb associates with

TSC1 [148]. Lee et al. [148] have found that in response to

TNFa treatment, IKKb interacts with TSC1 and phos-

phorylates it at Ser487 and Ser511. The phosphorylation

represses the function of the TSC1/TSC2 complex, result-

ing in mTORC1 activation. In addition, the IKK-directed

phosphorylation has been found to correlate with

TNFa-induced VEGF production in multiple tumor

types, indicating that TNFa promotes VEGF expression

and angiogenesis through IKK-dependent mTORC1

activation.

Moreover, studies from Baldwin’s [149, 150] group

have revealed an association between IKKa and mTORC1

in PTEN-deficient cancer cells. The association is regulated

by Akt and is required for Akt-stimulated mTORC1 acti-

vation. Overexpression of IKKa has been found to enhance

mTORC1 kinase activity in vitro, suggesting that IKKa is a

positive regulator of mTORC1. It has thus been proposed

that IKKa may activate mTORC1 by phosphorylating

mTOR or components in mTORC1.

Phosphatidic acid and phospholipase D

Phosphatidic acid is a phospholipid metabolite that serves

as a second messenger in mitogenic signaling pathways

[151–153]. An elevated PA level in cells, either by serum

stimulation or treatment with exogenous PA, results in an

increase in mTORC1 activity. In contrast, inhibition of PA

accumulation by treatment with 1-butanol represses

mTORC1 activity [154]. The action of PA on mTORC1 is

mediated through a direct binding of PA to mTOR to a

region within the FKBP12-rapamcyin binding (FRB)

domain. Residue Arg2109 in this domain has been found to

be critical for the binding. Mutations at this site reduce the

interaction of PA with mTOR and repress mTORC1 sig-

naling [154]. How binding of PA leads to mTORC1

activation is not fully understood. Direct activation of

mTORC1 kinase activity has not been observed. However,

two mechanisms have been suggested that may mediate the

effect of PA on mTORC1. Sun et al. recently reported that

PA was able to reduce the association of FKBP38 with

mTOR both in vitro and in cells, which suggests that PA

may activate mTORC1 by alleviating the inhibitory of

FKBP38 [131, 155]. On the other hand, Toschi et al. [156]

showed that suppression of PA production blocked the

association of mTOR with raptor, suggesting that PA

binding is required for the integrity of mTORC1. These

two mechanisms are not necessarily mutually exclusive.

Given the role of FKBP38 in mTORC1 regulation, it is

possible that an enhanced binding of FKBP38 with mTOR

upon PA depletion alters the association of mTOR with

raptor.

Mitogen and growth factor stimulate PA production by

activating phospholipase D (PLD), which catalyzes the

hydrolysis of membrane phosphatidylcholine to produce

PA and choline [152]. In mammalian cells, two isoforms of

PLD, PLD1 and PLD2, have been identified. Consistent

with their role in PA production, overexpression of either

protein has been shown to activate mTORC1 activity and

knockdown of their expression to reduce mitogen-stimu-

lated mTORC1 activity [32, 157–160]. The activity of

PLD1 in cells is regulated by protein kinase C and several

small GTPases, including Arf, Cdc42, Rac1 and RhoA

[161]. Cdc42 and RhoA have been shown to interact

directly with PLD1 and stimulate its activity. Interestingly,

while overexpression of Cdc42 increases mTORC1 activ-

ity, overexpression of RhoA does not [162]. The reason for

this dilemma is not clear. However, we have recently
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observed that RhoA is able to associate with mTORC1 and

downregulates its kinase activity (Y. Lai and Y. Jiang,

unpublished observation), suggesting that RhoA, in addi-

tion to stimulating PA production through PLD1 activation,

may have a negative effect that directly acts on mTORC1.

In addition to the Rho family of small GTPases, PLD1 has

been found to be activated by Rheb. Sun et al. [160] have

shown that Rheb binds to PLD1 in a GTP-dependent

manner and stimulates its activity. Downregulation of

Rheb, either by siRNA knockdown or TSC2 overexpres-

sion, reduces mitogen-stimulated PLD1 activation.

Importantly, downregulation of PLD1 or inhibition of PA

production blocks Rheb-stimulated mTORC1 activation,

suggesting that the activation effect of Rheb on mTORC1

requires PLD1-dependent PA production [160]. In addition

to PA production, PLD2 may also regulate mTORC1

through physical interaction. PLD2 has been found to

interact with raptor, and the interaction appears to be

important for PLD2-stimulated mTORC1 activation [158].

The Rag small GTPases

The Rag small GTPases are a group of unique small

GTPases remotely related to Ras [163, 164]. Four members

of this type of GTPase have been identified in mammalian

cells, including RagA, RagB, RagC and RagD [164, 165].

RagA and RagB are closely related. RagC and RagD differ

significantly from RagA and RagB, but share high simi-

larity with each other. The Rag small GTPases function as

heterodimers containing one subunit from either RagA or

RagB and the other from either RagC or RagD [165–167].

Like other small GTPases, the activity of the Rag proteins

is regulated by their nucleotide-binding states. However, a

functional configuration of the dimer requires a GTP-bound

RagA or RagB in complex with a GDP-bound RagC

or RagD [168]. The activity of the complex is believed to

be determined mainly by the GTP-bound subunit, but its

stability requires the other subunit in GDP-bound state

[169].

In mammalian cells, the Rag small GTPases have

recently been found to associate with mTORC1 as hetero-

dimers [168]. It has been found that GTP-bound RagA or

RagB (RagA/BGTP), when complex with GDP-bound RagC

or RagD (RagC/DGDP), associates with mTORC1, likely

through a direct binding to raptor. The association is regu-

lated by amino acid conditions; re-addition of amino acids

to amino acid-starved cells stimulates the association. Since

amino acids also stimulate the GTP-loading of RagA/B, it is

likely that amino acids promote the association by con-

trolling the GTP-loading of RagA/B. Importantly, in cells

expressing the RagA/BGTP–RagC/DGDP heterodimer, the

mTORC1 activity becomes insensitive to deprivation of

amino acids, but remains responsive to other conditions

known to regulate mTORC1, including oxidative stress,

mitochondrial inhibition, serum and energy deprivation

[168]. This observation suggests that the Rag GTPases

mediates mTORC1 activity in response exclusively to

amino acid availability and that expression of RagA/BGTP

mimics amino acids sufficiency. However, despite the

ability to activate mTORC1 in cells, the Rag heterodimers

are ineffective in stimulating mTORC1 kinase activity in

vitro, suggesting that the GTPases controls mTORC1

activity by means other than increasing its kinase activity

[168].

In amino acid-starved cells, mTOR is distributed

throughout cytoplasm on punctate membrane structures

resembling endosomal compartments [168]. Upon restim-

ulation with amino acids, mTOR, as well as raptor,

accumulate to late endosomal or lysosomal compartments

that are enriched with Rab7. This relocation appears to be

dependent on the Rag small GTPases, since it does not

occur in cells when expression of the Rag proteins is

downregulated by siRNA [168]. Interestingly, it has been

previously shown that the Rab7-enriched compartments are

also the place where Rheb resides [170, 171]. This colo-

calization thus promotes a model which explains the role of

amino acids and Rag proteins in mTORC1 regulation. In

this model, amino acids stimulate the activity of the Rag

GTPases, which in turn binds to mTORC1 and recruits it to

late endosomal and lysosomal compartments, where it is

activated by Rheb (Fig. 5). Accordingly, it can be envis-

aged that the role of growth factors in mTORC1 activation

is to activate Rheb and that of amino acids is to present

mTORC1 to an activated Rheb. This explains why

mTORC1 cannot be activated in the absence of either

amino acids or growth factors.

Fig. 5 A model for the role of the Rag GTPases in mTORC1

regulation. In cells starved for amino acids, mTORC1 resides on

membrane structures distributed throughout the cytoplasm. Re-

stimulation with amino acids activates the heterodimers of the Rag

small GTPases, which causes mTORC1 redistribution to Rab7-

enriched endosomal compartments, where it is activated by Rheb
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hVps34 and calcium

Vps34 was identified in yeast as an unconventional (Class

III) PI3-K that converts phosphatidylinositol to phospha-

tidylinositol 3-phosphate (PI3P), a bioactive messenger

[172]. It is structurally highly similar to the catalytic sub-

unit of classic (Class I) PI3-K [the 110-kilodalton (p110)

subunit of PI 3-kinase] [173]. In yeast, Vps34 is involved in

protein sorting to the yeast lysosome-like vacuole [174].

Nobukuni et al. [111] observed that wortmanin, a potent

inhibitor of PI3-K, prevented amino acid-stimulated

mTORC1 activation. However, downregulation of class I

PI3-K by siRNA, while blocks insulin-induced mTORC1

activation, had no effect on amino acid-stimulated

mTORC1 activation. This observation suggests that the

effect of wortmanin on amino acid-induced mTORC1

activation is mediated by another PI3-K. In support of this

notion, it was found that addition of amino acids to amino

acid-starved cells induced a sharp increase in the intra-

cellular levels of PI3P, which coincided with an increase in

the kinase activity of human Vps34 (hVps34), supporting a

role for hVps34 in amino acid-mediated mTORC1 activa-

tion [111]. Consistent with this notion, overexpression of

hVps34 has been shown to activate mTORC1, while

downregulation of hVps34, either by siRNA or antibodies

specifically against hVps34, to reduce amino acid-induced

mTORC1 activation. In addition, siRNA knockdown of

hVps15, a protein kinase that activates hVps34, also

inhibits amino acid-induced mTORC1 activation [111,

175]. These studies demonstrate that hVpd34 mediates the

effect of amino acids for mTORC1 activation.

How does hVps34 activate mTORC1 in response to

amino acid stimulation? Gulati et al. [176] showed that

amino acid-stimulated mTORC1 activation was accompa-

nied by a rapid rise in intracellular [Ca2?]. Treating cells

with the endoplasmic reticulum Ca2?-ATPase inhibitor

thapsigargin (Tg), which increased [Ca2?] in cytosol, was

able to activate mTORC1 in the absence of amino acids.

Conversely, depletion of Ca2? suppressed amino acid-

induced mTORC1 activation. These results suggest that a

rise in [Ca2?] is required and sufficient for mTORC1

activation. Interestingly, the Ca2?-induced mTORC1 acti-

vation is attenuated when hVp34 expression levels are

reduced by siRNA knockdown, suggesting that Ca2?

mediated mTORC1 activation requires hVps34 [176].

Since hVps34 contains a putative Ca2?/CaM binding

domain, it is possible that Ca2? and CaM may bind to

hVps34 and regulate its activity. Indeed, Gulati et al. [176]

showed that CaM bound directly to hVps34 in the presence

of Ca2?, and the binding of CaM was required for the lipid

kinase activity of hVps34. Collectively, these results sup-

port a model whereby amino acids stimulate mTORC1

activity through Ca2?-dependent activation of hVps34,

which results in an increase in PI3P in cells. However, it

remains to be determined how PI3P activates mTORC1. In

this regard, it is interesting to note that hVps34 is co-

localized with Rab7 on late endosomal compartments,

where the Rag small GTPases bring mTORC1 for activa-

tion by Rheb [168, 177]. A potential connection among

PI3P, Rheb and Rag GTPases is thus worth exploring.

Conclusion

Recent advances in mTOR study have uncovered a

complex regulatory network that governs mTOR activity.

As discussed above, mTOR is regulated at multiple lev-

els, including direct phosphorylation, oligomerization and

interactions with its regulators, which in turn are con-

trolled by an array of signaling cascades that are

responsive to changes in intracellular and environmental

conditions. Such a complex regulation network ensures a

fine tuning of mTOR activity in response to numerous

conditions and fits the pivotal role of mTOR in cell

growth control.

Despite these advances, one important level of regula-

tion remains largely unexplored, that is, the spatial control.

mTOR has been found to associate with various intracel-

lular compartments, including endosomal membranes, the

Golgi complex, mitochondria and shuttling between cyto-

plasm and nucleus [67, 178–182]. This wide distribution

pattern of mTOR suggests that localization is likely to play

a critical role in mTOR function. This notion is highlighted

by the recent finding that the Rag small GTPases control

mTORC1 by targeting it to late endosomal compartments

for activation by Rheb [168]. Other issues pertaining to

spatial control of mTOR include how mTOR function is

affected by its localization and whether mTOR localized at

various places is regulated differently. In this regard, the

use of S6K and 4E-BP1 phosphorylation as a surrogate for

mTORC1 activity carries a risk of overlooking regulatory

mechanisms that control mTORC1 for functions other than

translation. In future studies, incorporation of spatial con-

trol in mTOR regulation may be the key for answering the

fundamental question in mTOR study, that is, how does

mTOR integrate signals of different origins to control cell

growth?
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