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Metabolic dysfunction contributes to the clinical deterio-
ration observed in advanced cancer patients and is charac-
terized by weight loss, skeletal muscle wasting, and
atrophy of the adipose tissue. This systemic syndrome,
termed cancer-associated cachexia (CAC), is a major
cause of morbidity and mortality. While once attributed
solely to decreased food intake, the present description
of cancer cachexia is a disorder of multiorgan energy im-
balance. Here we review the molecules and pathways re-
sponsible for metabolic dysfunction in CAC and the
ideas that led to the current understanding.

Human cancers develop as a localized focus of uncon-
trolled cell growth and subsequently progress to a system-
ic disease (Fig. 1). Cancer research primarily focuses on
the agents, events, and genetic alterations underlying tu-
mor initiation, progression, and metastasis. However,
the vastmajority of end-stage cancer patients suffers a sys-
temic illness defined as cachexia, a widespread but poorly
understood condition (Lok 2015). The “most time hon-
ored symptom of cancer” (Editors 1929), cachexia is the
prototype image that comes to mind when thinking of
cancer. The loss of appetite, energy, and vigor; the languid
and unsmiling face; the sallow and anemic aspect; and the
skinny and wasted complexion are all too familiar to phy-
sicians treating cancer patients. Despite the obvious clin-
ical picture, a formal definition of the diagnostic criteria
has only recently been reached (Fearon et al. 2011). The
current consensus for diagnosis is the unintentional loss
of total bodyweight or skeletalmusclemass. Importantly,
cancer-associated cachexia (CAC) is a complex metabolic
disorder with profound changes in energy balance, which
might be already irreversible at the time of obvious body
weight loss. While cachexia itself is often rapidly progres-
sive, marking the irreversible decline in health and sur-
vival, the time when cachexia appears in the clinical
history of the cancer patients is, at present, mostly unpre-

dictable. The severity of CAC is often unrelated to tumor
size or stage, with small tumors commonly leading to
severe wasting, as is the case, for example, for pancreatic
and lung tumors. In contrast, widely disseminated cancers
may cause death without any evidence of CAC. The rea-
sons for this paradoxical lack of correlation between tu-
mor burden and the degree of cancer cachexia are, at
present, elusive. Furthermore, CAC often results in fewer
completed cycles of chemotherapy with higher compli-
cation rates. Therefore, a better characterization of the
metabolic changes in the organism affected by cancer is
urgently needed in order to recognize the early events
of CAC and improve its prognosis. In this review, we dis-
cuss the conceptual advances that shaped the current
understanding of the systemic metabolic maladaptation
to cancer.

Research milestones in cancer cachexia

For centuries, the concept that a local malignant growth
could be responsible for systemic effects has been under
debate (E.F.B. 1909). Rather than a specific disease, the
wasting associated with cancer was attributed to nonspe-
cific pathological complications of the tumor, such as
anorexia, hemorrhage, infection, or ulceration of the neo-
plastic tissue (Willis 1948). In contrast, those in favor of
systemic alterations produced by the tumor on the host
considered cachexia the result of either direct secretion
by the tumor of some substances active in distant organs
or uptake by the tumor of components from the blood that
are essential for the correct functioning of distant organs
(Greenstein 1947; Donovan 1954). Evidence supporting
one hypothesis or the other was slim, and the contention
was disputed on the basis of small clinical case series and
anecdotal post-mortem findings (Donovan 1954).
During the past decades, a vast body of investigation has

reshaped our understanding of CAC (Fig. 2). Experimental
work with animal models of cancer rather than
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observations in the clinical setting led to the recognition
of CAC as a legitimate entity independent of the effects
of anorexia or mechanical interference of the tumor
with the surrounding tissues. When tumor-bearing rats
were force-fed a high-fat diet, weight loss was prevented.
However, the development of anemia and the enlarge-
ment of the adrenal glands were not affected, thus show-
ing the existence of systemic manifestations of cancer
independent of nutritional intake (Begg and Dickinson
1951). Following the kinetics of tissue loss in tumor-bear-
ingmice, it was noticed that adipose tissuewastingwas an
early event, occurring at a time when the tumor was bare-
ly palpable (Costa andHolland 1962). Surprisingly, fat loss
could also be induced by nonviable tumor preparations,
indicating that soluble components of tumor extracts
can induce cancer cachexia (Costa and Holland 1962).
The causes for the systemic effects associated with cancer
weremore sophisticated than just reduced food intake and
needed to be sought in the complex relationship between
the host and the tumor. Analogies between systemic re-
sponses to infectious agents and cancers were noted, in-
cluding fever, leukocytosis, and increased serum levels

of acute phase response proteins (Rosenthal and Franklin
1975). The first evidence that inflammatory mediators—
namely, cytokines—were involved in the process of pro-
tein breakdown in isolated skeletalmuscle and a potential
role for interleukin-1 (IL-1) in muscle degradation during
fever was published in 1983 (Baracos et al. 1983). Particu-
lar attention was received by the somewhat paradoxical
increase in serum lipid levels despite the obvious loss of
body weight in severely sick patients. It was found that
such hypertriglyceridemia could be induced experimen-
tally in animals by either injection of infective agents or
transplantation of tumors (Rouzer and Cerami 1980;
Kawakami and Cerami 1981). Hypertriglyceridemia was
the result of lipoprotein lipase (LPL) inhibition and could
be reproduced by injecting animals with conditioned me-
dium from inflammatory cells incubated with endotoxin
(Kawakami and Cerami 1981).

In 1985, Bruce Beutler in Anthony Cerami’s group
(Cerami et al. 1985) provided definitive proof that circulat-
ing mediators could cause cachexia, showing that culture
medium from endotoxin-activated macrophages caused
body weight loss when injected into mice. The molecule
in the conditioned medium causing cachexia was purified
and termed “cachectin” (Beutler et al. 1985). Subse-
quent determination of the complete primary structure
of cachectin revealed its identity with tumor necrosis fac-
tor-α (TNFα) (Fransen et al. 1985; Pennica et al. 1985). It
should be noticed that these early preparations of condi-
tionedmedium containedmultiplemacrophage products,
and it is therefore erroneous to attribute all of the cachex-
iogenic action to the effect of TNFα alone. Furthermore,
TNFα causes systemic shock and the release of other cyto-
kines, further confounding the attribution of the observed
phenotype to a single identifiable factor. However, despite
the technical limitations, these early studies contributed
to a conceptual evolution in the field of cachexia research,
and the wasting syndrome was finally regarded as the re-
sult of the host response to the tumor. Clinical evidence
confirmed the conclusions of preclinical investigations
showing that intravenous hyperalimentation could not al-
leviate cachexia in cancer patients (Evans et al. 1985). Re-
markably, the focus of research had gradually shifted from
the nature of the invasive agent (infection or cancer) to the
quality of the response elicited in the organism. The im-
mune systemwasthe likely source of allmediators respon-
sible for the systemic changes, and a variety of cytokines
joined TNFα in the ability to cause systemic alterations
(Beutler and Cerami 1986). However, despite the clear
role played by cytokines in experimental cachexia, their
involvement in human disease was less obvious, and clin-
ical translation yielded ambiguous results (Balkwill et al.
1987; Socher et al. 1988). Perhaps as a consequence of the
disappointment generated by the lack of clinical benefits
from basic findings, the pace of research in the field of can-
cer cachexia progressively reduced.An additional explana-
tion could be the rapid progress of molecular biology of
cancer in themid-1980s. That was the timewhen the first
oncogenes were discovered, and the simplistic view of re-
ducing cancer to a single base mutation was occupying
the entire scene (Weinberg 2014). The war on cancer

Figure 1. Multilevel cancer pathophysiology at a glance. Sche-
matic representation of the evolution of cancer from a single
transformed cell to a systemic disease. At the “cell” level, the
transformed cell (purple) is characterized by the presence of ge-
nome instability andmutations, sustained proliferative signaling,
avoidance of growth suppressors, replicative immortality, resis-
tance to cell death, and deregulated cellular energetics. At the
“tissue” level, the proliferation of the tumor mass is associated
with induction of angiogenesis, activation of invasion, promotion
of inflammation, and avoidance of immune destruction—all hall-
marks of cancer as described in Hanahan andWeinberg (2011). At
the “organism” level, the developing cancer induces changes in
distant organs, including metastasis, metabolic failure, and can-
cer cachexia, which is not included in the hallmarks of cancer.
Cancer cells are shown in purple, “normal” cells are indicated
in blue, immune cells are shown in green, and blood vessels are
indicated in red. The arrow at the “cell” level points to the con-
version from a normal cell to a cancer cell, whereas the arrow
pointing to the “organism” depicts a growing tumor (purple).
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seemed to be close to a favorable ending, and the focus of
research zoomed back to the tumor itself rather than the
response that the tumor ignites in the organism.

Cancer cachexia is an energy balance disorder linked
to inflammation

Weight loss is acardinal signof cachexiaand represents the
main independentpredictorofmortality in cancerpatients
(Fearon et al. 2012). The mechanisms for weight loss in
cancer are multiple, including decreased nutrient intake,
systemic metabolic dysfunction, and increased energy ex-
penditure. Inflammation represents a common denomina-
tor in the pathophysiology of energy imbalance during
cachexia. In mice, the peritoneal injection of cancer cells
expressing TNFα has been shown to cause weight loss
and cachexia. In contrast, mice injected with the same
cells without TNFα do not lose body weight (Oliff et al.
1987). Similar results have been obtained with IL-6 in pre-
clinicalmodels (Strassmann et al. 1992). Both host- and tu-
mor-derived cytokines cooperate in a complex way with
the tumor microenvironment to sustain tumor growth
andcachexia (Cahlin et al. 2000). In support of a role of can-
cer-derived cytokines, it has been shown recently that ex-
pression of the cytokine TNF-related weak inducer of
apoptosis (TWEAK) by cancer cells causes cachexia, and
the effect is similar in wild-type and TWEAK-deficient
mice (Johnston et al. 2015).
As the cancer persists, it is assumed that ongoing local

inflammationmay reach a threshold when cytokines spill
into the circulation, thus transforming the cancer disease
from a localized tumor to a systemic impairment. Unfor-
tunately, such a simplistic view does not stand present ex-
perimental validation. The levels of serum cytokines do
not correlatewith the appearance of cachexia in cancer pa-
tients (Fearon et al. 2012). Furthermore, treatments with
antibodies targeting a single cytokine have failed so far
to prevent or significantly ameliorate the wasting syn-
drome (Penna et al. 2010; Fearon et al. 2013). Very recent
data emphasize the multifactorial etiology of CAC, show-
ing now that a combination of cytokines and/or additional
mediators is responsible for the cachectic phenotype
(Schaefer et al. 2016).

Despite the absence of a simplistic threshold model
linking cytokine levels to cachexia development, a rich
body of evidence supports their causal role in the meta-
bolic dysfunction observed in CAC. Mechanistically,
cytokines were shown to increase the metabolic rate
through activation of thermogenesis, inhibit adipocyte
and skeletal myocyte differentiation, and reduce food
intake (Guttridge et al. 2000; Li et al. 2002; Ruan et al.
2002; Arruda et al. 2010). However, weight loss in cancer
patients cannot be attributed solely to decreased food in-
take, since dietary supplements fail to reverse cachexia
(Bruera and Sweeney 2002). In contrast, a recent study in
mice expressing high levels of the proinflammatory cyto-
kine IL-18 suggests that high caloric feeding in the context
of metabolic dysfunction may exacerbate weight loss and
cause fatal cachexia (Murphy et al. 2016). In the context of
cancer, metabolic dysfunction is caused by deregulated
carbohydrate and lipid metabolism.

Altered carbohydrate metabolism in cancer cachexia

Carbohydrate intolerance in cancer patients has long been
noted (Rohdenburg et al. 1919). While fasting blood sugar
concentration between control and cancer groups did not
differ significantly, intravenous glucose tolerance tests
showed significantly decreased disappearance of glucose
in cancer patients (Bishop and Marks 1959). In the first
half of the last century, Cori and Cori (1925) compared
glucose levels in the venous blood from the tumor-bearing
arm and the unaffected arm of a patient with a sarcoma on
the forearm. Glucose levels from the tumor-bearing arm
were reduced, thus confirming in vivo the increased rate
of tumor glycolysis (Cori and Cori 1925). Since tumor tis-
sue takes up glucose, the decreased disappearance of glu-
cose observed in the tolerance test must be sought in
metabolic alterations in the host tissues associated with
cancer development. Either increased hepatic glucose pro-
duction or a decrease in peripheral utilization could ac-
count for the reduced glucose tolerance observed in
cancer patients. Despite decreased hepatic glycogen
stores, endogenous glucose production is increased in ca-
chectic patients due to increased hepatic glucose recy-
cling via lactate, a phenomenon termed the Cori cycle
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Figure 2. Timeline of discoveries in cancer cachex-
ia. In 1951, the first systemicmanifestation of cancer
was described in rats. In 1962, it was observed that
injection of tumor preparations in mice was suffi-
cient to induce fat atrophy. In 1983 and 1985, the
first candidate molecules were identified. Seminal
publications in 1993 and 2001 described a role for
the ubiquitin pathway and myostatin in skeletal
muscle atrophy. It was not until some years ago
that an international consensus on the diagnostic
criteria of CAC was reached. Promising results
have been reported in late 2015 from the first phase
III clinical trial targeting CAC with the ghrelin re-
ceptor agonist anamorelin (https://www.iaslc.org/
news/results-phase-iii-trials-anamorelin-advanced-
non-small-cell-lung-cancer-patients-cachexia).
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(Holroyde et al. 1984). Apart from these studies, clinical
investigations on glucose metabolism in cachectic pa-
tients are noticeably thin. While one study suggests that
glucose intolerance may worsen with the development
of cachexia (Jasani et al. 1978), other studies found that
glucose intolerance did not correlate with body weight
loss (Yoshikawa et al. 2001; Agustsson et al. 2011). Very
recently, elegant genetic studies in the fruit fly Droso-
philahave identified an important role of insulin signaling
in inducing a cachexia-like systemic wasting following
transplantation ofDrosophila tumors (Figueroa-Clarevega
and Bilder 2015; Kwon et al. 2015). Both studies have iden-
tified a tumor-secreted factor, ImpL2/IGFBP (an insulin-
binding protein and antagonist of insulin/insulin-like
growth factor [IGF] signaling), that is responsible for the
wasting phenotypes in organs distant from the transplant-
ed tumors (Wagner and Petruzzelli 2015).

Role of lipids, burning fat, and white adipose
tissue (WAT) browning

Besides changes in carbohydrate metabolism, the han-
dling of lipids between tissues is severely impaired in can-
cer patients. The deposition of triglycerides (TGs) in
cytoplasmic lipid droplets represents the most efficient
form to store lipids inWAT andmany other cell types. Al-
ready in 1848, the French physiologist Claude Bernard
discovered that TGs, commonly called fat, are digested
in the gut before they can be absorbed. The hydrolysis of
TGs, designated lipolysis, generates glycerol and fatty ac-
ids (FAs). The enzymes mediating intracellular lipolysis
include adipose TG lipase (ATGL) and the hormone-sensi-
tive lipase (HSL), while LPL is responsible for the hydroly-
sis of plasma TGs of lipoproteins in the vascular system
(Young and Zechner 2013). FA uptake and TG synthesis
decline in WAT in murine cancer models, whereas, in
human CAC, it is associated with normal lipid synthesis
but elevated lipolysis in WAT. This suggests that lipid ca-
tabolism is more relevant than inhibition of lipid synthe-
sis for the loss of WAT in CAC (Dahlman et al. 2010).
These findingswere corroborated in an elegant study dem-
onstrating that WAT lipolysis in cancer patients is in-
creased due to elevated enzyme activities of ATGL and
HSL (Das et al. 2011). Importantly, genetic deletion of
Atgl in mice prevented increased lipolysis and the reduc-
tion of WAT and skeletal muscle mass in certain models
of CAC. Similar results were also observed, although to
a lesser extent, when HSL was inactivated (Das et al.
2011). Lipolysis in CAC is induced bymany serum factors
secreted by tumor or host cells, including hormones such
as glucocorticoids and catecholamines; cytokines like
TNFα, IL-1β, IL-6, prostaglandins; and a zinc–glycopro-
tein, ZAG, also called lipid-mobilizing factor (Tisdale
2010). How functional lipolysis impacts the development
of cancer cachexia is the focus of ongoing investigations in
several laboratories (for review, see Tsoli et al. 2015).

While quantitative changes in WAT content during
cancer cachexia have long been recognized, only recently
a qualitative change in the morphology and function of

white adipocytes has been described. During the progres-
sion of cancer cachexia in preclinical models, WAT cells
gradually convert to brown adipose tissue (BAT)-like cells,
also called “beige” cells, in a process termed “browning”
(Kir et al. 2014; Petruzzelli et al. 2014). Beige cells are
characterized by high mitochondrial content and in-
creased expression of uncoupling protein 1 (UCP1), which
is responsible for uncoupling the use of mitochondrial
electron transport from ATP synthesis to thermogenesis
(Nedergaard and Cannon 2014). The phenomenon of
browning was initially described as an adaptive response
to prolonged exposure to cold environments (Cousin
et al. 1992). When exposed to cold temperatures, mice de-
ficient in the ability to activate thermogenesis rapidly
lose core body temperature and are more susceptible
to cold-induced damage (Nguyen et al. 2011). The induc-
tion of browning in humans was initially hypothesized
on the basis of increased fluorodeoxyglucose (FDG) up-
take in WAT depots using positron emission tomography
(PET) (Nedergaard et al. 2007) and later confirmed at the
histological level (Cypess et al. 2009; vanMarkenLichten-
belt et al. 2009; Virtanen et al. 2009). Recent investiga-
tions have shown that the role of browning is not
limited to cold acclimatization. In preclinical models of
diet-induced obesity, browning promotes systemic energy
expenditure, which results in body weight loss and
improved insulin sensitivity. The protection conferred
by browning against high-fat diet-induced obesity sug-
gests pharmacological enhancement of browning as a
promising therapeutic strategy for metabolic disorders
due to excess of nutrients (Feldmann et al. 2009; Yone-
shiro et al. 2013). While the effect of browning is identical
in both obesity and cancer, the metabolic result is the op-
posite. Increased lipid mobilization and energy expendi-
ture are favorable in obesity while being deleterious in
cancer (Fig. 3). In fact, different from obesity and the met-
abolic syndrome, browning in the context of cancer exac-
erbates the metabolic dysfunction, enhancing energy
dissipation and contributing to the progression of CAC
(Kir et al. 2014; Petruzzelli et al. 2014). Browning in can-
cer-bearing mice is a systemic event manifested in multi-
ple WAT depots. It precedes the onset of skeletal muscle
atrophy and determines a hypermetabolic state character-
ized by high resting energy expenditure. Notably, brow-
ning is not restricted to one experimental model and is
not associated with one specific cancer type, since it
was documented in complementary model systems, in-
cluding genetically engineered mouse models (GEMMs),
carcinogen-induced cancers, syngeneic transplants of mu-
rine cancer cells, and xenogeneic transplants of human
cancer tissue (Petruzzelli et al. 2014). Recently, browning
of WAT has been shown to take part in the pathogenesis
of hypermetabolism commonly observed in other morbid
conditions, like post-burn injury, severe adrenergic stress,
and kidney failure (Kir et al. 2015; Patsouris et al. 2015;
Sidossis et al. 2015). Treatment of mice with a synthetic
thyroid hormone receptor agonist induces adaptive
thermogenesis in subcutaneous WAT, thus suggesting a
role for WAT browning also in hyperthyroidism (Lin
et al. 2015).
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Tumors can directly activate thermogenesis in beige
cells through the secretion of parathyroid-related peptide
(PTHrP), which has been identified in the supernatants
from amurine lung carcinoma cell line and shown to dras-
tically induce the expression ofUCP1 (Kir et al. 2014). At
the molecular level, transformation of white adipocytes
into beige cells requires the function of the transcriptional
coregulator PRDM16. Interestingly, fat-specific Prdm16-
deficient mice challenged in a model of cancer cachexia
showed a significant reduction of browning, thermogenic
activity, and WAT atrophy. Importantly, injection of ca-
chectic xenotransplant mice with a neutralizing antibody
specific for PTHrP was beneficial, reducing the intensity
of cancer cachexia and skeletal muscle atrophy. In lung
and colorectal cancer patients, higher plasma PTHrP con-
centrations are associated with increased energy expendi-
ture and enhanced lean tissue wasting, thus confirming
the therapeutic potential of inhibiting PTHrP in human
cancer (Kir et al. 2014). While treatment of cachectic
mice with a PTHrP antibody ameliorated the severity of
cachexia, it did not inhibit it completely, thus suggesting
that other tumor-derived or host-derived molecules col-

laboratewith PTHrP in the induction of browning and sys-
temic wasting.
Next to direct activation of browning through tumor-

derived PTHrP, systemic inflammation and activation of
the β-adrenergic pathway represent complementary
mechanisms involved in the pathogenesis of browning
during CAC (Petruzzelli et al. 2014). Plasma levels of IL-
6 are increased in cachectic mice, and genetic blockade
of IL-6 by stable incorporation of a shRNA led to a drastic
reduction of the severity of cancer cachexia in a xenogene-
ic cancer model. In addition, IL-6 receptor (IL-6-R) knock-
out mice implanted with melanoma cells displayed
reduced browning when compared with control mice, fur-
ther corroborating the role of IL-6 in the activation of the
thermogenic program in white adipocytes (Petruzzelli
et al. 2014). While the direct induction of UCP1 expres-
sion by incubation of adipocytes in the presence of recom-
binant IL-6 is modest, indirect mechanisms are likely to
enhance IL-6-induced browning, such as alternative acti-
vation of macrophages (Mauer et al. 2014). These cells
have been shown to sustain adaptive thermogenesis by
means of enhanced recruitment of β-adrenergic fibers
(Nguyen et al. 2011). Indeed, macrophages infiltrate the
WATof cachecticmice and expressmarkers of alternative
activation. The link between the immune system and
adipose tissue biology is further supported by recent in-
vestigations showing WAT browning following micro-
biota depletion (Suarez-Zamorano et al. 2015; Yeoh and
Vijay-Kumar 2015). Interestingly, colonization of the in-
testine by different strains of bacteria has been shown to
modulate disease severity and cachexia development in
mousemodels (Schieber et al. 2015). A role for therapeutic
agents targeting intestinal function inCAC remains large-
ly speculative at present (Klein et al. 2013). Whether
inhibition of browning may indirectly affect tumor me-
tabolism is not known. Systemic alterations of themetab-
olism in the host are predicted to affect local metabolic
pathways of cancer cells, although more experimental
data are needed.
In addition to browning, many studies using murine

cancer models have demonstrated that lipolysis induces
the activation of interscapular BAT during cancer cachex-
ia, further contributing to energy uncoupling in mito-
chondria with the subsequent worsening of the negative
energy balance (Tsoli and Robertson 2012). BAT has a
key role in thermogenesis and energy balance and there-
fore may well participate in energy expenditure in cancer
patients. BAT has been shown to be present in adult hu-
mans, and a role for BAT in CAC is possible but is by no
means definitively proven (Bauwens et al. 2014).

Muscle wasting in cancer cachexia

CAC is characterized by muscle atrophy, which severely
impairs the patient’s mobility because of fatigue and
weakness (Cohen et al. 2015). Early labeling experiments
have shown that different mechanisms cause skeletal
muscle atrophy in different conditions. Increased myofi-
brillar degradation was observed in skeletal muscle
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Figure 3. Mechanisms and consequences of WAT browning in
cancer cachexia. At the “cell” level, beige adipocytes are induced
in WAT by a combination of signaling pathways, including β-ad-
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heat. In the context of obesity,WATbrowning is beneficial, while
in cancer patients, it is detrimental.
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atrophy caused by denervation,while a combination of de-
creased synthesis and increased degradationwas responsi-
ble for cortisone-induced muscle atrophy (Goldberg and
Goodman 1969). In animal models, glucocorticoids did
not cause skeletal muscle atrophy at physiological con-
centrations but only at increased concentrations under
pathological conditions (Tomas et al. 1979). Therefore,
increased adrenal activity and glucocorticoid levels in
cancer patients were hypothesized as likely to be respon-
sible for skeletal muscle-wasting during cancer cachexia.
However, adrenalectomy did not prevent skeletal muscle
atrophy in tumor-bearing animals, thus arguing against a
role for adrenal hyperfunction in muscle atrophy during
experimental CAC (Svaninger et al. 1987). Conversely,
microscopic examination of skeletal muscle from cancer
cachexia patients did not show evidence of degeneration
of muscular or intramuscular nerve bundles, thus exclud-
ing also a role for denervation (Marin and Denny-Brown
1962). The factors responsible for skeletal muscle atrophy
in CAC remained elusive until the important role of cyto-
kines was finally identified.

Administration of TNFα or IL-1 in mice was found to
cause loss of skeletal musclemass similar to whatwas ob-
served in cachectic cancer patients (Fong et al. 1989).
However, while treatment of tumor-bearing rats with
anti-cytokine immunoglobulins reduced skeletal muscle
atrophy, the protection against systemic wasting was
only partial (Costelli et al. 1993). Evidence accumulated
pointing to the idea that, in cachexia, the synergistic ac-
tion of multiple cytokines and other mediators was re-
sponsible for skeletal muscle atrophy and likely most of
the other components of the wasting syndrome (Argiles
and Lopez-Soriano 1999). At themolecular level, the ubiq-
uitin-dependent proteasome pathway (UPP) was identi-
fied as one important mechanism underlying muscle
breakdown in pathologic states, such as prolonged fasting
and metabolic acidosis (Wing and Goldberg 1993; Mitch
et al. 1994). Similarly, activation of the UPP was observed
in preclinical models of cancer cachexia (Temparis et al.
1994; Baracos et al. 1995). At the genetic level, deletion
of muscle-specific E3 ligases Atrogin-1/MAFbx or Murf1
(muscle RING finger protein 1) protected skeletal muscle
against experimental atrophy (Bodine et al. 2001). In con-
trast, muscle-specific activation of NF-kB caused skeletal
muscle wasting (Cai et al. 2004). In vitro studies have
shown a role for TNFα in the activation of NF-kB, which
results in inhibition of myocyte differentiation (Guttridge
et al. 2000). In addition, cytokines cause a reduction in
myofibrillar protein by decreasing the expression of nucle-
ar transcription factor MyoD and through activation of
UPP (Acharyya et al. 2004). A large body of evidence im-
plicates the FOXO family of transcription factors as key
mediators of skeletal muscle atrophy during CAC as
well as during fasting and other pathological conditions
(Egerman and Glass 2014; Cohen et al. 2015). The catabol-
ic effects of FOXO transcription factors are mediated by
induction of the atrophy-related ubiquitin ligase Atro-
gin-1/MAFbx (Sandri et al. 2004) and Murf1 (Zhao et al.
2007; Cohen et al. 2009). A third E3 ligase, Mul1, has
been shown to be involved in the reduction of oxidative

capacity in cachectic muscles by controlling mitochon-
drial protein degradation (Lokireddy et al. 2012).

Compelling evidence shows that the atrophy-related
genes, also called atrogenes, are directly responsible for
skeletal muscle atrophy due to conditions different from
CAC, such as denervation, diabetes, or renal failure.
Therefore, this points to a concept that a common tran-
scriptional program underlies the loss of skeletal muscle
mass independently of the triggering factor (Lecker et al.
2004; Sandri et al. 2006). Skeletal muscle activation of
atrogenes in experimental cachexia may also be the result
of cross-talk mechanisms between distant organs. As pre-
viously noticed, genetic inhibition of lipolysis amelio-
rates skeletal muscle atrophy in mouse models of CAC
(Das et al. 2011). Lipolysis determines an elevated flux
of FAs from adipose tissue, and increased FA uptake in
the skeletal muscle leads to ceramide synthesis, reduced
mTOR activity, and Atrogin and Murf expression (Cor-
coran et al. 2007; De Larichaudy et al. 2012). In this regard,
intramyocellar lipid droplets have been described in skel-
etal muscle of cancer patients, and its overall content was
associated with the extent of body weight loss (Stephens
et al. 2011).

While there is considerable experimental evidence for
the contribution of atrophy-related UPP in preclinical
models, its direct role in human disease and human
CAC in particular is, at present, controversial. Conflicting
evidence comes from studies that have measured the ex-
pression levels of the different UPP components in cancer
cachexia patients. Arguing against a direct role, individual
components of the UPP were actually found to be un-
changed or even down-regulated in cancer patients with
suppression of both anabolic and catabolic processes, in-
dicative of reduced muscle turnover that was restored to
normal levels following tumor resection (Stephens et al.
2010; Gallagher et al. 2012). On the contrary, different
studies reported an increase in the expression levels of
proteasome subunits in skeletal muscle of cancer patients
with weight loss (Williams et al. 1999; Khal et al. 2005).
Besides overexpression of the ubiquitin gene, direct mea-
surement of the proteasome proteolytic activity showed
enhancement in skeletal muscles of patients with gastric
cancer when compared with noncancer surgical controls
and was associated with advanced tumor stage and poor
nutritional status (Bossola et al. 2003). These conflicting
data comparing animal models and patients with CAC
may be due to differences in timing of examination of
the skeletal muscle. The analysis in rodents was per-
formed during or at the end of rapid skeletal muscle wast-
ing, while, in cachectic humans, it was performed in the
final stage that follows the period of dramatic wasting. It
has been shown that changes in expression levels of atro-
genes are maximal during the periods of rapid changes in
skeletal muscle mass, while further weight loss is associ-
ated with reduced gene expression (Khal et al. 2005). Mul-
tiple time points during skeletal muscle atrophy in
human cachexia must be measured before conclusions
can be drawn. Additional mechanisms of muscle atrophy
in cachexia have been suggested, including activation of
the JAK/STAT3 pathway (Bonetto et al. 2012; Shum and
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Polly 2012), induction of apoptosis (He et al. 2014), mito-
chondrial dysfunction (White et al. 2011), and the direct
effect of cancer chemotherapy (Le Bricon et al. 1995).
Besides the factors responsible for skeletal muscle atro-

phy, studies on factors relevant for muscle hypertrophy
have also provided important insights into the mecha-
nisms underlying muscle wasting in CAC. Insulin is the
main anabolic factor opposing the catabolic effects of glu-
cocorticoids, and the absence of insulin in rats contributes
to skeletal muscle atrophy (Price et al. 1996). At the mo-
lecular level, IGF-1 activates insulin receptor substrate
1, which signals through PI3K–AKT to induce protein syn-
thesis by activating mTOR (Rommel et al. 2001). Skeletal
muscle hypertrophy is also observed in the presence of in-
activating mutations in Myostatin (Schuelke et al. 2004),
while forced expression of Myostatin causes muscle atro-
phy in adult mice (Zimmers et al. 2002). The muscle
hypertrophy observed inmyostatin-deficientmice is abol-
ished after inhibition of bone morphogenetic protein
(BMP) signaling, which results in up-regulation of the
muscle ubiquitin ligase of the SCF complex in atrophy-1
(MUSA1) (Sartori et al. 2013). Myostatin and Activin are
members of the transforming growth factor β (TGFβ) fam-
ily that were shown to be involved in skeletal muscle
atrophy by binding to theMyostatin/Activin type II recep-
tor B (ActRIIB) (Benny Klimek et al. 2010). Interestingly,
expression of a dominant-negative ActRIIB in transgenic
mice results in skeletal muscle hypertrophy (Lee and
McPherron 2001). Furthermore, expression of Myostatin
is increased upon inflammatory signaling, whereas it
inhibits myoblast differentiation and increases Foxo
activation and the expression of ubiquitin ligases (Sartori
et al. 2009; Trendelenburg et al. 2009). A recently identi-
fied PGC1α isoform, Pgc1α4, has been shown to be highly
expressed in exercised muscle and was able to prevent
skeletal muscle atrophy by repressing Myostatin activity.
Notably, mice with skeletal muscle expression of Pgc1α4
were protected from CAC (Ruas et al. 2012). As an
additional mechanism for skeletal muscle dysfunction
in cancer, TGFβ release from bone metastasis has been
demonstrated to lower intracellular calcium signaling
and reduce the force of muscle contraction (Waning
et al. 2015).
From a therapeutic perspective, recent clinical trials

have provided proof of principle that it is possible to pro-
mote skeletal muscle anabolism in cancer patients. A
high-protein diet supplemented with leucine has been
shown to increase muscle fractional synthetic rate in a
small randomized trial in cancer patients (Deutz et al.
2011). However, it has been reported that leucine supple-
mentation increases pancreatic cancer growth in mice,
a mechanism mediated by activation of mTOR (Liu
et al. 2014). The landmark study by Zhou et al. (2010)
has shown that pharmacological blockade of ActRIIB in
mouse models of CAC ameliorates skeletal muscle atro-
phy and prevents atrophy of cardiac muscle. Importantly,
ActRIIB blockade significantly prolonged survival even in
the absence of direct effects on tumor growth and cyto-
kine secretion. At present, it is not clear whether Myosta-
tin inhibition may also ameliorate skeletal muscle

atrophy by direct stimulation of stem cell proliferation.
Protection against skeletal muscle atrophy and regrowth
of skeletal muscle myocytes are observed after ActRIIB
blockade, although a causative role of Myostatin inhibi-
tion has yet to be proven. Impaired regenerative capacity
of myogenic cells has been recently described in CAC, a
process mediated by NF-kB-dependent expression of the
self-renewing factorPax7 (He et al. 2013). Furthermore, in-
hibition of ActRIIB by a humanized monoclonal antibody
has been shown to increase skeletal muscle mass and pre-
vent glucocorticoid-induced atrophy in mice (Lach-Trifi-
lieff et al. 2014). The beneficial effects of inhibiting the
Myostatin/Activin pathway is not limited to ameliorating
skeletal muscle atrophy but was also shown to improve
other pathological conditions in preclinical models, such
as insulin resistance and systemic inflammation. The
translational potential of Myostatin/Activin antagonism
is currently being evaluated in multiple clinical settings
(Han et al. 2013; Cohen et al. 2015). Implementation of
these findings in clinical practice is anticipated to poten-
tially ameliorate the prognosis of cancer patients.

The role of the liver in cancer cachexia

Next to WAT and skeletal muscle, the liver is of primary
importance in the control of systemic metabolism. How-
ever, the nature and extent of liver damage during CAC
has received little attention. Similarly, the contribution
of the liver to the metabolic dysfunction observed in ca-
chexia is currently poorly characterized. Enhanced liver
inflammation during CAC is suggested by increased infil-
tration of macrophages in the livers of pancreatic cancer
patients with cachexia when compared with pancreatic
cancer patients without cachexia (Martignoni et al.
2009). Activated macrophages in the liver parenchyma
may provide a local source of IL-6 production, which stim-
ulates the synthesis of hepatic acute-phase protein (Cas-
tell et al. 1989). Preclinical investigations have shown
that hepatic oxidative phosphorylation is reduced in a
rat model of peritoneal carcinosis, concomitant with in-
creased energy wasting and production of reactive oxygen
species (Dumas et al. 2010). Furthermore, clinical investi-
gations have shown that hepatic gluconeogenesis is in-
creased in cancer patients (Yoshikawa et al. 1999). Last,
hepatic steatosis has been documented in CAC patients
(Teli et al. 1995). At the molecular level, hepatic gene ex-
pression of the transcription factor TGFβ1-stimulated
clone 22 D4 (TSC22D4) is increased in experimental
cachexia and correlates with the degree of systemic wast-
ing (Jones et al. 2013). Gene expression levels of the nucle-
ar receptor cofactor receptor-interacting protein 140
(RIP140) are also increased in CAC and may contribute
to liver steatosis by preventing the release of TG stores
(Berriel Diaz et al. 2008).

Endocrine routes to cancer cachexia

Activation of neuroendocrine responses plays amajor role
in CAC (Fearon et al. 2012). The role of the hypothalamus
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in cachexia has been the focus of intense investigations
due to the critical function that this gland has in the cen-
tral control of food intake and appetite. Cytokine ex-
pression in the brain is very low under physiological
conditions but is strongly induced in response to peripher-
al inflammation and is prominent in the hypothalamus
(Grossberg et al. 2009). Feed-forwardmechanisms amplify
and maintain the inflammatory response in the brain
through local production of cytokines and neurotransmit-
ters. Neurons in the arcuate nucleus of the hypothalamus
and in the nucleus tractus solitarus of the brainstem com-
pose the central melanocortin system (Fan et al. 1997),
and inhibition of this neural network has been demon-
strated to alleviate the severity of CAC in preclinicalmod-
els (Wisse et al. 2001; Cheung et al. 2005). For instance,
treatment with the gastrointestinal hormone ghrelin
inhibits the central melanocortin system and reduces hy-
pothalamic inflammation, resulting inweight gain and in-
creased lean body mass in tumor-implanted rats (DeBoer
et al. 2007). The central mechanisms responsible for cyto-
kine-induced body weight loss include reduction of food
intake and increased metabolic rate through activation
of thermogenesis (Li et al. 2002; Arruda et al. 2010). Less
is known on the role of the hypothalamus in the pathogen-
esis of endocrine dysregulation observed in an organism
affected by cancer, although a potential contribution of
the hypothalamic–pituitary–adrenal axis is suspected.
Chronically elevated IL-6 levels in the brain have been
shown to activate the hypothalamic–pituitary–adrenal
axis and cause adrenal gland hyperplasia (Raber et al.
1997). Furthermore, increased serum levels of hormones
from the cortical adrenal gland (cortisol) andmedulla (nor-
epinephrine and epinephrine) have been reported in pa-
tients with cachexia associated with chronic heart
failure, a condition termed cardiac cachexia (Anker and
Coats 1999).

Conclusions and perspectives

Our understanding of CAC has changed dramatically over
the past three decades (Fig. 4). It suffices to look at the dif-
ferences between reviews published a few decades ago to
realize the conceptual leap forward. In 1977, “cancer ag-
gression” had a minor metabolic component for cachexia
development, which was caused solely by the cancer tis-

sue (Costa 1977). The present description envisions
CAC as a complex and multifactorial syndrome resulting
from the interaction and mutual effects of the tumor and
host tissues (Fearon et al. 2012). Experiments in animal
models proved instrumental in revealing the mechanisms
by which the tumor perturbs host homeostasis—mecha-
nisms that reach far beyond reduction of food intake or lo-
cal damage at the site of tumor growth. Studies in
preclinical GEMMs helped to define the molecular mech-
anisms involved in key manifestations of systemic wast-
ing. During the past years, many scientists thought that
the basic pathological events had been characterized and
that the responsible factors had been enumerated. The
wealth of knowledge generated on the molecular mecha-
nisms underlying CAC pathophysiology has paved the
way to novel therapeutic approaches, and new candidate
molecules hold promise for clinical use (Table 1). Howev-
er, to date, the therapeutic application of basic discoveries
has proven elusive (Lok 2015), and current therapeutic
management of cachectic patients is palliative, based on
appetite improvement and best supportive care (Ma
et al. 2014).

We now know that prevention and treatment of CAC
needs to be multifactorial, as targeting single mediators
has repeatedly failed. To increase the chances of success,
treatment has to start early in the clinical history of can-
cer patients, before obvious evidence of metabolic dys-
function. A phase of adapting and adjusting must occur
between the tumor and the host in the “unaffected”
weight-stable cancer patient. Characterization of these
early events at multiple organ levels is essential for un-
derstanding the pathophysiology of the host–tumor inter-
action, including the neuroendocrine axis (Lainscak et al.
2008). Similarly limited is our knowledge of themetabolic
cross-talk between the tumor and the host, which is
the starting point for understanding the progression
from a local malignant growth to a systemic disease.
The characterization of these events requires a new level
of “systemic approaches” to design the right experiments
for a scientific field that has historically been studying
one phenotype or organ and one tumor at the time. Future
investigations focusing more on the “whole” and less
on the “parts” will go beyond the dichotomy tumor–or-
ganism and provide the conceptual framework to devise
new therapeutic strategies for treating the organism in ad-
dition to just killing the tumor. Such holistic approaches
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Figure 4. Conceptual evolution of the understanding of
cancer cachexia. The scheme depicts the way we envi-
sionmultifactorial cancer cachexia in 2015, involving re-
ciprocal compounding interactions between the tumor
and the organism, which result in inflammatory and
metabolic changes distant from the pathological sites
of tumor growth. This way is very different from the uni-
directional way that “cancer aggression” was viewed de-
cades ago (Costa 1977).
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will likely lead to a better understanding of the metabolic
dysfunction in cancer cachexia for the benefit of cancer
patients.
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