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Abstract

The paper presents assessment of the model accuracy estimation methods participating in 

CASP11. The results of the assessment are expected to be useful to both – developers of the 

methods and users who way too often are presented with structural models without annotations of 

accuracy.

The main emphasis is placed on the ability of techniques to identify the best models from among 

several available. Bivariate descriptive statistics and ROC analysis are used to additionally assess 

the overall correctness of the predicted model accuracy scores, the correlation between the 

predicted and observed accuracy of models, the effectiveness in distinguishing between good and 

bad models, the ability to discriminate between reliable and unreliable regions in models, and the 

accuracy of the coordinate error self-estimates. A rigid-body measure (GDT_TS) and three local-

structure based scores (LDDT, CADaa, and Sphere Grinder) are used as reference measures for 

evaluating methods' performance.

Consensus methods, taking advantage of the availability of several models for the same target 

protein, perform well on the majority of tasks. Methods that predict accuracy on the basis of a 

single model perform comparably to consensus methods in picking the best models and in the 

estimation of how accurate is the local structure.

More groups than in previous experiments submitted reasonable error estimates of their own 

models, most likely in response to a recommendation from CASP and the increasing demand from 

users.
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Introduction

Estimation of protein model accuracy is of great practical interest in structural biology1-3 

and remains an active area in bioinformatics research. Since the introduction of this category 

in CASP in 2006, more than eighty specialized papers have been published in peer-reviewed 

journals (compared to practically none before that) and more than thirty QA methods are 

being tested every other year in CASP experiments3-6. In addition to this, the CAMEO 

experiment (http://cameo3d.org) evaluates the performance of the automatic estimators of 

model accuracy on the continuous basis, and 16 public and development servers have been 

tested in the CAMEO-QE category since its introduction in May 2014 [CAMEO paper – 

THIS ISSUE]. Besides the standalone techniques, more and more structure prediction 

groups are implementing or improving global and local accuracy estimators for their own 

structure prediction pipelines.

The current paper presents an evaluation of model accuracy estimation methods in the latest, 

eleventh round of CASP, and assesses progress in the field. In the paper we discuss a number 

of technical issues affecting the results in order to help predictors improve their methods. 

The overall conclusions derived here are expected to be of interest also to a broader research 

community. Users of specific structure modeling servers would be better served if the 

models were annotated with their expected accuracy. Several servers using different 

methodologies are available and selecting from among the available models can be helped 

by using the evaluations described in the present work. Prediction methods that return a list 

of models can be aided by the CASP-evaluated techniques to improve the rankings of their 

results. Last, but not least, crystallographers using models in molecular replacement can be 

assisted by the included expected accuracy of models at the level of individual residues.

In this paper, we suggest moving towards the term of “estimation of model accuracy 

(EMA)” rather than “model quality assessment (MQA)” to avoid some ambiguity associated 

with the words “quality” and “assessment”. Nevertheless we still use the “QA” notation in 

many of the dataset designations, as used in the CASP11 experiment.

Materials and Methods

Subcategories of prediction and testing procedure

Accuracy estimation methods in CASP11 were evaluated in three subcategories: (1) 

QAglob: estimation of the global accuracy of models (33 QA groups assessed), where a 

single score is assigned to a model, (2) QAloc: estimation of the local accuracy of models 

(21 QA groups assessed), where each residue is annotated with its expected location error, 

and (3) QAself: per-residue estimation of coordinate errors in own structural models (96 

tertiary structure prediction groups assessed), where local accuracy estimates are assigned by 

the groups submitting the models.

For testing methods in the first two subcategories we utilized the two-stage procedure 

introduced in CASP10 6. In stage1, we were releasing twenty server models per target 

spanning the whole range of accuracy, and subsequently in stage2 - the top 150 server 

models, as estimated by our in-house Davis-QAconsensus method (see the description 
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provided later). In each stage, predictors were asked to estimate both the global and local 

accuracy of the provided models. In the QAglob assessment mode, each model had to be 

assigned a score between 0 and 1 expected to reproduce the model's GDT_TS score. In the 

QAloc and QAself modes, each residue in the model had to be assigned an estimated 

distance error in Ångströms as would have been seen for that residue in the optimal model-

target superposition*. Details of the submission format and an example target release 

timeframe can be found at the Prediction Center web page http://predictioncenter.org/

casp11/index.cgi?page=format#QA.

Targets and predictions

One hundred prediction targets were released in CASP11. Eight of those (T0778, 779, 791, 

809, 842, 844, 846 and 850) were cancelled by the organizers [CASP11 TARGET paper, 

Kinch, Grishin et al – THIS ISSUE] and also excluded from this assessment. We 

additionally excluded three targets that were specifically released for multimeric prediction 

(T0797, 798 and 825) and had coordinates of their constituent monomers known at the time 

of the experiment. Also, since QAglob and QAloc evaluations are performed at the target 

level, we excluded from these analyses target T0820, which consisted of two domains 

differently oriented in the two molecules found in the unit cell. The remaining 88 targets 

were assessed. For these targets, we evaluated 6294 QA predictions, out of 6950 total 

submitted in CASP11 (and accessible at http://predictioncenter.org/download_area/CASP11/

predictions). The evaluated predictions contain accuracy estimates for a subset of 1760 

server TS models in stage1 and 13144 server models in stage2 (see http://

predictioncenter.org/casp11/qa_analysis.cgi). Only groups that submitted correctly formatted 

predictions on at least half of the targets were included in the result tables/graphs in this 

paper.

The analysis in the QAself category was performed on the assessor-defined domains 

[CASP11 TARGET paper – Kinch, Grishin et al, THIS ISSUE] separately for server groups 

on all targets (“all group” + “server only”), and for all participating groups on a subset of 

“all-group” targets. Only the models designated as Model_1 were considered, and only the 

groups that submitted at least two different numerical values in the B-factor field for at least 

40 Model_1 predictions for the subset of "all-group" targets or 84 Model_1 predictions for 

all evaluated targets, were assessed†. All in all, the CASP11 QAself evaluation was run on 

4567 server predictions submitted by 38 servers on 125 domains taken from 86 targets, and 

6731 predictions submitted by 96 human-experts and servers on 77 domains from 46 “all-

group” targets.

Evaluation principles and measures

In CASP11, we significantly expanded the number of QA reference measures. In addition to 

the comparison of predicted global accuracy scores with the GDT_TS values7 (basic 

approach), we compared them with the scores obtained using the recently developed “non-

rigid-body based” structure comparison measures such as LDDT8, CAD-score9 and Sphere 

*For the next experiment, the CASP organizers are considering replacing the distance error estimates in QAloc and QAself with 
estimates of the crystallographic B-factors.
†The cutoff values were selected so that to eliminate apparent outliers in the number of predictions.
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Grinder10. Adding these measures to the evaluation package improves the quality of the 

assessment, as they are known to be less sensitive to the relative domain orientation. 

Combining three non-rigid body-based scores - CADaa (a variant of the CAD-score), LDDT 

and SG - with one rigid-body score - GDT_TS - implicitly rewards methods that are more 

accurate in recognizing models with better local geometry or local structure context.

Detailed analysis of the general techniques used in the assessment of accuracy estimates can 

be found in our previous assessment papers 3,6.

Reference consensus method: Davis-QAconsensus (QAglob and QAloc)

The reference consensus quality predictor Davis-QAconsensus6 assigns quality score to a TS 

model based on the average pair-wise similarity of the model to other models in the dataset. 

For each TS model, the quality score is calculated by averaging the GDT_TS scores from all 

pair-wise comparisons followed by multiplying the result by the ratio between the number of 

residues in the model and target.

Throughout the paper this method is treated as just another EMA technique participating in 

CASP, and therefore is included in all result tables and statistical significance tests. 

Comparing results of other clustering methods to those of the reference method is meant to 

show whether the methodology of the evaluated technique goes beyond a simple clustering 

approach. Since Davis-QAconsensus method has not changed since CASP10, it is also used 

as a reference for assessing progress in the field (see section 5 in Results).

Results and Discussion

1. Classification of methods

From a user's perspective, accuracy estimation techniques can be broadly divided into two 

classes: those that accept a single model as an input and those that require multiple models. 

The first class of methods can be further subdivided into pure single-model methods (i.e. 

those that can generate an accuracy estimate for a model without relying on external 

information from evolutionarily related proteins or specially generated ensembles of 

structural models) and quasi-single methods (i.e. those generating accuracy estimates for a 

single model also using these types of external information). The second class of methods is 

usually referred to as “clustering methods” and includes approaches exploiting consensus 

information extracted from a set of input models. The class of clustering methods also 

includes hybrid methods that combine single-model strategies (i.e., approaches based on 

geometry, energy or scoring functions) with some clustering steps. Meta-methods, which 

combine scores from different accuracy estimators, stand separately.

The classification and a brief description of methods participating in CASP11 are provided 

in Table I.

This is just a placeholder for references from Table I (provided as a separate file): 11,12,13 

This summary was generated form the authors' descriptions of methods (http://

predictioncenter.org/casp11/doc/CASP11_Abstracts.pdf) followed by a classification 

consistency check by the authors of this paper. To verify whether a method is genuinely a 
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single-model method, we checked if it generates the same (or very similar‡) accuracy 

estimates for a model independently of the size and composition of the dataset the model 

belongs to. To ensure that all single-model methods declared in CASP11 comply with this 

requirement, we compared their scores on common models from stage1 (sel20) and stage2 

(best150) datasets. Figure 1 shows the average absolute difference diff between the predicted 

stage-specific accuracies of the common models:

where Si is the dataset of all models (on all targets) released in the ith stage of the experiment 

(i.e., S1=sel20 and S2=best150); QAscorei (n) is METHOD's accuracy estimate for model n 
in the ith stage; n=1,…,N – common models from S1 and S2 datasets. As one can see from 

Figure 1, the diff parameter for CASP11 methods gradually increases from 0 to 0.012, and 

then jumps to 0.03 at the position where the first clustering method (ModFOLD5) is found. 

Thus, the data provide a natural separation (shown as a vertical red line in Figure 1) between 

the methods generating very similar accuracy scores for the same models in both stages of 

the experiment and those that do not. In other words, methods on the left of the vertical line 

can provide accuracy estimates using a single model, while the remaining ones require a set 

of models as input. This diff-based separation perfectly corresponds to the methodology-

based classification, with all single-model methods being to the left of the separation line 

and all clustering methods to the right. Quasi-single methods can be found on both sides of 

the separation line thus showing their different levels of dependency on the number and 

distribution of the models in the data set.

2. Estimation of global accuracy of models

An a-priori estimate of the global accuracy of a model can serve as a first filter in 

determining the usefulness of the model to address a specific problem. In this paper we 

assess the effectiveness of QA methods to assign overall accuracy score to a model by 

evaluating their ability to (1) find the best model amongst many others, (2) discriminate 

between good and bad models, (3) assign a correct relative score to a model (i.e., correctly 

rank the models) and (4) assign a correct absolute score.

2.1. Identifying the best models (QAglob.PT)—One of the most important tasks for 

accuracy estimation methods is identifying the best models from among several available. To 

assess the “best selector” performance, we calculated the difference in scores between the 

models predicted to be the best and the actual best models, i.e. those with the highest 

similarity to the native structure for each target and dataset. We used the GDT_TS, CADaa, 

LDDT and SG scores for this analysis (see Methods). The results showed that the correlation 

between the different measures can be as low as 0.61 (between the GDT_TS and CADaa on 

the best150 datasets), indicating that the addition of local similarity measures provides 

information not readily identified by the GDT_TS alone§. As the GDT_TS score is more 

‡Small variations in scores are acceptable due to possible changes of background databases in-between the method runs.
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sensitive to the relative orientation of domains than the rigid-body superposition-free 

measures, it could be surmised that the difference is the result of the fact that the accuracy 

scores are assigned to whole targets, while the similarity of the model with the native 

structure is computed for each domain separately. Our analysis, though, does not support 

this hypothesis since the evaluations on all targets (AT) and single-domain targets only 

(SDT) generate very similar results by all measures, including GDT_TS 

(CCGDT_TS[AT_vs_SDT]=0.99), and therefore the difference in the scores is apparently due 

to differences in the methods and not to the specific assessment procedure.

Clearly, measuring the difference in accuracy between the predicted best model and the 

actual best makes sense only if the best model is of good quality itself. Consequently we 

performed this analysis only on targets for which at least one model scored above cutoffs set 

to 40 for GDT_TS and SG scores, and to 0.4 for CADaa and LDDT.

2.1.1. How far away are the best EMA models from the best available?: Figure 2 

illustrates the accuracy of CASP11 methods in selecting the best models according to the 

GDT_TS score. The figure shows that two EMA methods (Wallner and Pcons-net, both 

clustering-based) are capable of identifying the best models in the best150 datasets with an 

average error (i.e. difference between the GDT_TS of the model selected as the best and the 

actual best one) smaller than 5 GDT_TS units, which translates into a 7% difference on the 

relative scale. The best single-model method (ProQ2) is forth in the ranking, just 1.4 

GDT_TS units behind the best method. Pcons-net, ModFOLD5-single and ModFOLD5 are 

the three methods that exhibit smaller than 3 GDT_TS unit loss in accuracy on the sel20 

datasets. Results of the assessment according to other scores are provided in the 

Supplementary Material (Figure S1) and summarized in the ranking table (Table II). The 

data show that some of the groups that perform best according to the GDT_TS score are 

consistently in the top part of the result tables according to other scores. In particular, Table 

II shows that five groups, including three single-model methods (ProQ2, ProQ2-refine, 

Multicom-novel) are among the best 10 selectors on the best150 datasets according to all 

four evaluation measures. Four additional groups, including one single-model method -

Multicom_cluster – are in the “top 10” according to three of the measures. The relatively 

good performance of single-model methods is also confirmed by the data shown in Figure 3, 

which summarizes the performance of all CASP11 methods in terms of the cumulative z-

score on the four evaluation measures. The three single-model methods closely follow the 

top two clustering methods. The “top 12” list includes five single-model methods, four 

quasi-single methods, and three clustering methods. All these methods are ranked higher 

than the reference Davis-QAconsensus method, which is only 15th on the best150 datasets. It 

is worth mentioning that the single-model methods would have been ranked even higher (in 

the top four positions of the final ranking table) if only the measures based on local 

similarities were used for the ranking. We attribute this result to the fact that single-model 

methods are usually based on geometry and energy functions that pay more attention to the 

local correctness of models, which is the conceptual basis of non-rigid-body based similarity 

§Adding the local-based measures to the analysis on the sel20 datasets has a smaller effect on the final rankings as the correlation 
between different scores on these datasets is quite high, with the lowest correlation coefficient being 0.91 between GDT_TS and 
CADaa.
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measures such as LDDT (which rewards the similarity of local distances), CAD (similarity 

of contact areas), and SG (similarity of local substructures). This hypothesis is supported by 

the analysis of the EMA scores of single-model methods on models with good and bad local 

accuracy as judged by the Molprobity14 scores. Results in Figure S2 (Supplementary 

material) show that correlation between the EMA scores and Molprobity scores is practically 

negligible for all types of methods (the highest Pearson correlation coefficient is 0.23) on 

both - locally good and poor models, thus indicating no significant dependency of the EMA 

scores on the models' local properties. Nevertheless, comparison of mean EMA scores on 

both subsets of data shows that single-model methods do tend to produce somewhat higher 

scores on stereo-chemically accurate models (thus reasonably giving an edge to the models 

with better local properties), while clustering and quasi-single methods are practically 

insensitive to local accuracy.

While single-model methods show a relatively good performance on the best150 datasets, 

quasi-single model methods show accuracy comparable to clustering methods on the sel20 

datasets. Three quasi-single methods (ModFOLD5-single, nns and MQAPsingleA) together 

with two clustering methods (Pcons-net and ModFOLD5) appear in the “top5 lists” 

according to 3 out of 4 evaluation measures (Table II) and show the highest cumulative z-

scores (Figure 3). Better relative performance of quasi-single methods on the sel20 datasets 

can be associated with the specifics of the training procedure for this type of methods, more 

effectively utilizing the larger spreads in model accuracy.

To establish the statistical significance of the differences in performance we performed two-

tailed paired t-tests on the common sets of predicted targets and models. Table S1 in the 

Supplementary Material shows the results of the t-tests for each measure and each dataset 

separately (panels A-H), and summarizes the results for the groups appearing on the “top 

15” list according to all four evaluation measures (panels I,J). The individual t-tests (panels 

A-H) show that, for all measures and methods, there is at least another method statistically 

indistinguishable from the selected method at the p=0.05 significance level, and at least five 

similar methods at the p=0.01 significance level. The summary table on the best150 datasets 

(panel I) shows that no method from the “all-measure top 15 list” can be proved significantly 

better than others from the same list according to the majority of the evaluation scores. As 

the “top performer” list includes four single-model methods alongside with three clustering 

methods (and one quasi-single), the tests suggest that the best performing CASP11 single-

model methods perform on-par with the clustering methods in identifying the best models. 

On the sel20 datasets, the dominance of clustering methods is also challenged, this time by 

quasi-single methods, as half of the top eight significantly similar methods in panel J are 

quasi-single methods.

2.1.2. How often EMA methods succeed or fail in recognizing the best models?: In 

complement to the previous subsection and using the same evaluation data we analyze the 

success rate of CASP11 EMA methods in identifying the best models. We assume that a 

method succeeds if the difference in scores between the best EMA model and the actual best 

model is small (within 2 score units) and fails if the difference is bigger than 10**. As high 

**For LDDT and CADaa, scores are normalized to the 0-100 scale.
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success rate and low failure rate are the desired features of an EMA method, we use the 

difference between these rates as a criterion to assess the methods' efficiency.

Figure 4 shows the percentage of targets for which the models identified as the best were 

0-2, 2-10 and >10 GDT_TS units away from the actual best models. It can be seen that the 

top-performing EMA methods can identify the best model with an error of less than 2 

GDT_TS units (green bars) for approximately one-third of the targets on the best150 sets. At 

the same time, these methods miss the best models by much (>10 GDT_TS units, red bars) 

for approximately 20% of the targets, with two methods (Pcons-net and Wallner) being an 

exception (failing only on 7% of the targets). Results according to other evaluation measures 

are shown in Figure S3 (panels A-C) of the Supplementary Material. Table III summarizes 

the relative performance of the groups providing ranks of their efficiency according to each 

of the evaluation measures. Panel A of the table confirms that single-model methods hold 

leading positions in the selection of the best models, with three methods of this type 

(Multicom-cluster, Multicom-novel and ProQ2-refine) being at the top. Similarly to the 

analysis in the previous section, the “top 12” list includes five single-model methods, four 

quasi-single methods and three clustering methods, and does not include the reference 

Davis-QAconsensus method.

Data for the sel20 datasets are provided in panels D-G of Figure S3 and in panel (B) of Table 

III. Comparing these with the best150 data, three major differences can be observed: (1) a 

different group of methods on the top, (2) a higher success rate of the best methods (usually 

above 70%), and (3) a lower failure rate (usually around 10%). The higher efficiency of the 

methods on the sel20 datasets is apparently related to the smaller number of models in the 

dataset and the larger separation in accuracy between the models.

2.1.3. Additional analysis outside of the regular CASP assessment: Identifying high 
accuracy outlier models: During the evaluation of model accuracy predictions it was 

brought to our attention by the free modeling assessor that one of the groups participating in 

tertiary structure prediction (G064, Baker) submitted outstanding high accuracy models for 

two difficult targets – T0806 and T0824. We thought it interesting to check if methods for 

estimation of model accuracy would be able to recognize the high level of accuracy of these 

models. As these models were submitted in the expert-predictor track and therefore outside 

of the regular server model-based assessments in the model accuracy estimation category, 

we asked the authors of the historically well-performing methods (Jianlin Cheng, Arne 

Elofsson, Liam McGuffin and Bjorn Wallner) to generate accuracy estimates for these 

additional models. We did not reveal the specific purpose of the request, the identity of the 

structure prediction group, nor the structures of the targets. Therefore, even though they 

were not part of the regular CASP11 EMA evaluation, the results of this exercise were 

generated in a blind prediction regime. Figure 5 shows that two of the single-model methods 

used in this exercise (ProQ2 and ProQ2-refine) were able to identify the outstanding 

structural models in the sets of over 450 models submitted for each of these two targets, 

while two other single-model methods (Multicom-cluster and Multicom-novel) succeeded 

on one of them (T0806). All clustering methods and a quasi-single model method from the 

selected research centers failed this test on both targets.
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2.1.4. Additional analysis outside of the regular CASP assessment: Model selection: We 

have also noticed that some well-performing groups are better than others in selecting the 

first model (which is expected to be the best) out of the five submitted to CASP (see Figure 

6). Similar to the above (2.1.3), outside-of-the-regular-CASP analysis shows that single-

model methods could have helped some of the well-performing CASP11 structure predictors 

in identifying their best models (Figure 7). In particular, the Baker group could have 

improved the accuracy of its first models by 2 GDT_TS points per target on average by 

using ProQ2 or ProQ2-refine method to rank the models. At the same time, using these 

methods for selecting Model_1 would only (slightly) worsen the results for the Zhang group, 

indicating that this group uses a reliable accuracy estimation method in their own structure 

prediction pipeline.

2.2. Distinguishing between good and bad models (QAglob.All)—In order to 

assess the ability to discriminate between good and bad models, we pulled together the 

models for all targets (QAglob.All) and then calculated the scores on the all-model 

evaluation sets. This differs from the approach used in the previous section, where we first 

calculated scores on a per-target basis (QAglob.PT mode) and only afterwards we averaged 

them. The conceptual difference between these two approaches is discussed in our previous 

EMA evaluation paper6 and relates to the difference between a relative and an absolute 

ranking. Both analyses were performed separately on the best150 and sel20 datasets, and the 

area under the curve (AUC) of the Receiver Operating Characteristic (ROC) analysis was 

used as a measure of the methods' accuracy.††

Figure 8 shows the ROC curves for the best 12 groups, using a threshold of GDT_TS=50 to 

separate good and bad models. The ROC curves according to the other evaluation measures 

are presented in Figure S4 of the Supplementary Material. The ROC curves for the top 

performing groups often look very similar, suggesting similar discriminatory power. The 

DeLong tests for each pair of ROC curves6 were performed to establish statistical 

significance of differences in group performance (see Table S2 in Supplementary Material). 

Figure 9 provides a summary in terms of the cumulative z-scores calculated on the areas 

under the ROC curves for the four evaluation measures.

The results suggest that clustering methods are superior in this task, holding top eight 

positions in the ranking. This indicates that, when many models are available and need to be 

partitioned in two classes (good/bad), clustering methods are particularly good. Quasi-single 

methods can compete with clustering methods if models in the datasets are widely spread in 

terms of their accuracy (as in the sel20 datasets). According to the results of the DeLong 

statistical significance tests on the best150 datasets, the Wallner method is shown to be 

better than other methods (except for the statistically similar Pcons-net method) according to 

the majority of the measures. On the sel20 datasets this group also performs very well, while 

other top groups are more similar to each other.

††We also used the Matthews' correlation coefficient for the good/bad model separation analysis. Results are very similar to those 
received with the ROC analysis, and therefore not presented here.
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2.3. Assigning relative model accuracy estimates (QAglob.PT & QAglob.All)—
This aspect of accuracy assessment was evaluated by computing the correlation between the 

predicted and observed model accuracy according to the four evaluation measures.

Figure 10 shows the GDT_TS-based correlation for all participating groups (A) in the per-

target based mode and (B) when all models are pulled together. The best performing EMA 

predictors reach a wmPMCC of 0.7 on the best150 datasets and 0.9 on the sel20 datasets in 

the per-target assessment mode, and a PMCC of around 0.9 on both datasets in the “all 

models pulled together” mode. Results according to other evaluation measures (see Figure 

S5 of the Supplementary Material) show approximately the same values of the correlation 

coefficients for the top groups according to these measures. This similarity indicates that, 

independently of the reference measure, EMA methods are usually quite reliable (correlation 

coefficient above 0.8) in ranking models in diverse datasets (such as QAglob.PT:sel20, 

QAglob.All:best150 or QAglob.All:sel20), and somewhat less reliable when the provided 

models span a narrower range of accuracy (as in QAglob.PT:best150). The magnitude of the 

drop in the correlation scores in the second case depends on the level of similarity inside the 

model dataset – see our paper3. As in CASP10, the top performing EMA methods are 

consensus-based, with Wallner and Pcons-net leading the rankings according to the majority 

of scores on the best150 datasets. The dominant position of these methods is confirmed by 

the data in Figure 11, which shows the cumulative z-scores over four evaluation measures, 

and in Table S3 (Supplementary Material) where we list the results of the statistical tests on 

the correlation coefficients. Figure 11 also demonstrates that two single-model methods 

(Multicom-novel and VoroMQA) exhibit good overall correlation on the best150 datasets, 

mostly because they achieve high scores according to the CADaa measure (see also Figure 

S5(C) and Table S3(C)). This perhaps is not surprising for VoroMQA, as this method is 

based on the same principle as the CADaa measure (similarity of contact areas).

2.4. Assigning absolute model accuracy estimates (QAglob.All)—Assigning of 

the model global accuracy scores was evaluated by computing the average differences 

between the predicted and observed model accuracies according to the four evaluation 

measures. These scores were calculated for all models evaluated in best150 and sel20 

datasets and then averaged separately for each dataset.

Figure 12A shows the average deviation between the predicted scores and the GDT_TS 

score for each participating group (only positive scores are shown). The best performing 

EMAs predict GDT_TS score of models with an average error of 6 GDT_TS units on both 

datasets. Similarly to the results in relative performance analysis (2.3), all top-performing 

EMAs are consensus-based, with MUFOLD-QA, DAVIS-QAconsensus and 

MULTICOM_refine holding the lead. The best performing non-clustering methods are 

ModFOLD5_single and MQAPmulti, with an average error of 11 GDT_TS units. Results 

according to other evaluation measures are presented in Figure S6 of the Supplementary 

Material and summarized as z-scores in Figure 12B. The picture on the best150 datasets is 

clear – the top seven positions in the rankings are occupied by clustering methods and they 

are well separated from the following two single-model methods in terms of performance.
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3. Estimation of local accuracy of models

While the global model accuracy scores provide estimates of overall model quality, per-

residue scores offer estimates of the correctness of the local structure and geometry. The 

local accuracy estimates can help recognize the well-modeled regions in relatively bad 

models and, vice versa, poorly modeled regions in overall good models. Here we assess the 

effectiveness of local estimators by verifying how well these methods (1) assign correct 

distance errors at the residue level, and (2) discriminate between reliable and unreliable 

regions in a model.

3.1. Assigning proper error estimates to the modeled residues (QAloc.PT)—
For the twenty-one groups that submitted model confidence estimates at the level of 

individual residues, we measured the correlation between predicted and observed distance 

errors, setting all values exceeding 5Å to 5Å3.

Panels A and B in Figure 13 show the mean z-scores and weighted means for PMCCs for 

the participating groups on the best150 and sel20 model sets, respectively. As in CASP10, 

two clustering methods (Pcons-net and Wallner) achieve the highest scores on both datasets. 

On the best150 datasets, these groups are significantly better than all the others; on the sel20 

datasets they are statistically indistinguishable from each other and from two other groups -

ModFOLD5 and ModFOLD5_single, and better than the remaining groups (see Table S4, 

Supplementary Material). Two quasi-single methods (myprotein-me and 

ModFOLD5_single) reach correlation coefficients around 0.6 on both datasets, a figure just 

slightly smaller than that for the best pure clustering methods.

3.2. Discriminating between good and bad regions in the model (QAloc.All)—
To evaluate the accuracy with which the correctly predicted regions can be identified, we 

pulled the submitted estimates for all residues from all models and all targets (over 

3,300,000 residues from over 13,000 models per EMA predictor in the best150 datasets and 

approximately 440,000 residues from over 1,700 models in the sel20 sets). We calculated the 

Matthews correlation coefficient for these residues and carried out the ROC analysis (see our 

CASP10 assessment paper6 for details). Similarly to global classifiers (i.e., good/bad 

models), the ranking of local classifiers (reliable/unreliable residues) appears to be very 

similar according to the Matthews correlation coefficient and the ROC analysis, therefore we 

only discuss here the results of the ROC analysis.

Figure 14 demonstrates that, similarly to CASP10, two methods from the L. McGuffin group 

(University of Reading, UK), namely ModFOLDclust2 and ModFOLD5, are on top of the 

list of the local classifiers. In general, the difference between the best predictors in terms of 

the AUC is very small as the AUC bars in the insets of Figure 14 are practically of equal 

height for the first five groups on the best150 datasets and for the first four groups on the 

sel20 datasets. The reference DAVIS-QAconsensus method is among the best methods on 

both datasets, indicating that no method can significantly outperform the simple clustering 

approach. The best quasi-single method (ModFOLD5_single) just slightly lags behind the 

top 5 methods on the best150 datasets and is the third on the sel20 datasets, which is a 

reasonably good result. Single-model methods are in the bottom part of the result tables 

according to both evaluation procedures (i.e., 3.1 and 3.2) of the QAloc analysis.
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4. Ability to self-assess the reliability of model coordinates in TS modeling (QAself)

Providing realistic error estimates for residues in structural models increases the usefulness 

of structure prediction methods and is an essential guide for real-life applications.

To evaluate the ability of TS predictors to assign realistic error estimates to the coordinates 

of their own models, we computed the log-linear Pearson correlation between the observed 

and predicted residue errors and performed a ROC analysis. The assessment was performed 

separately for all participating groups on a subset of “all-group” targets (Figure 15), and for 

server predictors on all targets (Figure S7 in Supplementary Material). Two groups (Pcons-

net and IntFOLD3, both servers) lead all ranking lists in the QAself category. They show 

correlation coefficients above 0.6 on a subset of “all-group” targets, and of around 0.75 on 

all assessed targets. Their AUCs are above 0.8 on “all-group” targets and at the 0.9 level for 

all targets (ROC curves themselves are shown in Figure S8). These two groups are 

statistically indistinguishable from each other according to the results of the DeLong and z-

tests with 0.05 significance level, and better than all other QAself estimators, except for one 

correlation-based similarity case (see Table S5 in Supplementary Material). As the QAloc 

and QAself categories are conceptually similar, it is not surprising that the best-performing 

predictors in these two categories were developed by the same research groups (led by A. 

Elofsson and L. McGuffin).

In order to provide a baseline estimate of the accuracy of the QAself predictions, we 

compared them with the per residue accuracy estimates from two single-model EMA 

methods not participating in CASP: QMEAN15 and Verify3D16. Figures 15 and S6, and 

Table S5 demonstrate that the top ranked CASP11 methods perform better than these 

baseline methods.

Figure 16 (panels A and B) visualizes the striking difference, in terms of PMCC, between 

the local error estimates provided by one of the leading QAself groups, Pcons-net (TS410), 

and the group LEER (TS044), which ranks among the best in the TBM category. One can 

easily notice the good correlation between the observed and predicted error values for the 

first group, and essentially no correlation for the second. We believe that assigning 

confidence estimates to the coordinates should be common practice for structure predictors, 

and strongly encourage predictors to provide such estimates.

To conclude this section we want to mention that not all the values provided in the B-factor 

field of the models could be sensibly interpreted as distances. In particular, 49 out of 96 

groups submitted values higher than 99 at least once, and 44 groups submitted values 

averaging 20 or higher (see Table S6). As these numbers are too high to be considered 

reasonable distance estimates, some groups have either misinterpreted the format or perhaps 

attempted predicting crystallographic B-factors rather than position errors.

To give these groups the benefit of doubt and to attempt a correct interpretation of the 

submitted values, we calculated the RMSD between the predicted errors and (1) the actual 

Cα -Cα distances d between the corresponding atoms in the optimal model-target LGA 

superposition, and (2) pseudo B-factors derived from these distances using the formula B = 

8π2 d2/3 17. Only six predictors (TS193, TS212, TS171, TS452, TS335, TS414 – see 
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CASP11 web site for the group names) submitted confidence estimates that are more similar 

to crystallographic B-factors than distances (green-shaded cells in Table S6). For these six 

groups this analysis nevertheless showed that even with the benefit of doubt they would not 

be among the best performers.

5. Progress and comparison with the reference methods

Estimation of the CASP-to-CASP progress is always somewhat tricky as it is difficult to 

disentangle the effect of methodological advances from the differences in target difficulty 

and assessment procedures, or the evolution of databases. The CASP11 vs. CASP10 

comparison is not an exception since the target sets appear to be of identifiably different 

predictive difficulty (see Figure 17); the databases grew; the experiment conditions changed 

(different number of servers resulted in different percentage of models included in the QA 

datasets, thus affecting the overall model quality spread); and the assessment procedures 

evolved.

To provide a baseline for QAglob and QAloc methods' performance, we used the in-house 

developed DAVIS-QAconsensus method that has not changed since its first implementation 

in CASP9. Ratio between the scores of this method in different rounds of CASP may serve 

as an estimate of the expected change in performance due to non-methodological factors. If 

this change is small compared with the results of the best methods (i.e., if the CASP-to-

CASP ratio of scores of the best methods exceeds that of the reference method), it may 

indicate progress in the field. In QAself, we used single-model EMA methods QMEAN and 

Verify3D as baseline methods.

5.1. Progress in estimation of overall model accuracy (QAglob)—Figure 18 

shows the results of the comparison of the best methods and the reference DAVIS-

QAconsensus method in CASP11 and CASP10 in the QAglob (first five scores along the x-

axis) and QAloc (last two scores) analyses. The best150 datasets in CASP11 were more 

challenging than those in CASP10 for identifying best models as scores of the reference 

method (blue bars) dropped by more than 30% in both components of this analysis (Loss, 

2.1.1 and Efficiency, 2.1.2). At the same time, these datasets appeared approximately of the 

same difficulty for good/bad model separation task (AUC, 2.2) and all-model correlation 

analysis (PMCC, 2.3), and easier for the per-target correlation analysis (wmPMCC, 2.3). 

Results of the best methods (red bars) remained practically unchanged for the “loss” and 

improved by 15% for the “efficiency”, thus suggesting relative progress according to both 

measures. There was no improvement in performance according to the AUC and PMCC 

analyses (bars very close to 1.0 and very similar to the reference method). Per-target 

correlation (wmPMCC) of the best methods improved by 18% (from 0.62 to 0.73 – absolute 

data are not shown on the graph), but the correlation for the reference method also grew by 

the same amount, thus suggesting that the increase in the correlation scores can be 

associated with the difference in the composition of the model datasets rather than with 

advancements in methodology. Data in panel (B) suggest conceptually similar conclusions 

on the progress of methods on the sel20 datasets, with the largest improvements in the loss-

based analysis (average loss decreased by 27% from 3.40 to 2.67) and efficiency (increased 

by 39% from 0.52 to 0.73). Again, we underscore that these data should be taken with a 
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grain of salt as the composition of sel20 datasets is very different in CASP10 and CASP11 

(compare panels B and C in Fig.17).

Relative increase in scores for the best single model methods was higher than that for the 

reference method in four out of five components of the QAglob analysis (except for 

wmPMCC) on the best150 datasets, and in three out of five components (except for 

wmPMCC and efficiency) on the sel20 datasets, which can be indicative of the progress in 

the development of this type of methods.

5.2. Progress (or lack thereof) in estimation of local model accuracy (QAloc)—
The data for QAloc show that the correlation on the per-residue distances (wmPMCC, 3.1) 

dropped in CASP11 for all types of methods on both datasets (red and green bars in the 

second to last column in Figure 18 are below the 1.0 line). As correlation for the reference 

method also dropped by approximately the same rate (blue bars), this suggests a “no 

change” conclusion. The same conclusion can be drawn from the analysis of the ability to 

differentiate between the reliable and unreliable regions in models (AUC38, 3.2) as the 

results for the reference method and the best methods did not change much since CASP10.

5.3. Progress in estimation of errors in own structural models (QAself)—In 

general, more predictors submitted reasonable per-residue error estimates for their models in 

CASP11 than in CASP10. Figure 19 shows that more ROC curves in CASP11 run closer to 

the left upper corner of the plot, indicating more successful predictors (i.e. those with low 

false positive rate and high true positive rate). The data also shows that many more methods 

in CASP11 are doing better than the baseline method: while in CASP10 the QMEAN 

method was #7 on the human/server targets, and #3 on all targets (according to the AUC), in 

CASP11 it was correspondingly #23 and #12 (see Figures 15 and S6). The median 

correlation coefficient between the actual and estimated distances rose from around 0.10 in 

the two previous CASPs to 0.25 in CASP11, supporting the ROC-based conclusion.

Figure 20 shows the results of the comparison of the best methods and the reference method 

(QMEAN) in CASP11 and CASP10 for the QAself estimates. It can be seen that red bars 

dropped slightly below the 1.0 line in all four cases, indicating the decreasing evaluation 

scores. In particular, the correlation scores (PMCC, 4.1) dropped for the best groups on a 

subset of “all-group” targets by 9% (from 0.70 to 0.64) and for server groups on all targets 

by 3% (from 0.78 to 0.76). As the scores for the reference method decreased much more 

(31% for all groups (0.44 to 0.30) and 23% for servers (0.52 to 0.40)), we can conclude that 

the drop in the correlation for the best CASP methods is more than offset by the change in 

targets' difficulty for this type of the analysis.

Conclusions

The detailed analysis presented here will hopefully be valuable for developers of the 

methods for estimation of model accuracy to understand the bottlenecks to progress and 

where they should focus their future efforts, but it also contains useful suggestions for other 

scientists, users and developers of structure prediction methods in general. In the following, 
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we summarize conclusions and some rules of thumb that should be taken into account when 

selecting the appropriate method to use.

1. When models from more than one structure prediction server are available 

or when a server produces a list of models and the task is to choose the 

most plausible ones, a user can take advantage of either single-model or 

clustering EMA methods since they are equally effective in identifying the 

best models. The expected selection error for the best methods is around 

7% in terms of the GDT_TS score. The most successful single-model 

method available as a public server is ProQ2.

2. If a user wishes to filter out “worse” models from a set, the suggestion 

deriving from this analysis is to take advantage of clustering methods. The 

same is true if a ranked list of the models is needed. Pcons-net and Wallner 

methods consistently appear among the leading groups across the board of 

assessment modes and evaluation scores.

3. If a user has a single model, clustering EMA methods are not applicable. 

To estimate the overall correctness of the model's backbone, the best 

choice would be the quasi-single method ModFOLD5_single. The 

expected estimate error, though, is quite high, at 11 GDT_TS units. If a 

user is interested not only in the overall fold accuracy, but also in local 

features of the model (e.g., correctness of reproducing contacts), methods 

from the ProQ2 and MQAP series would be the best bet.

4. Accuracy at the level of individual residues is usually better predicted by 

clustering methods, including methods from the Pcons and ModFold 

family. Nevertheless, quasi-single methods, such as myprotein-me and 

ModFOLD5_single show accuracy just slightly lower than that of the best 

pure clustering methods. These methods can be helpful for assigning 

residue reliability scores for models selected as candidates for molecular 

replacement experiments in X-ray crystallography.

5. More structure predictors (15 in CASP11 vs 6 in CASP10) put effort in 

assigning local error estimates to their models. This speaks well about the 

development of the field. We expect that more and more often users will 

receive models annotated with expected accuracy. We prompt the users to 

take advantage of this information when it is available. In CASP11, the 

Pcons-net and IntFOLD3 methods showed the best performance in this 

category according to all evaluation scores.

6. It is important to notice that scores for the best global and local accuracy 

prediction methods did (slightly) improve in CASP11 compared to 

CASP10. We showed that this is not necessarily due to methodological 

improvements, but to other factors. On one side, this is not very 

satisfactory and should prompt predictors to explore other avenues. On the 

other, users can expect that the predictions they obtain will continue to 

improve as, for example, the size of databases increases.
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In summary, we hope that the results of the thorough analysis of the results of this large 

world-wide experiment will be instrumental to direct the future development of the field and 

be informative for model users. In particular, we would like to stress that the observed 

progress in selecting the best model from a set is welcome and interesting, but should also 

be complemented by more efforts in annotating quality at the residue level. Some progress 

has been observed in this area, but perhaps some pressure from the users in requiring that a 

model is regularly provided together with an accuracy estimate might also help pushing the 

field in the right direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

EMA Estimation of Model Accuracy

MQA Model Quality Assessment

QAglob.PT per-target global quality assessment

QAglob. All all models pooled together global quality assessment

QAloc.PT per-target local quality assessment

QAloc.All all models pooled together local quality assessment

QAself self-assessment of residue error estimates

best150 a dataset comprised of the best 150 models submitted on a 

target according to the benchmark consensus method

sel20 a dataset comprised of 20 models spanning the whole range 

of server model difficulty on each target

TS Tertiary Structure

ROC Receiver Operating Characteristic

GDT_TS Global Distant Test – Total Score

CC Correlation Coefficient

PMCC Pearson's product-Moment Correlation Coefficient

MCC Matthews' Correlation Coefficient

wmPMCC weighted mean of PMCC
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Figure 1. 
Average difference in global accuracy estimates submitted by CASP11 predictors on the 

same models in two different stages of the EMA experiment. Groups are sorted by the 

increasing average absolute difference between the stage 1 and stage 2 scores. The red 

vertical line (corresponding to a difference of 0.02) separates methods that generate 

approximately the same accuracy scores for the same models in both stages of the 

experiment (left) and those that do not (right). Single-model methods (blue) and clustering 

methods (grey) are on different sides of the line. Quasi-single methods (green) can be found 

on the both sides of the separation line.

Kryshtafovych et al. Page 18

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Average difference in accuracy between the models predicted to be the best and the actual 

best according to the GDT_TS score. For each group, the differences are averaged over all 

predicted targets for which at least one structural model had a GDT_TS score above 40. The 

graph shows the results on two datasets: best150 (upper bars, darker color) and sel20 (lower 

bars, lighter color). Clustering methods are in black, single-model methods in blue and 

quasi-single model methods in green. Groups are sorted according to the accuracy loss on 

the best150 datasets. Lower scores indicate better group performance. According to the 

global GDT_TS score alone, clustering methods occupy the top three places in the results 

table. The accuracy difference in identifying the best models with the best clustering method 

and with the best single-model method is within the 2 GDT_TS tolerance threshold used 

here to define similar models.
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Figure 3. 
Comparison of group performance based on cumulative z-scores of the GDT_TS errors for 

CASP11 groups on the best150 (upper bars, darker color) and sel20 (lower bars, lighter 

color) datasets. The higher the score (i.e., the longer the bar), the better the group 

performance. Z-scores for each of the four evaluation measures (GDT_TS, LDDT, CADaa, 

and SG) are calculated from the distributions of the corresponding average errors and then 

added. Groups are sorted according to the decreasing z-scores on the best150 datasets and 

bars are shown only for groups with above average performance (i.e., with cumulative 

z_score>0). The color scheme used for the methods is the same as in Figure 2. Efficiency of 

the best single-model methods is comparable with that of clustering methods as three single-

model methods are among the best five.
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Figure 4. 
Success rates of CASP11 methods in identifying the best models. The percentage of targets 

where the best EMA model is less than 2 (green bars), more than 2 and less than 10 (yellow) 

and more than 10 (red) GDT_TS units away from the actual best model on the best150 

datasets. The percentages are calculated on targets for which at least one structural model 

had a GDT_TS score above 40. Groups are sorted by the difference between the green and 

red bars. Top performing groups can correctly identify the best models in roughly one in 

three test cases.
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Figure 5. 
Results of ten EMA methods on two free modelling targets - T0806 (panel A) and T0824 

(panel B). The top portions of the graphs show ranks of the models denoted as superior by 

the assessors, while the bottom portions show the difference in GDT_TS between the model 

with the highest predicted accuracy and the model with the highest GDT_TS score. Bars 

reaching the top of the scale in upper portions of the graphs indicate that the corresponding 

EMA methods assigned scores to the outstanding models outside the best 60. Two single-

model methods, ProQ2 and ProQ2-refine, were able to correctly identify outstanding 

structural models among the 450 submitted on each of the targets, and assigned ranks 1 to 3 

to the superior three models on T0806 and ranks 1 and 2 to the best two models on T0824.
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Figure 6. 
Difference in the GDT_TS scores between the models designated as #1 and the best models 

(out of the five submitted) for four well performing CASP11 structure prediction groups. 

Each data point corresponds to one domain. Domains are sorted according to the increasing 

difference score for each group. Data is plotted on 78 “all-group” domains for human-expert 

groups (Baker and Zhang) and 126 domains for server groups. Data show that the Zhang and 

Zhang-server groups were able to select the best models better than the Baker and Rosetta 

groups. In particular, the Zhang group correctly identified the best model on 31 domains, 

while Baker only on 18; at the same time the Zhang group missed their best models by more 

than 10 GDT_TS only in 4 cases, while the Baker group in 23. The Zhang-server selected 

the first models within 2 GDT_TS units from the best in 82 cases (out of 126), while Rosetta 

for 53.
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Figure 7. 
Average per-target difference in GDT_TS scores between the model with the highest 

accuracy score as assigned by five EMA methods and Model_1 as submitted by four 

structure prediction groups (x-axis of the graph). Three out of the four tested groups could 

have improved the accuracy of their first models using ProQ2 or ProQ2-refine method to 

rank their models.
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Figure 8. 
ROC curves for the best performing EMA groups according to the GDT_TS score on (A) 

best150 and (B) sel20 datasets. The separation threshold between good and bad models is set 

to GDT_TS=50. Group names are ordered according to decreasing AUC scores. The data are 

shown for the best 12 groups only. For clarity, only the left upper quarters of ROC curves are 

shown (FPR≤0.5, TPR≥0.5). Top performing groups show similar discriminatory power with 

clustering methods and perform slightly better than single-model methods.
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Figure 9. 
Cumulative z-scores of the AUCs for CASP11 groups on best150 (upper bars, darker colors) 

and sel20 (lower bars, lighter color) datasets. Z-scores for each of the four evaluation 

measures (GDT_TS, LDDT, CADaa and SG) are calculated from the distributions of the 

corresponding AUCs and then added. The higher the score, the better the group 

performance. Groups are sorted according to the decreasing z-scores on the best150 datasets 

and bars are shown only for groups with above the average performance (i.e., cumulative 

z_score>0). The color scheme for the methods is the same as in Figure 2. Clustering 

methods are shown to be superior in this analysis.
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Figure 10. 
(A) Weighted means of per-target Pearson correlation coefficients (wmPMCC) and (B) 

Pearson correlation coefficients (PMCC) computed on the datasets comprising all models in 

the best150 and sel20 datasets. Each panel shows the data for two datasets: best150 (darker 

colors) and sel20 (lighter colors). Groups are sorted according to the decreasing correlation 

on the best150 datasets. The color scheme for the methods is the same as in Figure 2. The 

best performing methods are well equipped to correctly rank models in the datasets, showing 

high correlation between the predicted and actual model accuracy scores.
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Figure 11. 
Cumulative z-scores of the correlation coefficients for CASP11 groups on best150 (upper 

bars, darker colors) and sel20 (lower bars, lighter colors) datasets. Z-scores for each of the 

four evaluation measures (GDT_TS, LDDT, CADaa and SG) were calculated from the 

distributions of the corresponding correlation coefficients and then summed up. The higher 

the score, the better the group performance. Groups are sorted according to the decreasing z-

scores on the best150 datasets and bars are shown only for the groups with above the 

average performance (i.e., cumulative z_score>0). The color scheme for the methods is the 

same as in Figure 2. Two clustering methods (Wallner and Pcon-net) are apparent leaders in 

ranking the models. Two single-model methods (Multicom-novel and VoroMQA) hold 

positions 3 and 4 in ranking due to their relatively high scores on one of the local evaluation 

measures (CADaa).
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Figure 12. 
(A) Average deviations of accuracy estimates from GDT_TS scores of the assessed models. 

For each group, the deviations are calculated for each model and then averaged over all 

predicted models. Lower scores indicate better group performance. (B) Cumulative z-scores 

of the deviations of absolute accuracy estimates for the CASP11 groups. Z-scores for each 

of the four evaluation measures (GDT_TS, LDDT, CADaa, and SG) are calculated from the 

distributions of the corresponding average errors and then added. The higher the score, the 

better the group performance. Data bars are shown only for groups with above the average 

performance. In both panels, graphs show the results for two datasets: best150 (upper bars, 

darker color) and sel20 (lower bars, lighter color). Clustering methods are in black, single-

model methods in blue and quasi-single model methods in green. Groups are sorted 

according to the results on the best150 datasets. The best performing methods are capable of 

predicting the absolute accuracy of models with an average per-target error of 6 GDT_TS.
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Figure 13. 
Correlation analysis for 20 individual groups and the Davis-QAconsensus reference method 

for the per-residue accuracy prediction category. Correlation analysis results are calculated 

on a per-model basis and subsequently averaged over all models and all targets in the (A) 

best150 and (B) sel20 datasets. The color scheme for the methods is the same as in Figure 2. 

The best methods show a correlation of just above 0.6 in local accuracy estimates.
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Figure 14. 
Accuracy of the binary classifications of residues (reliable/unreliable) based on the results of 

the ROC analysis for (A) best150 and (B) sel20 datasets. A residue in a model is defined to 

be correct when its Cα is within 3.8Å from the corresponding residue in the target. For 

clarity, only the left half of a typical ROC-plot is shown (FPR≤0.5). Group names are 

ordered according to decreasing AUC scores; the inset shows the AUC38 scores for the 

corresponding ROC curves. (AUC38 = AUC with the 3.8Å cutoff). The ModFOLDclust2 

and ModFOLD5 methods are on top of the list of the local classifiers; the reference 

Davis_QAconsensus method shows comparable results.
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Figure 15. 
Assessment of per-residue confidence estimates (QAself) on “all-group” targets. Data are 

provided for the top 38 groups and two baseline single-model EMA methods - Verify3D and 

QMEAN (red bars). (A) Log-linear Pearson correlation coefficients. (B) AUC values from 

the ROC curve analysis with the cutoff of 3.8 Å separating correctly/incorrectly modeled 

residues.
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Figure 16. 
Predicted residue errors vs. observed distances for two CASP11 groups: (A) TS410 (Pcons-

net) and (B) TS044 (LEER). The straight black lines represent the least-squares fitted curves 

described by first-degree polynomials.
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Figure 17. 
(A) Average minimum (lower margin of the bar), average mean (black line in the middle of 

the bar) and average maximum GDT_TS score (upper margin of the bar) for the models 

included in the best150 and sel20 datasets. CASP11 bars are in green, CASP10 in blue. The 

data for the best150/sel20 sets are shown in the left/right half of the graph in darker/lighter 

colors, respectively. It can be seen that structural models in the CASP11 QA datasets have, 

on average, lower accuracy and larger spread than those in the corresponding CASP10 sets. 

(B,C) Range of GDT_TS scores for models in CASP11 and CASP10 sel20 datasets. Each 

bar corresponds to one target. Targets are sorted by increasing maximum GDT_TS. It can be 

seen that the sel20 datasets contained inaccurate models for all targets in CASP11 (resulting 

in a low average mean around 10 – see panel A), and only for some in CASP10 (average 

mean around 30).
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Figure 18. 
CASP11/CASP10 ratio in scores for the reference DAVIS-QAconsensus method and the 

best QAglob and QAloc methods in the GDT_TS-based evaluations on (A) best150 and (B) 

sel20 datasets. The first five scores along the x-axis are for the QAglob analysis (sections 

2.1-2.3 in the text), the last two – for the QAloc (sections 3.1.-3.2). The ratio for the loss 

(2.1.1) is calculated on the inversed scores since in this case a lower value corresponds to 

better performance; the efficiency of recognizing the best models is evaluated in terms of the 

difference between the success and failure rates (see section 2.1.2). Values above 1.0 

indicate better results in CASP11 than in CASP10. Cases where the ratios for the best 

methods are higher than those for the reference method may indicate methodological 

improvements.
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Figure 19. 
Comparison of the ROC curves for QAself predictors in (A) CASP11 and (B) CASP10. In 

CASP10, there were only 6 groups from 2 research centers (L.McGuffin and A.Elofsson) 

with reasonably predicted distance errors. A big gap between ROC curves for these 6 top 

methods and the remaining ones is noticeable. In CASP11 there are many more predictors 

generating reasonable distance error scores than in previous experiments.
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Figure 20. 
CASP11/CASP10 ratio in scores for the reference QMEAN method and the best QAself 

methods for (A) all groups on “all-group” targets and (B) server groups on all CASP11 

targets. Values above 1.0 indicate better results in CASP11 than in CASP10. Cases where 

ratios for the best methods are higher than those for the reference method may indicate 

methodological improvements.
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Table I

Classification and short description of CASP11 QA methods. (For a more detailed description please consult 

CASP11 Methods Abstracts - http://predictioncenter.org/casp11/doc/CASP11_Abstracts.pdf).

Method C/S L/G Short description

BITS S* G
Structural quality of predicted binding sites; if no binding site is identified - global structural 
comparison with a model predicted using multiple templates; if no templates - scoring with a 
knowledge-based potential.

ConsMQAPsingle S*M G 0.8*MQAPsingleA + 0.1*MQAPSingleC + 0.1*MetaMQAP.

DAVIS-QAconsensus C LG Average GDT-TS score to all other models in a decoy set with subsequent target length 
normalization.

FUSION S LG Probability of the torsional angles against an Input-Output Hidden Markov Model conditioned 
on protein sequence and predicted secondary structures of the model.

Keasar S* G Standard energy terms, solvation, and metaterms that compare the distributions of per-atom 
energy values to the ones observed in native structures (using the in-house MESHI package).

LNCCUnB S* LG Overall atomic burial similarity (mutual information) between the submitted structures and 
the in-house predictions.

ModFOLD5 C LG Clustering of models in CASP datasets together with IntFOLD3 models using 
ModFOLDclust2 approach.

ModFOLD5-single S* LG Comparing every model in the CASP dataset against the pool of IntFOLD3 models using a 
global and local scoring approach similar to that used by ModFOLDclust2.

ModFOLDclust2 C LG Global: mean of the QA scores obtained from the ModFOLDclustQ method and the original 
ModFOLDclust method; local: the per-residue score taken from ModFOLDclust.

MQAPmulti (MQAPsingleC) S G Linear regression of all the afore-mentioned single-model QA-metrics.

MQAPsingle S*M G Compares models in the test set against models generated by GeneSilico metaserver using the 
MQAPmulti algorithm.

MQAPsingleA S*M G Average GDT_TS distance of the model to GeneSilico models.

MQAPsingleB S*M G 0.8*MQAPsingleA + 0.2*MQAPsingleC.

MUFOLD-QA C G Average pair-wise similarity of the model to all models in a test set with complement of 
models generated by MUFOLD server.

MUFOLD-server C G Combination of single scoring functions (secondary structure, solvent accessibility, torsion 
angles) with consensus GDT.

MULTICOM-clust S LG An SVM-based score combining predicted secondary structure, solvent accessibility and 
PSICOV and DNcon contact scores.

MULTICOM-constr C LG The features used by MULTICOM-cluster (above) + a normalized pairwise score.

MULTICOM-novel S LG Combination of the density maps of physical-chemical features, and four single-model energy 
scores.

MULTICOM-refine C LG
Global: average GDT-TS score from the pairwise comparison for easy targets and the Model 
Evaluator score for harder ones; local: random forest based on physical-chemical features of 
each residue.

myprotein-me S* LG
Random forest combining agreement of top-ranked predicted contacts, secondary structure 
prediction by PSIPRED, and four statistical potentials: dDFIRE, RW/RW+ and 
ORDER_AVE.

NNS S* G Similarity to in-house structure models in combination with a single-model score based on 
random forest approach.

PconsD C LG Fast, superposition-free method based on consensus of inter-residue distance matrices.

Pcons-net CM LG Structural consensus of models.

ProQ2 S LG Combination of evolutionary information, multiple sequence alignment and structural features 
of a model using SVM

ProQ2-refine S LG Sidechain repacking to find the optimal ProQ2 score given the current backbone.
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Method C/S L/G Short description

Raghavagps-qaspro SM G Regression model combining secondary structure and evolutionary features.

RFMQA S* G Random forest machine learning using secondary structure, solvent accessibility and potential 
energy terms.

VoroMQA S LG Comparing inter-atomic contact areas and solvent contact areas using a knowledge-based 
potential.

Wallner C LG Pcomb=0.2*ProQ2+0.8*Pcons.

Wang_deep_1,2,3 S LG Deep learning algorithm (stacked denoising autoencoders) based on PSI-BLAST profile, SS 
and residue-residue contact comparisons.

Legend:
G – a global quality estimator (one score per model).
L – a local quality estimator (per-residue reliability scores).
S – a single model method capable of generating the quality estimate for a single model without relying on consensus between models or templates.
C – a clustering (consensus) method that utilizes information from a provided set of models.
S* - a quasi-single model method capable of generating the quality estimate for a single model but only by means of preliminary generation of 
auxiliary ensembles of models or finding evolutionary related proteins and then measuring similarity of the sought model to the structures in the 
ensemble.
M – a meta-method combining scores from different quality assessment methods.
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