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Social transmission of information is vital for many group-living animals, allowing 

coordination of motion and effective response to complex environments. Revealing the 

interaction networks underlying information flow within these groups is a central challenge 

[1]. Previous work has modeled interactions between individuals based directly on their 

relative spatial positions: each individual is considered to interact with all neighbors within a 

fixed distance (metric range [2]), a fixed number of nearest neighbors (topological range 

[3]), a ‘shell’ of near neighbors (Voronoi range [4]), or some combination (Figure 1A). 

However, conclusive evidence to support these assumptions is lacking. Here, we employ a 

novel approach that considers individual movement decisions to be based explicitly on the 

sensory information available to the organism. In other words, we consider that while spatial 

relations do inform interactions between individuals, they do so indirectly, through 

individuals’ detection of sensory cues. We reconstruct computationally the visual field of 

each individual throughout experiments designed to investigate information propagation 

within fish schools (golden shiners, Notemigonus crysoleucas). Explicitly considering visual 

sensing allows us to more accurately predict the propagation of behavioral change in these 

groups during leadership events. Furthermore, we find that structural properties of visual 

interaction networks differ markedly from those of metric and topological counterparts, 

suggesting that previous assumptions may not appropriately reflect information flow in 

animal groups.

Often, individuals with pertinent information may guide group motion, allowing all animals 

within a group to take advantage of information held by only a subset [5]. Such leadership 

may be crucial, particularly for foraging and predator detection [6]. In our experiments, we 

initiated leadership in fish schools by placing a known number of ‘informed’ fish (trained to 

move toward a stimulus) within a larger group of ‘uninformed’ (untrained) fish. By 
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controlling when and where the stimulus was presented, we created repeatable ‘leadership 

events’ whereby information transfer was essential for group motion towards the target. We 

tracked (at 30 frames per second) the body position and posture of every fish (in groups of 

70) during 25 leadership events. From this information, we reconstructed the trajectory and 

visual field of each fish over time (Supplemental information). We then used these 

sequences to test hypotheses about the nature of the interaction networks within groups. 

During a leadership event, fish exhibit a clear acceleration toward the target (Supplemental 

information), allowing us to define a discrete behavioral ‘response’ time for each individual. 

These responses propagate through the group in a wave (Figure 1B). Although the nature of 

these waves varies among trials (Supplemental information), in general they spread out 

spatially from the first individual to respond (LMM: p < 0.0001), suggesting a social 

contagion effect. Overall, informed individuals respond earlier than do uninformed (LMM: p 

< 0.0001), and occupy frontal positions in the group (permutation test: p < 0.001; 

Supplemental information, [6]).

We compare different explanatory models for the spread of behavioral responses. Models 

have a common structure to ensure fair comparison. Each predicts the probability that each 

uninformed fish will respond at each point in time:

(1)

where s depends on the assumptions of the model. For all social models, we assume that s 

depends on the fraction of an individual’s neighbors that have already responded, as 

supported by our analysis (Supplemental information). However, each social model 

specifies a different interaction range, based on metric, topological, Voronoi, or specifically 

visual assumptions (Figure 1A), allowing us to compare directly the support for these 

different interaction networks. Whereas different metric and topological ranges depend on 

distance, and number of neighbors, respectively, for visual ranges the structure depends on 

occlusion, as well as a ‘minimal visual threshold’ area subtended on the retina. We also 

compare these social models to nonsocial models (based on target distance or visibility) and 

to a null model assuming a constant response probability (see Supplemental Information for 

full model descriptions.)

Following the methodology of [7], we compare the validity of these different models by 

computing the marginal likelihood of the data conditioned on each model, with higher 

values indicating more empirical support (see Supplemental information). Our results 

(Figure 1C) confirm that behavioral responses are socially contagious, and spread locally. A 

comparison of different interaction ranges indicates that both Voronoi and visual models 

outperform metric and topological models, with the visual model best explaining the data. 

Visual mediation of interactions is also consistent with the lack of evidence for 

hydrodynamic interactions found in this, and other small freshwater, species [8].

Through network analysis, we reveal the broader consequences of different interaction 

ranges. From our data, we generate directed, time-varying interaction networks, as specified 

by each model (Figure 1A). Different parameterizations result from adjusting the interaction 
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radius, number of nearest neighbors, or visual threshold. We compare these networks using 

three structural measurements relevant to information transmission: average degree (number 

of neighbors), network efficiency (potential speed of information transmission through the 

network), aurend network transitivity (how often individuals who share a neighbor are also 

neighbors themselves). Full definitions are given in Supplemental information. For the same 

average degree, visual networks show similar efficiency (Figure 1D), but substantially lower 

transitivity (Figure 1E) than their metric and topological counterparts. Transitivity, widely 

discussed in the networks literature, reflects the redundancy of information among 

neighbors, as neighbors connected to one another are more likely to provide the same 

information [9]. Based on the observed difference in transitivity, we would expect that more 

novel information is contributed per neighbor in the visual versus metric and topological 

networks. Voronoi models may more closely approximate visual ones, as their transitivity is 

similar (for a certain average degree; Figure 1E), and they are second only to visual models 

in empirical support (Figure 1C).

Our results demonstrate that metric and topological networks, commonly assumed to 

represent interactions in animal groups [2,3], do not reflect the visual information employed 

when making movement decisions, and may overestimate the local redundancy of 

information in groups. Explicitly considering the sensory basis of group decision-making 

[10] represents a new perspective that better integrates our understanding of individual and 

collective behavior.
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Figure 1. 
The spread of information through fish schools.

(A) Different models for the neighbors with whom a given fish interacts, shown for one 

example image from our dataset. Metric: all individuals within a certain distance. 

Topological: a fixed number of nearest neighbors. Voronoi: those individuals sharing a 

boundary in a Voronoi tessellation of the group. Visual: all individuals that occupy an 

angular area on the retina of the focal fish that is greater than a threshold value. (B) A wave 

of behavioral responses spreads through the group during leadership events. An image from 

the end of a leadership event is shown. Superimposed on this image, each filled circle marks 

the location of a single fish when it responded, and colors represent the time of that 

response. Black borders around circles denote informed (trained) fish. (C) Empirical support 

for different models of information transfer. Higher marginal likelihood indicates more 

support (note the log scale). Marginal likelihoods of each model (computed via numerical 

integration) represent the product of the likelihoods over all uninformed individuals and all 

trials. Plotted values are the mean of 10 runs, each using 10,000 random samples from 

parameter space. Standard deviations of these estimates are smaller than data markers. (D) 

Network efficiency (the speed with which information can flow through the network) vs. 

average degree (number of neighbors) for the different models of interaction networks. (E) 

Network transitivity (the extent to which individuals who share a neighbor are neighbors 

themselves) vs. average degree for the different interaction networks. Higher transitivity 

indicates a greater likelihood of one’s neighbors being mutually connected, and hence a 

greater level of redundant information available to each individual. Colors and marker 

shapes are as given in panel A. For each data point, network measurements represent mean 

values taken over 250 networks randomly sampled from our data (10 samples from each 

leadership event). Different parameterizations are generated by adjusting the interaction 

radius, number of nearest neighbors, or visual threshold. Because of its inherently fixed 

interaction range, only one data point is shown for the Voronoi model. Shaded areas show 

the standard deviation along the first principal component of the error distribution. Non-
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filled markers indicate the average degree associated with the best fit to the data. Full 

definitions of network measurements are given in Supplemental information.
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