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Abstract

Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking 

behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-

limbic neural circuit have been implicated in underlying the negative behavioral consequences of 

chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol 

vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure 

and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in 

prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of 

CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and 

whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic 

medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala 

(lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and 

vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed 

controls, and alterations in neuronal function were observed in all brain structures examined, 

including several distinct differences between subregions within each structure. Chronic ethanol 
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exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic 

drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. 

This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-

limbic brain regions, suggests that there may be complex interactions between these regions in the 

regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future 

examination of projection-specific effects of ethanol in cortico-limbic circuitry.
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1. Introduction

Alcoholism is a chronic disease that has a high degree of comorbidity with multiple 

neuropsychiatric diseases, particularly those related to negative affect and anxiety. Chronic 

alcohol exposure to intoxication produces withdrawal-induced anxiety that is linked with 

craving for alcohol and increased rates of alcohol drinking (Becker, 2013; Fatseas et al., 

2015; Heilig and Koob, 2007; Koob, 2003a; Roberts et al., 2000). This feed-forward cycle 

of alcohol exposure and withdrawal leads to alcohol dependence and co-morbid anxiety, 

which may be mediated by aberrant plasticity in brain regions that regulate emotional and 

reward-seeking behaviors (Burgos-Robles et al., 2013; Everitt et al., 2003; Feder et al., 

2009; Herman, 2012; Pleil et al., 2015). In particular, limbic brain regions, including the 

central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) in the 

extended amygdala, and cortical regions such as the prefrontal cortex (PFC), have 

previously been shown to mediate alcohol drinking, negative affect, and anxiety behaviors 

in humans and rodents (e.g., Bogg et al., 2012; Davis et al., 1997; Drevets, 2001; Gass et al., 

2014; Johnstone et al., 2007; Kissler et al., 2014; Lowery-Gionta et al., 2012; Phillips et al., 

2003; Pleil et al., 2015; Ressler and Mayberg, 2007; Sailer et al., 2008; Sparrow et al., 

2012). Because the CeA and BNST are primary output structures of the extended amygdala, 

projecting to downstream brain regions that directly control stress and reward behaviors, and 

the PFC provides top-down modulation of their function during these behaviors, they may 

be critical sites of neuronal and synaptic adaptations of chronic alcohol exposure that 

contribute to anxiety and other long-term negative behavioral consequences.

Chronic intermittent ethanol vapor exposure (CIE) is a well-characterized mouse model of 

alcohol exposure that elicits an abstinence-induced escalation in voluntary ethanol 

consumption similar to that observed in human alcoholics (Becker, 2013; Becker and Lopez, 

2004; Becker and Ron, 2014; Carrara-Nascimento et al., 2013; Crabbe et al., 2014; DePoy et 

al., 2013; Griffin, 2014; Griffin et al., 2009; Kissler et al., 2014; Lopez and Becker, 2005; 

Lopez et al., 2014; Repunte-Canonigo et al., 2014), as well as deficiencies in several other 

learned and affective behaviors, including attention set-shifting (Kroener et al., 2012), fear 

extinction (Holmes et al., 2012), reversal learning (Badanich et al., 2011), and anxiety and 

negative affect (Lowery-Gionta et al., 2014). These behaviors have been shown to be 

dependent on the PFC, CeA, and BNST, and withdrawal from CIE in mice produces 

alterations in several aspects of neural function in these regions. For example, altered 
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endocannabanoid signaling (Pava & Woodward, 2014), NMDA receptor function and 

plasticity (Holmes et al., 2012; Kroener et al., 2012), and intracellular GABAergic 

neuroactive steroid levels (Maldonado-Devincci et al., 2014), have been described in the 

PFC. In addition, functional alterations reported during CIE withdrawal in the CeA and 

BNST include NMDA receptor expression and function (Kash et al., 2009), peptide 

signaling (Kash, 2012; Pleil et al., 2015), and synaptic transmission (Kash et al., 2009; 

Repunte-Canonigo et al., 2014; Silberman et al., 2013; Wills et al., 2012). In addition, 

extensive behavioral and neurochemical changes associated with withdrawal from chronic 

ethanol exposure in rats using similar CIE paradigms have been reported and reviewed 

elsewhere (e.g., Gilpin and Roberto, 2012; Heilig and Koob, 2007; Meinhardt and Sommer, 

2015; Roberto et al., 2012).

While previous studies have characterized the effects of CIE withdrawal on specific 

neuronal or synaptic functions within individual brain regions of mice, very little research 

has examined the functional alterations in basal synaptic transmission or neuronal 

excitability across discrete brain regions that differentially govern ethanol-related outcomes. 

The goal of the current study was to provide a comprehensive characterization of alterations 

in basal neuronal function across brain regions shown to be important in regulating anxiety 

associated with withdrawal from chronic ethanol exposure, in order to provide a basis for 

future research and for the development of potential therapeutic approaches to treating 

alcoholism. Specifically, we measured the synaptic function and intrinsic excitability of 

neurons in the prelimbic and infralimbic PFC (PLC and ILC, respectively), lateral and 

medial CeA (lCeA and mCeA, respectively), and dorsal and ventral BNST (dBNST and 

vBNST, respectively) of C57BL/6J mice 48 hr following four cycles of CIE using slice 

electrophysiology, a time point we show is associated with increased anxietylike behavior in 

the marble burying test.

2. Materials and methods

2.1 Subjects

Adult male C57BL/6J mice (6–9 weeks old, Jackson Laboratories) were group-housed in a 

colony room with 12:12 hr light-dark cycle with lights on at 7 a.m. Mice had ad libitum 

access to rodent chow and water. All procedures were approved by the Institutional Animal 

Care and Use Committee of the University of North Carolina at Chapel Hill and performed 

in accordance with the National Institutes of Health guide for the care and use of laboratory 

animals.

2.2 Chronic intermittent ethanol vapor exposure paradigm

Chronic intermittent ethanol vapor exposure (CIE) was carried out as previously described 

by our group and others (Becker and Lopez, 2004; Kreifeldt et al., 2013; Lopez and Becker, 

2005; Lowery-Gionta et al., 2014; Maldonado-Devincci et al., 2014). Briefly, mice were 

injected with pyrazole (1mmol/kg, i.p.; Sigma, St. Louis, MO) combined with saline for air-

exposed controls (CON, n=17) or ethanol (1.6 g/kg) for ethanol-exposed (EtOH, n=17) mice 

and placed in cages inserted into the ethanol vapor chamber (La Jolla Alcohol Research, 

Inc., La Jolla, CA). Half of the cages were exposed to ethanol vapor and the other half to air 
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to serve as control subjects. Mice remained in the vapor chamber for 16 hrs, from 5 p.m. to 9 

a.m., daily for four “on” days in a row, constituting one cycle of CIE exposure. Mice 

underwent four cycles of this CIE exposure, each separated by three “off” days of abstinence 

in which they remained in their home cages (Figure 1A). This procedure has previously been 

shown to induce dramatic changes in behavior associated with alcohol abuse (e.g., Becker, 

2013; Becker and Lopez, 2004; Holmes et al., 2012). BECs of ethanol-exposed mice were 

obtained immediately after removal from the vapor exposure periodically across all four 

cycles of CIE. The submandibular vein was quickly punctured and blood samples were 

collected in tubes lined with lithium heparin (Becton Dickinson & Company, Franklin 

Lakes, NJ). For BEC measurement, standards and samples were prepared using a 

commercially available alcohol dehydrogenase assay (Carolina Liquid Chemistries 

Corporation, Brea, CA) and loaded into a 96 well pre-read plate. The plate was placed into a 

reader at the end of the assay and analyzed with SoftMax Pro Software, Version 5 

(Molecular Devices Corporation, Sunnyvale, CA). Air ethanol content was monitored in all 

cages throughout the exposure to ensure that there was no ethanol vapor in the air control 

cages and that ethanol vapor levels in the ethanol-exposed cages consistently had ethanol 

concentrations of 19-22 mg/l of air and produced and maintained blood ethanol 

concentrations (BECs) of 150-250 mg/dl by altering the ethanol dripping rate.

2.3 Marble Burying Test

The marble burying test (MBT) was carried out using procedures modified from previous 

studies (Amodeo et al., 2012; Perez and De Biasi, 2015; Thomas et al., 2009). Each mouse 

was removed from its home cage and placed in a polycarbonate testing chamber lined with 

3.5 cm of cob bedding (The Andersons, Inc., Maumee, OH) and left for 120 min to 

habituate. The mouse was briefly removed and placed in a holding chamber while 20 clean, 

black glass marbles (14mm, Rainbow Turtle, Portland, OR) were placed in the testing 

chamber in a 5×4 configuration. The mouse was returned to the testing chamber for a 30 min 

testing session without food or water access and then returned to its home cage. The number 

of marbles buried ≥75% was assessed and used for statistical analysis. Increased numbers of 

marbles buried is indicative of an increase in anxiety-like behavior.

2.4 Slice electrophysiology

Whole-cell voltage-clamp and current-clamp electrophysiological recordings were 

performed in dorsal and ventral BNST, lateral and medial CeA, and prelimbic and 

infralimbic regions of the PFC from acutely-prepared coronal brain slices according to 

landmarks based on the Allen Mouse Brain Atlas (Figure 1B-D), as previously described 

(Holmes et al., 2012; Li et al., 2012; McCall et al., 2013; Pleil et al., 2012; Pleil et al., 2015). 

Forty-eight hrs after the last ethanol vapor (or air control) exposure, mice were deeply 

anesthetized with isofluorane and decapitated. Brains were rapidly removed and placed in 

ice-cold sucrose-artificial cerebrospinal fluid (aCSF) containing (in mM) 194 sucrose, 20 

NaCl, 4.4 KCl, 2 CaCl2, 1 MgCl2, 1.2 NaH2PO4, 10.0 glucose, and 26.0 NaHCO3 and 

saturated with 95% O2/5% CO2. Coronal slices 300 μm in thickness containing the PFC, 

BNST, and CeA were sectioned on a Leica VT1200 vibratome and stored in a holding 

chamber with 30°C, oxygenated aCSF containing (in mM) 124 NaCl, 4.4 KCl, 2 CaCl2, 1.2 

MgSO4, 1 NaH2PO4, 10.0 glucose, and 26.0 NaHCO3. Slices were transferred to a 
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submerged recording chamber (Warner Instruments, Hamden, CT), where they were 

perfused with heated, oxygenated aCSF at a rate of approximately 2 ml/min and allowed to 

equilibrate for 30 min before electrophysiological recordings.

Recording electrodes (3–5 MΩ) were pulled from thin-walled borosilicate glass capillaries 

with a Flaming-Brown Micropipette Puller (Sutter Instruments, Novato, CA). Recordings 

were performed in pyramidal neurons of layer 2/3 of the prefrontal cortical subregions; due 

to the multitude of neuron types expressed in the extended amygdala regions in addition to 

the heterogeneous nature of membrane properties within defined neuronal populations in 

these regions (e.g., Silberman et al., 2013), specific subtypes of neurons we recorded from 

could not be identified. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, 

respectively) were measured in voltage-clamp mode using electrodes filled with an 

intracellular recording solution containing (in mM): 135 Cs-methanesulfonate, 10 KCl, 10 

HEPES, 1 MgCl2, 0.2 EGTA, 4 Mg-ATP, 0.3 GTP, 20 phosphocreatine. Lidocaine N-ethyl 

bromide (1 mg/ml) was included in the intracellular solution to block postsynaptic sodium 

currents. Neurons were held at -55 mV to isolate glutamatergic synaptic transmission and 

record spontaneous EPSCs (sEPSCs) or + 10 mV to isolate GABAergic synaptic 

transmission and record spontaneous IPSCs (sIPSCs) within individual neurons. 

Tetrodotoxin (TTX, 500 nM) was included in the bath aCSF to eliminate action potential-

dependent spontaneous neurotransmission when recording miniature EPSCs (mEPSCs) and 

IPSCs (mIPSCs). Electrophysiological recordings of synaptic transmission were used to 

determine PSC frequency and amplitude, as well as to calculate synaptic drive ratios for 

spontaneous and miniature currents using the following equation: (EPSC frequency × 

amplitude) / (IPSC frequency × amplitude).

Intrinsic neuronal excitability and current-injected firing was measured in current-clamp 

mode using electrodes filled with an intracellular recording solution containing (in mM) 135 

K-Gluc, 5 NaCl, 2 MgCl2, 10 HEPES, 0.6 EGTA, 4 Na2ATP, and 0.4 Na2GTP. Resting 

membrane potential (RMP) and current-injected firing of action potentials (using current 

ramps and steps) were evaluated in current-clamp configuration, including 1) the rheobase 

(defined as the minimum amount of current required to fire an action potential using a 

current ramp), 2) the action potential threshold (APT), defined as the membrane potential at 

which the first action potential fired, and 3) the relationship between increasing steps of 

current and the number of action potentials fired using a voltage-current plot protocol (V-I 

plot). These current-injection protocols were performed at both RMP and at a common 

membrane potential of -70 mV. Additionally, the voltage change produced by a 10 pA 

hyperpolarizing step from −70 mV was used to calculate input resistance (Res) of all 

individual neurons using the formula resistance = voltage/current (Res =V/I). Signals were 

digitized at 10 kHz and filtered at 3 kHz using a Multiclamp 700B amplifier and analyzed 

using Clampfit 10.3 software (Molecular Devices, Sunnyvale, CA). For all measures, 

recordings were performed in a maximum of two neurons per subregion, per mouse, and n's 

reported reflect the number of neurons for each measure.
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2.5 Statistical Analysis

Appropriate statistical analyses with α = 0.05 were conducted to MBT and slice 

electrophysiology measures between EtOH and CON mice. Outliers identified by Grubb's 

outlier test were excluded from statistical analyses. Two-way repeated-measures ANOVAs 

were used to compare the relationship between 10 pA steps of current injection and the 

number of action potentials fired from V-I plots between CON and EtOH mice. Differences 

between groups for all other dependent measures of intrinsic excitability and synaptic 

transmission, as well as the number of marbles buried in the MBT, were evaluated using 

unpaired, two-tailed t-tests. All data are reported as mean ± standard error of the mean 

(SEM), and all electrophysiological results are presented in Summary Tables 1 and 2.

3. Results

3.1 Marble Burying Test

We conducted the marble burying test 48 hr after the final ethanol vapor exposure to assess 

the effects of chronic ethanol exposure and withdrawal on anxiety-like behavior (Amodeo et 

al., 2012; Perez and De Biasi, 2015; Thomas et al., 2009). EtOH-exposed mice buried 

significantly more marbles than air-exposed CON mice (Figure 2; t(10) = 3.673, p = 0.004), 

consistent with prior reports that chronic ethanol exposure procedures induce withdrawal-

associated anxiety (Lowery-Gionta et al., 2015; Perez and De Biasi, 2015), a behavioral 

state previously shown to be mediated by the function of the cortical and amygdalar brain 

regions in which we performed slice electrophysiological recordings.

3.2 Infralimbic PFC

We performed whole-cell voltage-clamp recordings from neurons in subregions of the PFC, 

BNST, and CeA that we hypothesized were involved in mediating the increased anxiety 

observed in the MBT and previously reported behavioral alterations following CIE. Results 

from electrophysiological recordings of synaptic transmission in layer 2/3 pyramidal 

neurons showed that CIE had effects on several aspects of synaptic transmission in the ILC. 

Neurons from EtOH mice had lower sIPSC, but not sEPSC, frequency than CON mice 

(Figure 3A,B; sEPSC: p > 0.20, sIPSC: t(16) = 2.45, p = 0.026), and larger sEPSC, but not 

sIPSC, amplitude than CON mice (Figure 3C; sEPSC: t(15) = 3.77, p = 0.002; sIPSC: p > 

0.20). However, ILC neurons from CON and EtOH groups did not differ in sPSC synaptic 

drive ratio (Figure 3D; p > 0.20). In addition, there were no differences between groups in 

any mPSC measures (Figure 3E-G; p's > 0.05). These results suggest that there may be both 

presynaptic disinhibition and a postsynaptic increase in excitatory transmission of ILC 

neurons after CIE that is network activity-dependent.

ILC neurons from EtOH mice were depolarized in comparison with those from CON mice 

(Figure 4A; t(18) = 2.77, p = 0.013), and they had lower Res (Figure 4B; t(13) = 2.32, p = 

0.037), suggesting that CIE increased conductance of ILC neurons, leading to a depolarized 

resting state. However, there was no difference between groups in the APT or rheobase of 

ILC neurons at RMP (Figure 4C-E; p's > 0.05) or when held at a common potential of -70 

mV (data not shown; p's > 0.15). Further, two-way repeated measures ANOVAs on the V-I 

plots at RMP (Figure 4F,G) and at -70 mV (data not shown) both result in a main effect of 
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current injection magnitude (RMP: F(20,360) = 60.6, p< 0.0001; -70 mV: F(20,200) = 18.1, 

p < 0.0001), but no effect of CIE or interaction between CIE and current injection steps (p's 

> 0.70).

3.3 Prelimbic PFC

Analyses of synaptic transmission measures in the PLC revealed no effects of CIE on the 

frequency, amplitude, or synaptic drive ratios for sPSCs or mPSCs (Figure S1; p's > 0.10). 

In addition, while the RMP and Res of PLC neurons were not affected by CIE (Figure 

S2A,B; p's > 0.35), several measures of current-injected firing were (Figure S2C,E). At 

RMP, the APT, but not rheobase, of PLC neurons from EtOH mice was significantly lower 

than that of CON mice (APT: Figure S2C, t(16) = 2.56, p = 0.021; rheobase: Figure S2D, p 

> 0.05). Further, a two-way ANOVA on the V-I plot at RMP revealed a main effect of 

current injection magnitude (F(20,340) = 39.0, p < 0.0001) and an interaction between CIE 

and current injection magnitude (F(20,340) = 2.27, p = 0.002), without a main effect of CIE 

(p > 0.40; Figure S2E). However, when all neurons were held at -70 mV, there were no 

differences between CON and EtOH groups in APT or rheobase (data not shown; p's > 

0.30), and there was only a main effect of current injection magnitude in the ANOVA of the 

V-I plot (data not shown; current magnitude: F(20,220) = 8.75, p < 0.0001, CIE and 

interaction: p's > 0.85). Thus, while CIE did not appear to affect synaptic transmission and 

intrinsic neuronal excitability in the PLC, it did increase the threshold for firing of action 

potentials.

3.4 Dorsal BNST

Results from electrophysiological recordings of synaptic transmission showed that the 

dBNST was relatively unaffected by four cycles of CIE. There were no differences between 

dBNST neurons in CON and EtOH mice in sEPSC or sIPSC frequency or amplitude, nor in 

sPSC synaptic drive ratio (Figure S3A-C; p's > 0.10). Results from mPSCs showed that 

neurons from EtOH mice had significantly greater mEPSC amplitude than CON mice 

(Figure S3E; t(27) = 3.265, p = 0.003), but there were no other differences in mPSC 

measures (Figure S3D,F; p's > 0.10).

Results from measures of excitability and current-injected firing in the dBNST revealed no 

differences between CON and EtOH mice for RMP or Res (Figure S4A,B; p's > 0.35), nor 

for rheobase or APT when neurons were at RMP (p's > 0.20; data not shown) or held at −70 

mV (Figure S4C,D; p's > 0.15). A two-way repeated-measures ANOVA on the V-I plot at 

RMP resulted in a main effect of current injection magnitude (F(20,540) = 72.5, p < 0.0001) 

but no effect of CIE nor an interaction between the two factors (p's > 0.90; data not shown). 

A similar result was found when neurons were held at -70 mV—there was a main effect of 

current injection magnitude (F(20,440) = 22.1, p < 0.0001) but no effect of CIE nor an 

interaction between the two factors (p's > 0.50; Figure S4E). Altogether, the net effect of 

chronic ethanol exposure and withdrawal on synaptic transmission and neuronal excitability 

in the dBNST was small; however this result may reflect somewhat opposing changes in 

distinct neuronal subtypes within this heterogeneous brain region.
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3.5 Ventral BNST

In the vBNST, there were no effects of CIE on sEPSC or sIPSC frequency or amplitude 

(Figure 5A-C; p's > 0.05), but EtOH mice had significantly greater sPSC synaptic drive 

ratios than CON mice (Figure 5D; t(18) = 3.28, p = 0.029). There was also an effect of CIE 

on mEPSC frequency (Figure 5E; t(22) = 3.28, p = 0.026) but not mIPSC frequency (p > 

0.60), nor mEPSC or mIPSC amplitude (Figure 5F; p's > 0.45). Similar to sPSCs, vBNST 

neurons from EtOH mice had significantly greater mPSC synaptic drive ratios than those 

from CON mice (Figure 5G; t(19) = 2.41, p = 0.026).

Excitability results showed that there were no differences in RMP or Res between vBNST 

neurons in CON and EtOH mice (Figure 6A,B; p's > 0.10), nor in rheobase or APT when 

neurons were at RMP (p's > 0.10; data not shown). A two-way repeated-measures ANOVA 

on the V-I plot at RMP resulted in a main effect of current injection magnitude (F(20,380) = 

72.5, p < 0.0001) but no effect of CIE nor an interaction between the two factors (p's > 0.80; 

data not shown). When ventral BNST neurons were held at a common membrane potential 

of -70 mV, CIE significantly lowered the rheobase (t(22) = 2.45, p = 0.023; Figure 6C,E) 

but not the APT (Figure 6D; p > 0.10). In addition, an ANOVA on the V-I plot revealed 

main effects of CIE (F(1,20) = 5.95, p = 0.024) and current injection magnitude (F(20,400) 

= 80.6, p < 0.0001), as well as an interaction between these two factors (F(20,400) = 4.60, p 

< 0.0001; Figure 6F,G), indicating greater current-injected firing in vBNST neurons from 

EtOH mice. Together, results suggest that there is a shift toward excitation in the ventral 

BNST driven both by increased putative glutamate release onto ventral BNST neurons and 

increased intrinsic excitability.

3.6 Lateral CeA

Synaptic transmission results showed that sEPSCs, but not sIPSCs, in the lCeA of EtOH 

mice had a significantly lower frequency than those of CON mice (Figure S5A; sEPSC: 

t(17) = 2.20, p = 0.042; sIPSC: p > 0.85), but there were no differences between CON and 

EtOH mice in sEPSC or sIPSC amplitude (Figure S5B; p's > 0.20). The sPSC synaptic drive 

ratio in neurons from EtOH mice was also significantly lower than from CON mice (Figure 

S5C; t(15) = 3.19, p = 0.006). Results from mPSCs revealed no differences between lCeA 

neurons from CON and EtOH mice for any measures (Figure S5D-F; p's > 0.05), suggesting 

that effects of CIE on spontaneous synaptic transmission in the lCeA were network activity-

dependent.

While the sPSC synaptic drive ratios in the lateral CeA were affected by CIE, measures of 

intrinsic excitability and current-injected firing were not (Figure S6). Neither the RMP nor 

Res of lCeA neurons in EtOH mice differed from those in CON mice (Figure S6A,B; p's > 

0.35). There was no difference in the APT or rheobase when neurons were at their RMP 

(data not shown; p's > 0.15), nor when they were held at a common potential of -70 mV 

(Figure S6C,D; p's > 0.25). In addition, a two-way repeated-measures ANOVA on the V-I 

plot at RMP resulted in a main effect of current injection magnitude (F(20,320) = 11.8, p < 

0.0001) but no main effect of CIE or interaction (data not shown; p's > 0.95). A similar 

result was found when neurons were held at -70 mV (Figure S6E; current injection 

magnitude: F(20,160) = 4.90, p < 0.0001, CIE and interaction: p's > 50).
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3.7 Medial CeA

Synaptic transmission in the mCeA was generally unaffected by CIE. The frequency of 

sEPSCs and sIPSCs were not different between groups (Figure 7A,B; p's > 0.20), but CIE 

did result in a decrease in sEPSC amplitude without altering sIPSC amplitude (Figure 7A,C; 

sEPSC: t(18) = 2.51, p = 0.022; sIPSC: p > 0.55). sPSC synaptic drive ratio was not 

different between CON and EtOH groups (Figure 7D; p > 0.45). mPSC frequency measures 

were also unaltered in EtOH mice compared to CONs (Figure 7E; p's > 0.25). In contrast to 

sEPSC amplitude, mEPSC amplitude in mCeA neurons of EtOH mice was significantly 

larger than in CON mice (Figure 7F; t(16) = 2.19, p = 0.043); there was no difference 

between groups in mIPSC amplitude (p's > 0.05). Further, there was no effect of CIE on 

mPSC synaptic drive ratio (Figure 7G; p > 0.30).

Measures of intrinsic excitability in the mCeA were not altered by CIE; neither the RMP 

(Figure 8A) nor the Res (Figure 8B) of mCeA neurons were different between CON and 

EtOH mice (p's > 0.35). And, measures of current-injected firing, including APT and 

rheobase, were not different between groups when measured at RMP (data not shown; p's > 

0.10) or at -70 mV (Figure 8C-E; p's > 0.75). However, a two-way repeated-measures 

ANOVA on the V-I plot at RMP resulted in a main effect of current injection magnitude 

(data not shown; F(20,340) = 53.4, p < 0.0001) but not CIE (p > 0.05), as well as an 

interaction between CIE and current injection magnitude (F(20,340) = 4.76, p < 0.0001). 

When neurons were held at -70 mV, the ANOVA for the V-I plot revealed similar results 

(Figure 8F,G; current injection magnitude: F(20,280) = 20.9, p < 0.0001, CIE: p > 0.05; 

interaction: F(20,280) = 3.12, p < 0.0001). Together, these results suggest that only the 

capacity of for action potential firing was affected by CIE.

4. Discussion

We found a host of adaptations in prefrontal cortical and extended amygdala nuclei 48 hr 

following four cycles of CIE, during withdrawal from high level ethanol exposure and at a 

time point where we also observed increased anxiety-like behavior. Specifically, we 

observed a net increase in excitability and shift towards excitation in the medial prefrontal 

cortex and BNST, and the opposite effects in the CeA. Notably, there were alterations in all 

six subregions of this limbic circuit that we examined, with some marked differences 

between subregions within each of these structures. While further experiments are required 

to link neuronal adaptations with the CIE-induced changes in marble burying behavior 

observed, together, these coincident results demonstrate that withdrawal from chronic 

ethanol exposure impacts neural function in complex ways relevant to behavioral output. 

Indeed, our results highlight the broad and severe consequences of chronic ethanol exposure 

and indicate that adaptations in cortico-limbic circuits may be involved in the negative 

behavioral effects previously shown to be elicited by this exposure paradigm, including 

increased alcohol consumption and anxiety and decrements in fear extinction and reversal 

learning (Badanich et al., 2011; Becker, 2013; Becker and Lopez, 2004; Holmes et al., 

2012).
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4.1 Methodological Considerations

In this study, we used chronic intermittent ethanol vapor exposure, a well-described model 

of high ethanol exposure widely used to model escalation of alcohol intake observed during 

the development of alcoholism in humans. We chose to examine function 48 hours 

following ethanol exposure, at a time point that was beyond acute withdrawal and allowed 

us to begin to examine chronic adaptations driven by this exposure and withdrawal. While 

this provides only a “snapshot” of the changes in neural function that may underlie the 

negative consequences of chronic ethanol exposure, these may be persist for days or weeks 

following CIE. Several previous studies have reported results that were consistent across the 

48-72 hr and one week post-CIE time points (e.g., Lopez et al., 2014), suggesting the 

persistence of this effect across the protracted withdrawal time window. Given the many 

robust changes we observed in these cortico-limbic brain areas, investigation of the 

persistence of these adaptations will be of critical importance in future studies. In addition, 

teasing apart the effects of high ethanol exposure and the potentially stressful aspect of this 

and other non-voluntary administration paradigms is also warranted in subsequent studies.

Additionally, we chose to examine synaptic transmission using a biophysical approach that 

allowed us to measure both excitatory and inhibitory transmission from each individual 

neuron. While common methodological approaches examine excitatory and inhibitory 

synaptic transmission in separate subsets of neurons, our approach allows for both of these 

measurements within individual neurons, conferring the additional ability to directly assess 

the balance of excitatory and inhibitory synaptic drive onto individual neurons. Previous 

research has shown that that this balance is a critical aspect of neuronal circuit function that 

contributes to the regulation of a number of behaviors (Xue et al., 2014). Indeed, using this 

biophysical approach in the current study provided essential information about the effects of 

chronic ethanol exposure on cellular and circuit function in the context of behavioral output. 

However, because inhibitory synaptic transmission using this approach is measured when 

neurons are in a depolarized state, it is possible that our ability to measure some alterations 

in function may have been obscured. Comparisons of our results with those from other 

studies using classical approaches are addressed below.

4.2 Prefrontal Cortex

We identified both synaptic and excitability alterations in the PFC following CIE that 

indicated a net increase in basal excitation of the mPFC, consistent with neuroimaging 

studies in abstinent human alcoholics that report greater metabolic activity in the 

ventromedial PFC at rest (Seo et al., 2013), however these were manifested differently in the 

prelimbic and infralimbic subregions. While PLC neurons in EtOH mice had a general 

decrease in the threshold for firing action potentials (Figure S2), more robust changes were 

observed in the ILC (Figure 4). There was a decrease in putative presynaptic spontaneous 

inhibition of ILC neurons, with concurrent increase in putative postsynaptic excitatory 

transmission (Figure 3). Due to the lack of effect on mPSCs, we hypothesize that these 

effects are network activity-dependent. Additionally, neurons from EtOH mice were 

depolarized at rest, with lower input resistance, signifying that CIE increased basal neuronal 

conductance that led to a depolarized resting state in ILC neurons.
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The robust effects of CIE on ILC neurons as compared to PLC neurons in mice may be 

related to their differing connectivity and roles in several behaviors mediated by the PFC 

(Fitzgerald et al., 2014; Holmes et al., 2012). For example, while PLC activation promotes 

fear behavior, ILC neuronal activity promotes extinction (Fitzgerald et al., 2014). We have 

previously shown that CIE impairs fear extinction mediated by a reduction in NMDA 

receptor-dependent burst firing of ILC, but not PLC, neurons (Holmes et al., 2012), and we 

have also observed a decrease in expression of the neuroactive steroid 3α-hydroxy-5α-

pregnan-20-one (3α,5α-THP), a positive allosteric modulator of GABAA receptors, in the 

PFC (Maldonado-Devincci et al., 2014). Together with our finding that basal excitability of 

ILC neurons is increased after CIE, we speculate that there may be a loss of control of 

coordinated firing of ILC neurons after chronic alcohol exposure that has detrimental effects 

on the appropriate coding of information by the PFC, such as those during extinction of 

learned behaviors. Future examination of whether this contributes to the persistence of 

maladaptive behaviors such as sustained fearfulness (Holmes et al., 2012) would be 

informative. Interestingly, impaired fear extinction is a hallmark of post-traumatic stress 

disorder in humans, which is commonly co-morbidly expressed with alcoholism. Thus, the 

harmful effects of multiple cycles of intoxication and withdrawal in PFC function in 

alcohol-dependent rodents is consistent with the human literature that has elegantly shown 

that human alcoholics with multiple withdrawals/detoxifications have impaired frontal 

cortical-dependent decision-making and executive function and enhanced impulsivity, which 

may contribute to relapse behavior (Little et al., 2005; Loeber et al., 2009; Loeber et al., 

2010; Stephens and Duka, 2008).

4.3 Bed nucleus of the stria terminalis

Similar to the PFC, we detected a number of changes in synaptic transmission and neuronal 

excitability in the vBNST following CIE that indicated an overall increase in excitation. In 

particular, we found increased synaptic drive ratios for both sPSCs and mPSCs. Given that 

we also observed increased mEPSC frequency in EtOH mice, increased excitatory drive may 

be due to increased local, network-independent putative glutamate release onto vBNST 

neurons (Figure 5). This increased excitatory drive may contribute to the greater sensitivity 

of these neurons to current injection, as illustrated by the lower rheobase and greater current 

injected firing capacity of vBNST neurons in EtOH mice (Figure 6). However, given the 

interconnected nature of the dorsal and ventral portions of the BNST (Dong et al., 2001; 

Dong and Swanson, 2004), it was surprising that we found that the dBNST was resistant to 

the effects of chronic ethanol exposure (Figures S3 and S4), with only a small increase in 

mEPSC amplitude observed following CIE. The lack of effect of CIE on the general dBNST 

neuronal population is likely due to the cell type and projection target heterogeneity of the 

subregion, as well as the density of inhibitory interneurons that contribute to its complex 

microcircuit (Crestani et al., 2013; Dong et al., 2001; Dong and Swanson, 2004; Kash, 2012; 

Kash et al., 2015; Magableh and Lundy, 2014; Pleil et al., 2015). Thus, effects of chronic 

alcohol exposure in the dBNST may be specific to discrete populations of neurons or 

modulatory systems there (Kash, 2012; Pleil et al., 2015; Silberman et al., 2013). For 

example, previous work has shown that BNST neurons that produce the neuropeptide 

corticotropin-releasing factor (CRF) are vulnerable to the effects of chronic alcohol 

exposure, as is CRF modulation of BNST neurons that project to the midbrain (Silberman et 
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al., 2013). In contrast, while containing overlapping targets and cell types, the vBNST is 

more homogenous, with a large proportion of neurons identified as projection neurons to 

discrete downstream regions, such as the ventral tegmental area and nuclei of the 

hypothalamus (Herman, 2012; Herman et al., 1994; Jennings et al., 2013). Thus, 

measurements taken from genetically-identified neuronal populations in the BNST, 

particularly the dBNST, may be required to more discretely characterize the effects of 

chronic alcohol exposure and withdrawal on BNST neuronal function in the future.

4.4 Central amygdala

Alterations in CeA neuronal function were the opposite of those observed in the PFC and 

BNST. In the lCeA, sEPSC frequency and sPSC synaptic drive ratios were decreased in 

EtOH mice (Figure S5). In the mCeA, sEPSC amplitude was decreased (Figure 7) and there 

was a decrease in current-injected action potential firing in the VI plot (Figure 8). While we 

did not find an increase in basal GABAergic transmission after CIE as others have reported 

in rats and mice (Repunte-Canonigo et al., 2014; Roberto et al., 2012; Roberto et al., 2004), 

our finding that there was a net inhibitory effect of CIE on CeA function is generally 

consistent with a suppression of CeA activation, albeit through a different mechanism. There 

are several potential factors contributing to this difference, including species/background 

strain used, biophysical electrophysiology approach described above, time point of 

electrophysiological measurements post-CIE, and incorporation of intermittent voluntary 

ethanol drinking throughout the vapor exposure paradigm. Interestingly, increased basal 

inhibitory tone in the CeA has been shown to mediate escalation of alcohol drinking in 

dependent rats (Roberto et al., 2010). Further, there is convincing evidence that 

pharmacological manipulations of stress hormone and peptide receptors, as well as their 

downstream signaling molecules, in the CeA that modulate GABAergic transmission also 

regulate abstinence-induced escalation of drinking behavior after CIE in rats and mice (Funk 

and Koob, 2007; Funk et al., 2006; Kissler et al., 2014; Repunte-Canonigo et al., 2015; 

Vendruscolo et al., 2012). Therefore our results are consistent with the conceptual 

framework that modulation of inhibition in the CeA is critical component in the relationship 

between chronic ethanol exposure and ethanol-related behaviors.

4.5 Implications for cortico-limbic circuits

In this study, we report many effects of CIE and withdrawal on the basal function of 

prefrontal cortical and extended amygdalar nuclei, as well as anxiety-like behavior that is 

mediated by the function of these brain regions. Many previous studies have shown that 

pharmacological manipulations in these regions can modulate the negative behavioral 

consequences of this dependence-inducing ethanol exposure, including anxiety and 

excessive alcohol consumption. However, lesioning the CeA or BNST does not block this 

escalation of drinking behavior (Dhaher et al., 2008). Thus, the importance of these 

structures in negative affect and alcohol and anxiety-related behaviors may be dependent 

upon their dense anatomical and functional connections with one another (Hoover and 

Vertes, 2007; Johnstone et al., 2007; Vertes, 2004; Wager et al., 2008). For example, while 

control subjects have increased PFC activation to engage top-down suppression of the 

amygdala to regulate negative emotion (Ochsner et al., 2004; Wager et al., 2008), humans 

with major depressive disorder, anxiety disorders, and alcoholism are unable to recruit this 
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circuitry and commonly display concurrent hypoactivation of the mPFC and hyperactivation 

of the amygdala (Bremner, 2006; Drevets, 2000a, b, 2001; Johnstone et al., 2007; Keedwell 

et al., 2005; Ressler and Mayberg, 2007; Seo et al., 2013). Similar findings have come from 

rodent studies of anxiety and depression (Covington et al., 2005; Covington et al., 2010), as 

well as those examining the transition to and maintenance of excessive alcohol drinking in 

dependence (George et al., 2012; Koob and Kreek, 2007; Koob, 2003b, 2008). Further, 

alcohol-dependent humans have a withdrawal-induced increase in functional connectivity 

between the amygdala and BNST (O'Daly et al., 2012), and disturbing the functional 

connection between the CeA and BNST alters anxiety and depressive-like behaviors in 

rodents (Tasan et al., 2010).

The PFC projects to the CeA and BNST, which have reciprocal connections with each other 

and project to midbrain and hindbrain regions including the periaqueductal gray, ventral 

tegmental area, parabrachial nucleus, and paraventricular nucleus of the thalamus to 

modulate stress response and alcohol-related behaviors (Flak et al., 2012; Herman, 2012; 

Myers et al., 2014; Stamatakis et al., 2014). The ILC has a much denser synaptic input to the 

BNST and CeA than the PLC (Vertes, 2004), which may explain why more robust changes 

in transmission and excitability were observed in the ILC than PLC. Interestingly, reciprocal 

projections from the extended amygdala to the PFC have not been identified (Hoover and 

Vertes, 2007), suggesting that the ILC exerts top-down control of the limbic extended 

amygdala via this glutamatergic projection (Massi et al., 2008; Radley and Sawchenko, 

2011). Therefore, the robust excitatory effects of CIE on ILC function may be conferred 

onto the vBNST via this ILC-vBNST glutamatergic synapse. Given the density of CRF 

neurons in the vBNST and their role in the development and maintenance of escalated 

drinking in alcohol dependence, ILC hyperactivity that increases the downstream activation 

of CRF and other neurons in the vBNST may be a primary mechanism by which chronic 

alcohol exposure has its negative behavioral effects. In addition, dense GABAergic 

connections between the CeA and BNST (Li et al., 2012; Sun and Cassell, 1993) may 

contribute to the opposing effects of CIE on the excitation of these extended amygdala brain 

regions.

Many previous reports describe hyperactivation of the amygdala in alcohol-dependent rats 

and humans due to a loss of top-down modulation by the PFC (George et al., 2012; Seo et 

al., 2013), indicating that glutamatergic projections from the ILC to the CeA may primarily 

synapse onto inhibitory interneurons. Here, while we found that the PFC and CeA were 

oppositely affected by CIE, we found a decrease in excitation of the CeA and an increase in 

excitation of the PFC. This divergence between our study and previous studies in the 

direction of CIE effects may signify a short-term compensatory response during this 48 hr 

withdrawal period that is not present at later time points or during stress-evoking events as 

in other studies. Alternatively, it may reflect species differences in the functional 

connectivity of these brain regions, given that a majority of anatomical mapping studies 

have been performed in rats and humans. Future studies employing circuit-specific and cell 

type-dependent manipulations in mice will address the functional connections between these 

regions and the persistence of the effects of chronic alcohol exposure in limbic circuits.
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Highlights

• Ethanol-exposed mice displayed increased anxiety compared to air-exposed 

controls

• CIE induced hyperexcitability of the infralimbic cortex

• CIE induced a shift toward excitation in synaptic drive and hyperexcitability of 

vBNST neurons

• CIE exposure induced a net inhibition of the CeA.

Pleil et al. Page 20

Neuropharmacology. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Experimental procedures for chronic intermittent ethanol vapor exposure (CIE), marble 

burying test (MBT), and slice electrophysiology recordings. A) Timeline for the CIE 

paradigm, in which mice were exposed to ethanol vapor for 16 hr/day for 4 consecutive days 

(constituting one cycle of CIE), followed by three days of abstinence, for four consecutive 

weeks. Mice underwent the MBT or were sacrificed for slice electrophysiology 48 hr after 

the last ethanol vapor exposure. B-C) Illustrations of brain subregions in which slice 

electrophysiology recordings were performed, including the: B) prelimbic cortex (PLC; in 

blue) and infralimbic cortex (ILC; in yellow) of the prefrontal cortex, C) dorsal BNST 

(dBNST; in blue) and ventral BNST (vBNST; in yellow), and D) lateral CeA (lCeA; in blue) 

and medial CeA (mCeA; in yellow).
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Figure 2. 
EtOH mice (n=6) buried significantly more marbles than CON mice (n=6) in the MBT 48 hr 

after the final vapor exposure of four-cycle CIE (t(10) = 3.673, p = 0.004).
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Figure 3. 
Synaptic transmission measures in the infralimbic cortex (ILC). A) Representative traces of 

sPSCs in the ILC of CON and EtOH mice. B) ILC neurons in EtOH mice (n=8) had 

significantly lower sIPSC, but not sEPSC, frequency than those in CON mice (n=10) 

(sEPSC: p > 0.20; sIPSC: t(16) = 2.45, *p = 0.026). C) ILC neurons in EtOH mice had 

significantly higher sEPSC, but not sIPSC, amplitude than those in CON mice (sEPSC: t(15) 

= 3.77, **p = 0.002; sIPSC: p > 0.20). D) There was no difference in sPSC synaptic drive 

ratio between CON and EtOH groups (p > 0.20). E-G) There were no differences in mEPSC 

or mIPSC frequency (E) or amplitude (F), nor in mPSC synaptic drive ratio (G) between 

CON (n=8) and EtOH (n=10) groups (p's > 0.05).
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Figure 4. 
Excitability measures in the ILC. A,B) ILC neurons in EtOH mice (n=10) had a higher RMP 

(A; t(18) = 2.77, *p = 0.013) and lower Res (B; t(13) = 2.32, *p = 0.037) than those in CON 

mice (n=11). C) Representative traces of current-injected firing from ILC neurons in CON 

and EtOH mice during a ramp protocol of 120 pA/1 s at RMP, with stimulus waveform 

depicted below traces. D-E) There were no differences between CON and EtOH groups in 

the APT (D) or rheobase (E) during the ramp protocol (p's > 0.05). F) Representative traces 

of current-injected firing from ILC neurons in CON and EtOH mice during a step protocol 

of increased current steps of 10 pA/250 ms step, with stimulus waveforms depicted below 

traces. G) There was no difference between CON and EtOH groups in the relationship 

between current injection magnitude and the number of action potentials fired during the V-I 

plot at RMP (p's > 0.70).
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Figure 5. 
Synaptic transmission measures in the ventral BNST (vBNST). A) Representative traces of 

sPSC from CON and EtOH mice. B-D) There were no differences between vBNST neurons 

from CON (n=12) and EtOH (n=10) mice for sPSC frequency (B) or amplitude (C; p's > 

0.05), but vBNST neurons in EtOH mice had greater synaptic drive ratios than those in CON 

mice (D; (t(18) = 3.28, *p = 0.029). E) mEPSC frequency was higher in vBNST neurons 

from EtOH (n=13) than CON (n=12) mice (t(22) = 3.28, *p = 0.026), but mIPSC frequency 

was not different (p > 0.60). F) There were no differences between groups in mEPSC or 

mIPSC amplitude (p's > 0.45). G) The mPSC synaptic drive ratio of vBNST neurons in 

EtOH mice was significantly higher than those in CON mice (t(19) = 2.41, *p = 0.026).

Pleil et al. Page 25

Neuropharmacology. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Excitability measures of neurons in the vBNST. A&B) There were no differences in the 

RMP (A) or Res (B) of vBNST neurons between CON (n=14) and EtOH (n=8) mice (p's > 

0.10). C) Representative traces of current-injected firing from vBNST neurons in CON and 

EtOH mice when held at a common potential of -70 mV during a ramp protocol of 120 pA/1 

s at RMP, with stimulus waveform depicted below traces. D&E) While there were no 

differences between groups in the action potential threshold of vBNST neurons when 

neurons were held at -70 mV (D; p > 0.10), neurons from EtOH mice had significantly 

lower rheobase than those from CON mice (E; t(22) = 2.45, *p = 0.023). F) Representative 

traces of current-injected firing from vBNST neurons in CON and EtOH mice when held at 

a common potential of -70 mV during a step protocol of increased current steps of 10 

pA/250 ms step, with stimulus waveforms depicted below traces. G) Neurons from EtOH 

mice fired more action potentials per current injection step than neurons from CON mice in 

the V-I plot, indicated by a significant interaction between CIE and current injection 

magnitude (F(20,400) = 4.60, ***p < 0.0001).
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Figure 7. 
Synaptic transmission measures in the medial CeA (mCeA). A) Representative traces of 

sPSC from CON and EtOH mice. B There were no differences in sEPSC or sIPSC 

frequency of mCeA neurons between CON (n=11) and EtOH (n=9) groups (p's > 0.20). C) 

sEPSC amplitude was significantly smaller in EtOH mice than CON mice (t(18) = 2.51, *p 

= 0.022), but there was no difference in sIPSC amplitude (p > 0.55). D) There was no effect 

of CIE on sPSC synaptic drive ratio (p > 0.45). E) There were no differences in mEPSC or 

mIPSC frequency of mCeA neurons between CON (n=10) and EtOH (n=8_ groups (p's > 

0.25); F) mEPSC amplitude was significantly larger in mCeA neurons in EtOH mice than in 

CON mice (t(16) = 2.19, *p = 0.043), but there was no difference in mIPSC amplitude (p > 

0.05). G) There was no effect of CIE on mPSC synaptic drive ratio (p > 0.30).
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Figure 8. 
Excitability measures in the mCeA. A,B) There were no differences in the RMP (A) or Res 

(B) of mCeA neurons between CON (n=14) and EtOH (n=12) mice (p's > 0.35). C) 

Representative traces of current-injected firing from mCeA neurons in CON and EtOH mice 

when held at a common potential of -70 mV during a ramp protocol of 120 pA/1 s at RMP, 

with stimulus waveform depicted below traces. D,E) There were no differences between 

groups in the APT (D) or rheobase (E) when medial CeA neurons were held at -70 mV (p's 

> 0.75). F) Representative traces of current-injected firing from mCeA neurons in CON and 

EtOH mice when held at a common potential of -70 mV during a step protocol of increased 

current steps of 10 pA/250 ms step, with stimulus waveforms depicted below traces. G) CIE 

decreased the number of action potentials per current injection step, indicated by an 

interaction between CIE and current injection step (F(20,280) = 3.12, ***p < 0.0001).
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