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Abstract

Vitamin A deficiencies are common throughout the world and have a significant negative influence on immune
protection against viral infections. Mouse models demonstrate that the production of IgA, a first line of defense
against viruses at mucosal sites, is inhibited in the context of vitamin A deficiency. In vitro, the addition of
vitamin A to activated B cells can enhance IgA expression, but downregulate IgE. Previous reports have
demonstrated that vitamin A modifies cytokine patterns, and in so doing may influence antibody isotype
expression by an indirect mechanism. However, we have now discovered hundreds of potential response
elements among Sl, Se, and Sa switch sites within immunoglobulin heavy chain loci. These hotspots appear in
both mouse and human loci and include targets for vitamin receptors and related proteins (e.g., estrogen
receptors) in the nuclear receptor superfamily. Full response elements with direct repeats are relatively infre-
quent or absent in Sc regions although half-sites are present. Based on these results, we pose a hypothesis that
nuclear receptors have a direct effect on the immunoglobulin heavy chain class switch recombination event. We
propose that vitamin A may alter S site accessibility to activation-induced deaminase and nonhomologous end-
joining machinery, thereby influencing the isotype switch, antibody production, and protection against viral
infections at mucosal sites.

V itamin A is a critical nutrient for the protection of
humans from infectious disease (9,30,34,37). Functions

of vitamin A include upregulation of IgA among activated B
cells (29), and downregulation of IgE (41). This vitamin is
well known for its capacity to bind nuclear receptors and
modulate gene expression. Examples of receptors are the
retinoic acid receptor (RAR) and the retinoid X receptor
(RXR), bound respectively by all-trans retinoic acid and
9-cis retinoic acid metabolites. RAR and RXR are members
of the nuclear receptor superfamily, which is inclusive of
retinoic acid, vitamin D, thyroid hormone, and steroid re-
ceptors. Typically, these receptor proteins have a central
DNA-binding domain with which the protein is targeted to a
particular DNA response element sequence. Receptors usu-

ally assemble as homodimers or heterodimers. The bio-
logical influences of vitamins and hormones are highly
complex, because ligand and DNA-binding patterns of
nuclear receptors are promiscuous (1,4–7,13,18). A com-
mon binding site for RAR-RXR heterodimers (retinoic acid
response element [RARE]) is a direct repeat (DR) of two
puG(G/T)TCA half-sites, but sequences, spacing, and half-site
orientations are variable (15).

The upregulation of cytokines is one method by which
vitamins influence antibody isotype expression patterns
(21,29,32,35–37). For example, vitamin A can upregulate
interleukin 6 (IL-6), a cytokine that supports maturation and
stabilization of IgA-producing cells (29). However, we now
hypothesize that vitamins may also have a direct influence
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FIG. 1. Response element half-sites in the mouse Sa and Sc2b regions. Response element half-sites are shown by color
coding in the Sa (A) and Sc2b (B) regions. Mouse and human immunoglobulin heavy chain S regions were accessed from
the NCBI Nucleotide database (19,20,22,42). Access IDs included the following—Human IgA1: L19121.1, Human IgA2:
AF030305.1, Human IgE: X56797.1, Human IgG1: U39737.1, Human IgG2: U39934.1, Human IgG3: U39935.1, Human
IgG4: X56796.1, Human IgM: X54713.1, Mouse IgA: D11468.1, Mouse IgE: M57385.1, Mouse IgG1: M12389.2, Mouse
IgG2a and IgG2b: D78344, Mouse IgG3: M12182.1, and Mouse IgM: AC073553.
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on the B cell heavy chain class switch recombination (CSR)
event. The CSR involves deletion of intervening sequences
within the immunoglobulin heavy chain locus between
a target S (e.g., Sa) and an upstream S (e.g., Sl or Sc2b)
region during B cell maturation. S regions are each com-
posed of a tandem array of repeating elements, and no
two regions are alike (10). Coincident with the CSR is an
increase of germline transcripts, initiated at promoters up-
stream of the targeted S and CH genes. Germline transcripts
can form hybrids with DNA, visualized as R-loops (45).
During the transcription process, RNA polymerase II mole-
cules pause in S regions and proteins associated with paused
polymerases can recruit activation-induced deaminase (AID)
(2,24,27,39,44). Typically, AID drives the CSR process by
converting cytosine to uracil in DNA (17,25). A potential
next step is for uracil DNA glycosylase to excise uracil (26),
rendering the abasic site vulnerable to cuts by apyrimidinic/
apurinic endonucleases (33), followed by double-strand breaks
and nonhomologous end joining (3).

To determine if potential response elements exist in the
heavy chain locus, we searched for eight different RARE-
like half-sites within published murine S regions, including
direct and reverse complement sequences. As shown in
Figure 1A, our search revealed an extraordinary number of
juxtaposed half-sites in the Sa region. The most frequent
distances between half-sites were 4 and 9 nucleotides (DR4
and DR9), the former most typical of heterodimeric,
thyroid hormone, or liver X receptor (TR-RXR; LXR-
RXR) binding motifs (38). Like Sa, Sl, and Se regions
exhibited high-density response elements (Supplementary
Figs. S1 and S2; Supplementary Data are available online at
www.liebertpub.com/vim). One-half sites existed in Sc re-
gions, but these were rarely or never juxtaposed (Fig. 1B and
Supplementary Figs. S3–S5).

In a separate analysis, we examined human S regions. As
was the case for mouse S regions, the frequency of juxta-
posed half-sites was very high in human Sa (Sa1 and Sa2),
Sl, and Se with numerous DR4 and DR9 patterns, but
juxtaposed half-sites in Sc sequences were relatively rare or
absent (Supplementary Figs. S6–S13).

Because the half-site TGAGCT (reverse complement
AGCTCA) was especially frequent, a full scan for this se-
quence in mouse and human heavy chain loci was con-
ducted. Figure 2 illustrates the high density of AGCTCA
sites in Sl, Sa, and Se regions for both human and mouse
loci, and shows that when half-sites were observed in Sc
regions, they were often oriented as the reverse complement.
Results support a hypothesis that retinoid receptors directly
bind Sl, Sa, and Se regions and thereby promote or inhibit
Sl-Sa and Sl-Se joins. The half-sites in Sc regions are
rarely adjacent to one another, atypical of consensus RARE
motifs, but might nonetheless support weak binding of nu-
clear receptors or binding of related proteins.

To seek potential binding sites for other nuclear receptors,
we asked if potential estrogen response elements (ERE)
were frequent in S regions of heavy chain loci. RARE and
ERE can be juxtaposed to mediate multihormonal respon-
siveness in gene regulation, and estrogen is known to in-
fluence AID and CSR (12,16,23). A canonical DNA motif
for the estrogen receptor is a palindrome with half-sites
GGTCA and TGACC separated by three nucleotides (11).
To allow for sequence variability, we searched for G/A G/A
T/C T/C G/A NNN TGA C/G C in S regions. In so doing,
we found that high-density motifs appeared in Sl and Sa
regions of human and mouse loci, but not in Sc regions. For
example, there were more than 70 motifs in Sa regions for
both human and mouse, yet not a single motif in Sc2 regions
in either species.

FIG. 2. Clustered response elements in mouse and human heavy chain loci. Mouse and human immunoglobulin heavy
chain switch regions were collected from NCBI Nucleotide database and aligned to mouse assembly mm9(NCBI37) or
human assembly hg19(GRCh37) separately with BLAT (version 34 default parameters with maximum intron size 10 kb).
We retained the best score alignment for each sequence. Alignment positions were loaded into Integrative Genomics Viewer
(IGV, version 2.3). ‘‘TGAGCT’’ motif-matched tracks were created using the ‘‘find motif’’ tool in the IGV (28). Alignment
positions are shown in (A) Mouse mm9 and (B) Human hg19. The ‘‘TGAGCT Negative’’ track shows TGAGCT motif
matches on the anti-sense strand clustered in Sl, Se, and Sa, both in mouse and human loci. Parallel lines of blue/red tracks
indicate highly concentrated motif hotspots.
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Altogether, data encourage investigation of potential in-
teractions between nuclear receptors and response element
hotspots in immunoglobulin heavy chain S region loci. We
note that the response elements observed in this study were
positioned in S regions rather than in the known promoter
regions for sterile transcripts. We, therefore, propose that
nuclear receptors may influence CSR by mechanisms other
than transcription upregulation (31). Possibly, the tripartite
binding of ligands (e.g., vitamins), nuclear receptors, and
DNA, alter chromatin and the subsequent recruitment of
enzymes (e.g., HDAC3, and AID) to enhance deamination
and strand breaks in S regions. We note that a hotspot for
AID binding is AGCT (8), a sequence within the half-site
TGAGCT, supportive of our hypothesis. Should nuclear
receptors bind S regions and recruit AID, they would not act
in isolation. Previous research has shown that S regions are
bound by diverse macromolecular complexes comprising a
plethora of factors (e.g., RNA polymerase II, SPT5, RNA
exosome, 14-3-3 adapters, AID, E-box-binding proteins,
NFjB, and histone-modifying enzymes), each of which may
influence isotype expression patterns by activated B cell
populations (2,14,24,39,40,43,44).

In conclusion, our results reveal a large number of po-
tential response elements for vitamins and hormones in
immunoglobulin S loci. Future research may determine if
and how nuclear receptors bind (or are prohibited from
binding) these regions. Results should provide a better un-
derstanding of CSR mechanisms, isotype expression pat-
terns, and strategies with which protection against infectious
diseases may be improved.
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