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Abstract

Studies on rodent models and rare human disorders of estrogen production or response have 

revealed an increased complexity of the actions of estrogen on bone. ERα disruption in human 

males results in delayed epiphyseal maturation, tall stature, trabecular thinning, marked cortical 

thinning, genu valgum and significantly reduced cortical vBMD, but trabecular number is 

preserved and there is normal to increased periosteal expansion. Aromatase deficiency results 

overall in a similar phenotype, although less is known about skeletal architecture. Importantly, 

estrogen replacement in these individuals, even if provided late in the third decade, may normalize 

aBMD. Less certain is whether there is complete recovery of normal skeletal architecture and 

strength. Rodent models, in general, are consistent with the human phenotype but are confounded 

by inherent differences between mouse and human physiology and issues regarding the 

completeness of the different knock-out lines. Both human and rodent studies suggest that residual 

effects of estrogen through ERβ, truncated ERα forms or nonclassical estrogen receptors might 

account for different phenotypes in the hERKO man, aromatase deficient subjects and rodents. 

Importantly, androgen, particularly by preserving trabecular number and augmenting both 

periosteal and epiphyseal growth, also has significant actions on bone.
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1. Introduction

Estrogen is well known to be important in females for bone growth and metabolism. 

However, evidence has emerged from rodent models [1] and rare disorders of estrogen 

production or response in humans [2,3] that the physiologic role for estrogen is far more 

complicated, involving actions in males as well as females [4]. Estrogen actions are further 

complicated by the presence of two distinct but related nuclear receptors, ERα [4] and ERβ 

[5], both with different splice variants [6] and the recent discovery of a membrane bound 

functional ER, the G protein-coupled receptor GPR30 [7–9]. For this review, we will 

describe recent experimental evidence from human and animal models that increase 

understanding of the role of estrogen relative to androgen in bone.

2. Production and cellular mechanism of action of estrogen

Circulating estrogens are produced from the aromatization of androgens by the cytochrome 

P450 enzyme, aromatase [10]. In males, unlike females in which the ovaries are the primary 

source of estrogen, the majority of the estrogen in the circulation is derived from 

extragonadal tissues [11]. The regulation of aromatase activity in different tissues such as 

breast, adipose and gonads is complex and it is increasingly clear that in addition to classical 

hormonal pathways there are important local regulatory mechanisms in place that regulate 

estrogen production in a tissue specific manner [12–14]. Estrogen produced by androgen 

aromatization induces cellular changes by several different mechanisms [15]. The major 

signal transducers are two distinct receptor proteins, ERα and ERβ, which have distinct 

tissue expression patterns [16] in both humans and rodents. ERα and ERβ are encoded by 

unique genes from separate chromosomal locations. Estrogens are thought to diffuse into 

target cells and are bound by the ER, which is located primarily in the nucleus, but can also 

be associated with the plasma membrane [17]. Recently, the membrane form [18] has been 

demonstrated to be unable to rescue a deficiency in the nuclear located receptor. The nuclear 

ER-estrogen complex can regulate genes, positively or negatively, by binding directly to 

specific DNA sequences in the promoter region of regulated genes involving the recruitment 

of coregulatory proteins (coactivators or corepressors) to the promoter, producing increased 

or decreased mRNA levels and associated protein production, and resulting physiological 

response. Gene-targeted knock-out mouse models lacking these receptors exhibit distinct 

phenotypes [19].

An alternative mode of action of estrogen involves an indirect mechanism by which the ER 

does not bind directly to the DNA but interacts with existing transcription factors; this is 

referred to as the tethered mechanism of nuclear receptor gene regulation [20,21]. To elicit 

many actions of the hormone this “genomic” mechanism typically occurs over the course of 

hours in most tissues. In contrast, non-genomic mechanisms, can also occur with estrogen, 

either through the ER located in or adjacent to the plasma membrane involving adaptor 

proteins such as caveolin-1 or Shc, or through other non-ER plasma membrane–associated 

estrogen-binding proteins, such as GPR30 [22], resulting in cellular responses such as 

activation of kinases which then acts to prime the genomic actions. Finally, a third aspect of 

ER activity involves the ligand independent activation of the receptor protein. Such an 

action has been shown experimentally in cells and animal models, involving the activation 
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of kinase cascades by growth factors or other membrane signaling agents [23]. The extent to 

which any of these specific mechanisms are involved in mediating the physiological actions 

of estrogen still requires considerable study in order to develop effective biomedical 

understanding and therapeutic treatment.

3. Control of longitudinal growth and final stature

The most visible action of estrogen on the human skeleton for both males and females is 

control of body proportion and determination of final stature [2,3]. The male identified with 

ERα point mutation (hERKO), described throughout this review, is a unique individual and 

clinical case. He presented at age 28 with tall stature (204 cm), eunuchoid body proportions 

(0.83 (average for men, 0.96)), unfused epiphyses (bone age ~15 years) and moderate to 

severe genu valgum. Unlike normal males, in which there is a self-limited surge of estrogen 

coinciding with a growth spurt [24], in the hERKO man there was likely a prolonged phase 

of elevated estrogens associated with sustained linear growth into his third decade. There 

was a minimal bone age progression despite normal testosterone and insulin-like growth 

factor-I (IGF-I) levels. Tall stature ensued but with marked eunuchoid body proportions and 

debilitating genu valgum. This is strikingly similar to reports in 7 aromatase deficient (AD) 

men all whom presented either in their 3rd or 4th decade with tall stature ranging from 183 

to 204 cm, bone ages ranging from 14.5 to 16.5 years, genu valgum and eunuchoid body 

proportions (see Table 1) [2,25–31]. By contrast, a 8th case of aromatase deficiency 

presented at age 17.1 years with a bone age of 12, normal stature and apparently normal 

body proportions [32] and an 9th case was reported as a male infant [33]. Importantly, in the 

aromatase deficient cases in which estrogen treatment was initiated [30,34–37], there was 

epiphyseal maturation, but only in the adolescent-aged individual was a significant growth 

acceleration observed [32]. AD has been reported in 11 females to date [2] but are readily 

identified early in life secondary to virilization; estrogen therapy is instituted before a bone 

phenotype becomes manifest.

Consistent with the longitudinal growth observations, ERα and ERβ [38–42], and more 

recently with the GPR30 [22,43], a G protein membrane estrogen signaling receptor, have 

been localized to human growth plate chondrocytes. In the rabbit, which resembles the 

human with respect to epiphyseal fusion in response to estrogen, ERα is readily detectable 

in resting, proliferative and hypertrophic chondrocytes [44]. However, animal models other 

than the rabbit and human have manifested different phenotypes, perhaps in part because of 

fundamental differences in growth dynamics [45–49]. Notably, in normal mice, the 

epiphyses do not completely fuse during the equivalence of puberty [24,50,51]. Further 

complicating interpretation is a sexually dimorphic age dependent pattern in the mouse 

knock-out models [52] and differences related to the degree of completeness of the knock-

out [1,21,53,54]. For example, putatively complete ERKO mice [55] appear to have femur 

bone length similar to wild type in both males and females, while other reports indicate 

shorter bones in both males and females [56,57]. ERβknock-out (bERKO) male and young 

and old female mice display unchanged femur lengths whereas in intermediate aged female 

mice with naturally occurring high estrogen levels have longer bones [49]. However, 

bERKO female mice do not have abnormal estrogen levels compared to wild type 

[55,58,59]. Aromatase deficient mice (ArKO) phenotype reveals a shortened femur length in 
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males with less effect in females [45,46]. GRP30 knock-out female mice are smaller than 

normal where as male knock-out animals appear similar to wild type controls [60]; 

subsequent analysis of the effect of ovariectomy on female GRP30−/− animals reveals 

decreased femur length compared to wild type ovariectomized with reduced impact of 

estrogen replacement [61]. Finally, androgen receptor knock-out (ARKO) mouse models 

show shorter femurs accompanied by osteopenia only in males and not in females [62].

As a result of the disparate phenotypes, the primary reason for difference in phenotypes 

between rodents and man remains largely speculative. Does ERβ account for some estrogen-

mediated actions on epiphyseal maturation? Do the shorter femurs in female GRP30−/− 

animals coupled with localization of GRP30 in growth plates indicate an important function 

for GRP30 mediated estrogen signaling in bone growth? If so, why only in female mice and 

why are femurs shorter rather than longer? An intriguing potential explanation has been 

suggested from the observation that hERKO man possessed a mutation in exon 2 consisting 

of a cytosine-to-thymine transition at codon 157 of both alleles, resulting in a premature stop 

codon that likely produced a truncated protein [3,52,53]. There is in vitro evidence that this 

truncated product may sustain some residual estrogenic activity [52,63]. Chagin and 

Savendahl [52] have speculated that this residual truncated N-terminal fragment [6,52,53,64] 

in the hERKO man may have served to retard epiphyseal closure until the 4th decade of life 

by acting as a dominant negative inhibitor of ERβ. However, no experimental studies have 

indicated such a mechanism to date. In fact, cultured bone cells from the ERKO man, 

despite having both ERβ mRNA and protein, failed to elicit any estrogen responsiveness 

relative to control wild type cells [65,66]. The fused epiphyses ultimately occurred in the 

hERKO man at age 35.5 without the benefit of significant estrogen intervention [65] but 

with elevated endogenously produced estrogen. Epihyseal fusion could be explained by a 

prolonged action of modestly high estrogens through either ERβ, GRP30 or truncated ERα 

but there remains no definitive evidence for any of these possibilities.

Although the ArKO cases and hERKO man clearly demonstrate that estrogen is critical for 

final epiphyseal maturation, a closer examination of their “pubertal” increment in growth 

does not implicate conclusively which sex steroid, androgen or estrogen, in addition to the 

prerequisite contribution of other hormone systems such as the GH-IGF-I axis [67–69], is 

the primary mediator of the pubertal growth spurt that is typically about 15–20% of final 

height [67,70,71]. Bone ages in the hERKO man and male aromatase deficient patients at 

presentation were substantially more advanced though not fused, and stature was greater, 

than in late presenting hypogonadal individuals [72,73]. Interestingly, the available 

longitudinal growth data in the hERKO case and the aromatase deficient patients suggest 

that a pubertal growth spurt occurred since the documented statures at age 18 matched the 

predicted height based on parental target range. This was followed during the third decade 

by tall stature greater than observed in isolated hypogonadism [69,74], eunuchoid body 

proportions similar to isolated hypogonadism and genu valgum seemingly more severe than 

reported with hypogonadism [72–74]. Although androgen insensitivity (AI) syndromes 

argue strongly that estrogen in the absence of a functional androgen receptor (AR) can 

induce both a growth spurt and epiphyseal maturation [75–77], there is controversy in these 

rare individuals regarding whether estrogen can fully compensate for the lack of androgen 
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action [75,78]. Do the available data support the notion that androgen can promote growth 

without inordinate bone age maturation under some circumstances? The growth data of 

hypogonadal individuals, particularly with intact adrenal androgen levels and normal growth 

hormone secretion [72,73], reveal an apparent maintenance of prepubertal height velocity 

during the first half of the second decade. Bone age is delayed but a full growth increment 

characteristic of puberty does not generally occur. This suggests that the differences in the 

growth observed in the hERKO case and the aromatase deficiency patients compared with 

hypogonadal individuals is related to combined androgen exposure and effectively deficient 

estrogen state. Seemingly, despite the well-documented actions of nonaromatizable 

androgen to advance bone age [79–82], under some circumstances androgen levels in the 

pubertal range can promote pubertal growth without rapid maturation of the epiphyses in the 

absence of full estrogen action.

What precise sex steroid environment promotes linear growth without inordinately 

advancing bone age is an important question to address in future clinical studies. Modulation 

of estrogen exposure, while simultaneously maintaining normal circulating androgens, has a 

number of intriguing potential benefits. Age-appropriate masculinization can be achieved 

while suppressing bone age maturation. In addition, maintenance of androgen concentrations 

allows for greater increments in height per unit of bone age advancement and, as mentioned 

later in this review, may result in simultaneous periosteal growth of the skeleton and could 

lead to a greater peak bone mass. As already indicated, this is a markedly different outcome 

from the tapered height velocity observed in longstanding hypogonadism [24] and may 

result in a larger and stronger skeleton less susceptible to fractures.

A tentative overall conclusion is that normal to increased stature can ultimately evolve over 

time without estrogen and that bone age maturation tends to arrest at about 15 years. Final 

epiphyseal fusion, coupled with a growth spurt, is, however, observed only if estrogen 

exposure occurs at younger bone ages. This conclusion suggests that manipulation of 

estrogen production and/or signaling has potential for augmenting final height. Recent 

studies using aromatase inhibitors confirm the potential for increasing stature in a variety of 

clinical conditions by modulating estrogen concentrations [83]. For example, Mauras et al. 

[84], in a study involving 52 short adolescent males randomized to receive either anastrozole 

or placebo for up to 36 months, demonstrated similar linear growth with a decrease in the 

rate of bone age advancement. The resulting increase in predicted height at 36 months was 

+6.7 ± 1.4 cm for the anastrozole group. Importantly, there was no significant difference in 

the spine BMD Z-score. However, the authors and a recent position statement by the 

Lawson Wilkins Pediatric Endocrine Society [85] stress that long-term follow-up is needed 

before aromatase inhibitors are used in children for stature manipulation outside of a 

controlled trial setting.

A final important caveat, however, to the prospects for sex steroid manipulation of final 

height is that there are senescence factors, intrinsic to the epiphysis, that serve to define an 

overall limit on final stature [24]. The near final epiphyseal fusion in the hERKO subject in 

particular supports this notion. Not only was linear growth without ERα activity largely 

completed by the middle to end of the 3rd decade in this patient and in the aromatase 

deficient cases, but the increased stature was accompanied by abnormalities of the body 
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proportion, marked genu valgum, and osteopenia. The role of estrogen appears to be 

accelerate senescence within a growth plate that has an internal program limiting the number 

of chondrocyte divisions [24,86]. Though both high doses of estrogen and early estrogen 

exposure will reduce final height [87], estrogen exposure within the physiologic range is not 

associated with significantly compromised final height and reduced estrogen production in 

boys with constitutional delay may lead to improved height prediction. The rapid fusion 

observed in the estrogen treated aromatase patients [26] and the progressive epiphyseal 

maturation observed in young children with precocious puberty [88] all point to a program 

of senescence within the growth plate that estrogen is able to modulate in humans and in 

some mammals. Stature increments, substantially beyond the normal genetic potential, are 

not likely to be achieved safely by manipulating estrogen action for more than a few years.

4. Bone mineral density and architectural integrity in human models

The next most consistent clinical phenotype of human models of estrogen deficiency and/or 

resistance is marked decreased areal measures of bone mineral density (aBMD). The 

decreased spine aBMD in the 7 reported aromatase patients improved significantly within 6 

months of estrogen treatment (Table 1). The decreased aBMD is presumably a manifestation 

of decreased trabecular volume from increased bone resorption coupled with decreased bone 

formation, a predictable outcome of the severe disruption in estrogen action [89,90] on 

trabeculae, a well-documented site for ERα [38,40] and ERβ [38,40] receptor expression in 

both osteoblasts and osteoclasts. Interestingly, many studies on the relationship between 

bone and circulating sex steroids in men suggest a greater correlation with estradiol than 

testosterone [91–94]. However, with the hERKO man, the only case with a detailed 

histomorphometric analysis [65], preservation of trabecular number is documented. This is 

not characteristic of male and female hypogonadism, and is more typical of the aging 

skeleton with normal androgen concentrations [95]. The preserved trabecular number may 

be explained, in part, by residual actions of estrogen through ERβ [55], known to be 

expressed in human osteoblasts [38] and osteoclasts [39,40], and normal androgen levels 

[96,97]. Studies involving supplementation with testosterone [98] to standard estrogen/

progesterone replacement in postmenopausal women and analysis of AI individuals [75] 

strongly suggest important actions of androgens on trabecular bone. Androgen receptors 

have been reported in human osteoblasts [99,100]. Finally, in the detailed longitudinal 

follow-up of the aromatase subject described by Rochira et al. [36]; following a window of 

estrogen replacement for approximately 2 years, androgen was added to the regimen with a 

further increase in spine aBMD from 1.018 g/cm2 to 1.134 g/cm2. The authors’ 

interpretation is that the full anabolic action of estrogen requires androgen. Regardless, a 

potential clinical implication is that interventions that augment ERα pathways and preserve 

the anabolic actions of androgen may be particularly effective in maintaining and/or 

augmenting trabecular bone.

It is interesting to compare these observations with the impact of estrogen on human bone 

among lactating women. Decreases of 3–9% in spine and femoral neck aBMD have been 

reported among lactating women [101–103]. This decrease occurs rapidly within the first 3–

6 months of lactation, reaching rates of bone loss of 1% per month. However, the amount of 

bone lost during lactation is variable and the length of postpartum amenorrhea is an 
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important determinant. Although the length of postpartum amenorrhea is associated with the 

length of lactation, some women resume menses while still breastfeeding. Several studies 

have found that the net change in spine aBMD is less in women who resumed menses during 

lactation compared to women who do not resume menses [103,104]. Importantly and 

particularly relevant for this review, spine aBMD increases on average 5.2% between 6 and 

12 months postpartum, the majority of this increase occurring following weaning [103] and 

women with high parity who breast-fed their children have greater bone cross-sectional area 

and bone bending strength later in life [105]. These findings underscore the importance of 

estrogen in regulating bone loss during lactation and suggest there are inherent mechanisms 

for skeletal recovery from periods of lowered estrogen.

Another remarkable set of findings observed in 2 of the aromatase patients by pQCT and by 

both pQCT and histomorphometry in the hERKO males is a marked thinning of the cortex 

with low cortical vBMD and increased trabecularization by histomorphometry [65] (Table 

2). The decreased cortical thickness was present with normal to increased periosteal 

circumference or cross-sectional bone area (Fig. 1). The ArKO subject described by 

Rochira, who was also hypogonadal with low testosterone concentrations, showed increases 

in cortical thickness and periosteal expansion with testosterone plus estrogen replacement 

[36]. Bone cross-sectional area is greater in men and is considered to be secondary to the 

increased periosteal apposition rate induced by androgens [106–109] and a possible 

inhibition of resorption on endosteal surfaces by estrogen [110]. Postmenopausal women are 

susceptible to increased endosteal bone loss relative to men, exhibit less periosteal 

apposition of new bone, and display greater cortical porosity [111].

The greater cortical vBMD that is observed in women of reproductive age has been 

hypothesized to be a result of estrogen-driven packing of excess bone for needs related to 

pregnancy and lactation [112]. Although estrogen is considered by some to exert primarily 

inhibitory actions on periosteal expansion, there is recent evidence from animals models that 

many of the actions of estrogen on periosteum may be to stimulate expansion through ERα, 

but in a dosage sensitive manner, and potentially, in collaboration with androgen actions 

[76,76,97,113,114] on periosteally located AR [114]. However, recent studies have found 

that estrogen does not have an independent effect on periosteal expansion and that the action 

of estrogen and bone loading on bone structure are independent and additive [115]. In the 

aromatase deficient subject presenting at age 17 years described by Bouillon et al., estrogen 

replacement alone appeared to induce modest linear growth but skeletal size was 

proportionately augmented; total vBMD and bone mineral apparent density (BMD adjusting 

for bone size) at the 4% distal radius measured by pQCT were unchanged, yet aBMD at the 

same location was increased, indicating that bone size and not true volumetric density were 

affected [32]. However, longitudinal measures at the 4% distal radius are difficult to 

compare due to large differences in bone diameter that occur at this location within very 

short distances. Because of the continued growth of this individual, it would have been 

impossible to measure the same location repeatedly over time, making the results difficult to 

interpret.

Related to the above description of the periosteum, bone width is affected in both the 

hERKO and aromatase deficient subjects. Specifically, wrist breadth at time of presentation 
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of the hERKO man was greater than normal at 7.2 cm (normal adult males: 6.0 ± 0.5 [mean 

± SD]; normal adult females: 5.3 ± 0.3 cm) and the width of the distal femurs were both 

estimated to be 113 mm (normal adult male 90 ± 7 mm). The skeletal “frame size” as 

measured at the wrist and knee is distinctly different from the ectomorphic appearing 

skeleton of longstanding hypogonadism [116] and this phenotype may be due to important 

actions of androgen in these individuals [79,97,113]. The ArKO subjects have normal to 

slightly elevated androgen prior to intervention and this may serve to maintain and/or 

augment bone size. In the ArKO patient described by Bouillon et al. [32], the initiation of 

estrogen replacement, which was followed by reduction but relative maintenance androgen 

concentrations, resulted in significant increase in skeletal size based on the observation that 

despite increases in cortical cross-sectional area, vBMD remained unchanged [32]. This 

notion that androgen enlarges the skeleton is supported by studies demonstrating that 

femoral area of androgen resistant rats is lower compared to normal males [117]. In 

addition, it is well established that androgen stimulates periosteal bone growth [79,118–120] 

and different skeletal domains such as the mandible [121,122] display sexual dimorphism.

5. Conclusions

Detailed analysis of homozygous-affected hERKO patient and aromatase individuals, as 

well as appropriate experimental animal models, suggest a complex contribution of estrogen 

to bone growth, aBMD, and skeletal structural integrity (Fig. 2). ERα disruption specifically 

results in delayed epiphyseal maturation, tall stature, trabecular thinning, marked cortical 

thinning, significantly reduced cortical vBMD, and normal to increased periosteal 

expansion. Of significant clinical relevance, debilitating genu valgum evolves. This supports 

an important role for ERα in mediating the actions of estrogen on the male skeleton, a result 

supported from the animal models as well. Whether this would hold true for female subjects 

is not known at the current time, since no hERKO female patients have been identified and 

the findings in the female mice are not as revealing as expected. Lack of estrogen due to 

aromatase deficiency results in a similar phenotype though less is known about skeletal 

architecture. Estrogen replacement, even if provided late in third decade may normalize 

aBMD, although it is less clear if there is complete recovery of normal skeletal architecture 

and strength. It also is not clear whether the residual effect of estrogen through ERβ, 

truncated ERα or GPR30 might manifest a different phenotype in the hERKO man than 

aromatase deficient subjects. Androgen, particularly by preserving trabecular number and 

augmenting both periosteal and epiphyseal growth, has important actions on bone. Targeting 

both ER and AR and the production of their respective activating hormones and/or mimetics 

will provide complimentary strategies to the management of sex hormone-regulated diseases 

such as osteoporosis and short stature.
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Fig. 1. 
pQCT images of hERKO subject and normal man. This figure depicts pQCT images at the 

4% (left) and 20% (right) distal radius in the hERKO subject (top row, A) and a man with 

similar arm length (bottom row, B). Decreased cortical thickness is apparent at both sites, as 

well as increased periosteal circumference and decreased trabecular vBMD, at the 4% distal 

radius.
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Fig. 2. 
Summary of the action of estrogen and androgen on bone. This figure depicts a rendition of 

a human distal femur. The principle actions of the sex steroids on bone are demonstrated 

based on the clinical findings in ArKO male subjects and the hERKO man. The action of 

androgen are listed on the left; the effects of estrogen on the right. The combined actions are 

shown on the lower middle.
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