
Improving consumption rate estimates by incorporating
wild activity into a bioenergetics model
Stephanie Brodie1,2, Matthew D. Taylor1,3, James A. Smith1,2, Iain M. Suthers1,2, Charles A. Gray1,4 &
Nicholas L. Payne1,5

1School of Biological, Earth and Environmental Sciences, Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW

2052, Australia
2Sydney Institute of Marine Science, Mosman, NSW 2028, Australia
3New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, Nelson Bay, NSW 2315, Australia
4WildFish Research, Grays Point, NSW 2232, Australia
5National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan

Keywords

Acceleration, daily energy expenditure,

dynamic body activity, ecological energetics,

energy budget, field metabolic rate,

predatory impact.

Correspondence

Stephanie Brodie, School of Biological, Earth

and Environmental Sciences, Evolution and

Ecology Research Centre, University of New

South Wales, Sydney, NSW 2052, Australia.

Tel: +61 421 245 749;

Fax: +61 2 9385 2202;

E-mail: stephanie.brodie@unsw.edu.au

Funding Information

Funding was provided through an Australian

Research Council Linkage Grant

(LP120100592) with the New South Wales

Recreational Fishing Saltwater Trust

Expenditure Committee, and a Climate

Adaptation Flagship scholarship from the

Commonwealth Scientific and Industrial

Research Organisation.

Received: 19 November 2015; Revised: 22

January 2016; Accepted: 30 January 2016

Ecology and Evolution 2016; 6(8): 2262–

2274

doi: 10.1002/ece3.2027

Abstract

Consumption is the basis of metabolic and trophic ecology and is used to assess

an animal’s trophic impact. The contribution of activity to an animal’s energy

budget is an important parameter when estimating consumption, yet activity is

usually measured in captive animals. Developments in telemetry have allowed

the energetic costs of activity to be measured for wild animals; however, wild

activity is seldom incorporated into estimates of consumption rates. We calcu-

lated the consumption rate of a free-ranging marine predator (yellowtail king-

fish, Seriola lalandi) by integrating the energetic cost of free-ranging activity

into a bioenergetics model. Accelerometry transmitters were used in conjunc-

tion with laboratory respirometry trials to estimate kingfish active metabolic

rate in the wild. These field-derived consumption rate estimates were compared

with those estimated by two traditional bioenergetics methods. The first

method derived routine swimming speed from fish morphology as an index of

activity (a “morphometric” method), and the second considered activity as a

fixed proportion of standard metabolic rate (a “physiological” method). The

mean consumption rate for free-ranging kingfish measured by accelerometry

was 152 J�g�1�day�1, which lay between the estimates from the morpho-

metric method (l = 134 J�g�1�day�1) and the physiological method

(l = 181 J�g�1�day�1). Incorporating field-derived activity values resulted in the

smallest variance in log-normally distributed consumption rates (r = 0.31),

compared with the morphometric (r = 0.57) and physiological (r = 0.78)

methods. Incorporating field-derived activity into bioenergetics models proba-

bly provided more realistic estimates of consumption rate compared with the

traditional methods, which may further our understanding of trophic interac-

tions that underpin ecosystem-based fisheries management. The general meth-

ods used to estimate active metabolic rates of free-ranging fish could be

extended to examine ecological energetics and trophic interactions across aqua-

tic and terrestrial ecosystems.

Introduction

Assessing an organism’s ecological requirements and con-

straints is central to predicting species distributions (Elith

and Leathwick 2009), community dynamics (Byrom et al.

2014), and trophic interactions (Young et al. 2015). Con-

sumption is the most fundamental trophic interaction,

and it can be calculated from diet analyses (Selch and

Chipps 2007; Hughes et al. 2014), body composition

(Coltrane et al. 2011; Pavlova et al. 2014), empirical

regressions (Pauly 1989), and bioenergetics models

(Kitchell et al. 1977; Hansen et al. 1993). Bioenergetics

models estimate consumption rates based on the energetic

requirements for growth, metabolism, reproduction, and
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waste (Olson and Boggs 1986). Metabolism, in turn, can

be partitioned into the energy required for basal processes

(resting/maintenance metabolic rate) and the energy

required for activity (active metabolic rate). The energy

required for activity can represent a large and variable

proportion of an organism’s energy budget (Boisclair and

Sirois 1993; Briggs and Post 1997; Essington 2003; Halsey

et al. 2015).

A central challenge in bioenergetics modeling is mea-

suring the contribution of activity to an animal’s energy

budget. Hansen et al. (1993) discussed the future applica-

tion of bioenergetics models and highlighted the need to

account for the metabolic costs of activity. Despite the

recent advances in technology that can help predict meta-

bolic rate, few studies have linked metabolism and activity

rates of free-ranging animals with estimates of consump-

tion or predatory impact (e.g., Halsey et al. 2008a; Payne

et al. 2011). Consumption is the essential element of

trophic ecology, from single-species models to ecosystem

models (Kinzey and Punt 2009; Taylor et al. 2013a). Such

models will be improved when the activity component of

individual consumption is derived from field data, under

local conditions and for specific species, and incorporates

the real variation in wild activity.

Activity of free-ranging organisms can be measured in

a variety of ways, using methods such as heart rate

biotelemetry (Butler et al. 2004; Halsey et al. 2008b),

doubly-labeled water (Speakman 1998; Shaffer 2011),

electromyography (EMG; Briggs and Post 1997; Cooke

et al. 2004b), or body acceleration (Cavagna et al. 1963;

Cooke et al. 2004a; Halsey et al. 2009). However, measur-

ing activity on aquatic animals precludes many of the

typical methods. For instance, applications of doubly-

labeled water and heart rate methods to aquatic species

result in high inaccuracies due to high water flux through

fish (Nagy and Costa 1980), and highly variable cardiac

stroke volume with physiological state and environmental

factors (Thorarensen et al. 1996). EMG has been shown

to be effective for examining fish body activity, but the

surgical implantation of electrodes requires high precision

and accuracy (Cooke et al. 2004b). Body acceleration

directly relates to energy expenditure (Cavagna et al.

1963; Halsey et al. 2008b) and can indicate the allocation

of energy to different animal behaviors (Payne et al.

2013). Advances in acoustic telemetry have allowed

remote measurement of body activity through accelerom-

eters linked with remote tracking, thus allowing field-

based assessment of aquatic animal behavior (Murchie

et al. 2011; Wilson et al. 2013). Quantifying the meta-

bolic costs of body activity is important in understanding

animal ecology, yet the energetic costs of field-derived

body activity have not been integrated into estimates of

consumption rates.

This study describes how measured activity rates in

free-ranging animals can be incorporated into bioenerget-

ics models for estimating consumption rate. The method

used laboratory calibrations and field activity data to esti-

mate field metabolic rate, and then incorporated this into

a bioenergetics model to estimate consumption rate. This

method is presented using a marine pelagic predator, yel-

lowtail kingfish Seriola lalandi (Valenciennes 1833), as a

study species. Little is known about the trophic ecology

of kingfish, and consumption rate estimates will be useful

for determining the trophic level of kingfish and associ-

ated trophic interactions. The field-derived activity

method was compared with two traditional bioenergetics

methods to evaluate the contribution of field-derived

activity to consumption rate estimates.

Materials and Methods

Estimating field metabolic rate via
accelerometry

Estimating field metabolic rates required two steps, the

first involved laboratory experiments to determine active

metabolic rate, and the second step required sampling

activity data from wild kingfish. Laboratory experiments

were conducted to describe the relationship between

activity (dynamic body acceleration), swimming speed,

and metabolic rate. These experiments were necessary to

measure active metabolic rate, and involved measuring

the oxygen consumption rate of wild caught kingfish

implanted with activity tags. Seven juvenile kingfish (465–
660 mm TL; mean 576.4 mm TL) were used in the cali-

bration and all were captured at South Solitary Island,

Australia (30°1207.20″S; 153°15057.60″E). Fish were held

in a flow-through aquarium system at the National Mar-

ine Science Centre, Southern Cross University, Australia,

maintained at 24 � 1°C, and fed on a diet of fresh and

frozen cephalopod and teleost food. Fish were internally

tagged with an acoustic transmitter that measures activity

(Vemco, Halifax, Nova Scotia, Canada, Model V13AP-H)

using standard surgical techniques (Taylor et al. 2013b).

Activity (m�sec�2) was determined by calculating the root

mean square of triaxial acceleration (5 Hz) measured over

a 20-sec period. This calculation occurred onboard the

tag with a single activity value acoustically transmitted

within a random period of 50–100 sec (there was no

archival logging of data).

Fish were allowed to recover from surgery for a mini-

mum of 5 days and were fasted for 12 h before being

introduced to a Brett-type swimming respirometer (Brett

1964) at 24 � 1°C (690 L, swim chamber dimensions

40 cm diameter 9 120 cm length). Five days was consid-

ered a sufficient period for full recovery based on the
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observation of fish behavior. The experimental tempera-

ture was the mean ocean temperature at South Solitary

Island during late summer – the same period as the cali-

bration trials (NSW Marine Park Authority). Prior to

each swimming trial, fish were acclimated to the

respirometer for 3 h at the slowest water velocity that

maintained steady swimming. Each fish was swum at

between five and eight incremental speeds (0.1–
0.8 m�sec�1) for 15 min at each speed. The respirometer

was completely sealed from any sources of atmospheric

air and dissolved oxygen concentrations were measured

using a Hach oxygen meter (Hach HQ40d Loveland, Col-

orado, USA). Oxygen consumption rate during each

swimming trial was measured as a metric of metabolic

rate. After each swimming trial, fresh seawater was

flushed through the respirometer to return oxygen levels

to ambient concentrations. If dissolved oxygen levels in

the respirometer fell below 80% saturation during a

swimming trial, the trial was paused and the respirometer

flushed with fresh seawater. An acoustic hydrophone

(Vemco, Model VR100) was used to record the acoustic

transmissions of activity data during each swimming trial.

Fish were returned to the aquaria once swimming trials

were completed.

Animals represented >10% of the cross-sectional area

of the swim chamber, so blocking correction factors were

applied to correct swimming speed (Bell and Terhune

1970). Oxygen consumption rates were converted to

mass-specific metabolic rates using an exponent of 0.79;

the mean scaling exponent for both resting metabolism in

teleosts (Clarke and Johnston 1999) and swimming meta-

bolism in sharks (Payne et al. 2015). Linear mixed-effects

modeling was performed to analyze laboratory trials using

the “lme4” package (Bates et al. 2012) in R statistical

computing (v3.0.3; R Core Development Team 2014).

Mass-specific oxygen consumption (MRA) was expressed

as a function of activity according to (eq. 1):

MRA ¼ s e b Act ; (1)

where s is the intercept, and b the coefficient of the rela-

tionship between metabolic rate and activity (Act). An

exponential form for equation (1) was selected based on

a comparison of corrected Akaike’s Information Criteria

(AICc) values between exponential and linear forms

(Table 1). Equation (1) was solved by loge-transforming

MRA and using a linear mixed-effects model of the form

(eq. 2):

logðMRAÞ ¼ logðsÞ þ b Act þ IDrand; (2)

where individual (IDrand) was included as a random fac-

tor to account for correlation in measurements within

individuals. Analysis of the laboratory trials also expressed

mass-specific oxygen consumption (MRS) as a function of

swimming speed according to (eq. 3):

MRS ¼ r e z SS; (3)

where r is the intercept, and z the exponent of the exponen-

tial relationship between metabolic rate and swimming speed

(SS). Equation (3) was solved by loge-transformingMRS and

using a linear mixed-effects model of the form (eq. 4):

logðMRSÞ ¼ logðrÞ þ z SSþ IDrand: (4)

The second step in estimating field metabolic rates

required sampling activity from wild kingfish. Activity was

measured in situ on the same experimental kingfish

(n = 7) after they were released at their site of capture,

South Solitary Island. South Solitary Island had three estab-

lished acoustic receivers, which were used to record the

movements and activity of these seven kingfish from March

to May 2013. Prior to release, these fish were given at least

14 days to recover from surgery to reduce any effects of

tagging on fish behaviour. After release, the first 24 h of

field data was not included in the analysis to reduce any

potential behavioral bias associated with reacclimating to

the natural environment. Hourly bottom temperature

(mean 21 m depth) was recorded by temperature loggers

attached to each acoustic receiver mooring. These tempera-

tures were used to estimate the environmental temperature

of kingfish during the monitoring period. Any acoustic

transmissions recorded in temperatures outside the tem-

perature range of the laboratory calibrations (24 � 1°C)
were excluded to avoid any uncertainty associated with the

temperature dependence of the activity–metabolism rela-

tionship (Halsey et al. 2015).

Estimating consumption rate

The consumption rate of individual kingfish, incorporating

the field-derived and laboratory-calibrated estimates of activ-

ity, was calculated using a bioenergetics approach based on

the energy balance model of Olson and Boggs (1986) (eq. 5):

C ¼ AMRþ G

A
; (5)

where C is consumption rate (J�g�1�day�1), AMR is the

active metabolic rate (J�g�1�day�1), and G the energy allo-

cated to fish growth (J�g�1�day�1; Table 2). A represents

Table 1. Comparison of exponential and linear forms of the relation-

ship between metabolic rate and activity (eq. 1). Corrected Akaike’s

Information Criteria and model weights are given for each model.

Form Equation AICc DAICc Weight

Exponential (eq. 1) MRA = s eb Act 41.44 0 1

Linear MRA = b Act + s 464.37 422.93 1E-92
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the proportion of total energy consumed lost due to

assimilation, egestion, and excretion (Rice et al. 1983).

Active metabolic rate (AMR) was calculated by converting

field activity values to metabolic rate using the relation-

ship derived from laboratory calibrations (eq. 1). Field

activity data from the seven kingfish were not uniformly

distributed across a 24-h period due to diel behavior of

kingfish. To account for this, activity was split into day

periods (Actday; 0700–1800 h) and night periods (Actnight;

1900–0600 h). The mean hourly activity value within each

period was converted to metabolic rate, based on equa-

tion (1) derived from the laboratory calibrations, and

multiplied by the hours in that time period (eq. 6):

AMR ¼ sebActday
� �

hd þ sebActnight
� �

hn
� �

Oxy; (6)

where s is the intercept, b the exponent of the derived rela-

tionship between metabolic rate and activity (eq. 1;

Table 2), hd is the number of hours in the day period

(0700–1800 h), hn is the number of hours in the night per-

iod (1900–0600 h), and Oxy is the oxy caloric coefficient

of 14.14 J�mgO2
�1 (Elliott and Davison 1975). The ener-

getic costs associated with reproduction were assumed to

be negligible as the individuals monitored were juveniles.

The energy allocated to daily somatic growth (G;

J�g�1�day�1) was determined by (eq. 7):

G ¼ ðGv=WÞ � Fj; (7)

where Gv (g�day�1; Table 2) is the daily growth rate, W is

mean weight (g), and Fj is the energy density of somatic

Table 2. Summary of derived or literature mean parameter values and standard deviations (SD) used in calculating consumption rates of kingfish.

Parameter

symbol Parameter descrption Value SD Units Equation Source

A Assimilation, egestion, and excretion costs 0.685 0.0175 – 5 Rice et al. (1983)

Actday Mean hourly transmitted activity value during the day 1.582 0.1397 m�sec�2 5 Derived

Actnight Mean hourly transmitted activity value during the night 0.808 0.0647 m�sec�2 5 Derived

Ac Coefficient of swim speed regression 0.3478 0.0782 – 8 Sambilay (1990)

AM Activity multiplier 2 – – 5 Winberg (1956) and

Kitchell et al. (1977)

AR Aspect Ratio 1.756 0.26 – 8 Measured

b Slope of relationship between metabolic rate and activity 1.0907 0.1901 – 1, 2, 6 Derived, Figure 1B

Fj Average energy density of Katsuwonis pelamis, Thunnus

albacares, and Pomatomus saltatrix

6210 220 J�g�1 7 Boggs and

Kitchell (1991) and

Hartman and

Brandt (1995)

Gv von Bertalanffy growth rate, converted to mass. 2.158 0.21581 g�1�day�1 7 Derived

hd Number of hours in the day period (0700–1800 h) 12 – – 6 Measured

hn Number of hours in the night period (1900–0600 h) 12 – – 6 Measured

Int Intercept of swim speed regression �0.828 0.2299 – 8 Sambilay (1990)

Lc Coefficient of swim speed regression 0.6196 0.0562 – 8 Sambilay (1990)

Oxy Oxy calorific coefficient 14.14 0.135 J�mgO2
�1 5 Elliott and

Davison (1975)

Q10 Rate at which standard metabolism increases with a 10°C

increase

1.5536 0.155361 – 10 Pirozzi and

Booth (2009)

log(r) Intercept of relationship between metabolic rate and

swimming speed

4.6423 0.1867 – 3, 4 Derived, Figure 1A

Ra Intercept of relationship between metabolic rate and mass 0.0067 0.000671 – 9 Clarke and

Johnston (1999)

Rb Slope of relationship between metabolic rate and mass �0.21 0.11 – 9 Clarke and

Johnston (1999)

log(s) Intercept of relationship between metabolic rate and

activity

4.2387 0.1777 – 1, 2, 6 Derived, Figure 1B

SL Standard length 49 5.745 cm 8 Measured

Speed Routine swimming speed 0.7245 0.2376 m�sec�1 Derived

T Temperature 23.8 0.53 °C 10 Measured

W Mass of fish 1816.3 621.3 g 7 Measured

z Slope of relationship between metabolic rate and

swimming speed

1.3098 0.3843 – 3, 4 Derived, Figure 1A

1Indicate parameters that have an assumed SD 10% of the mean.
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tissue (J�g�1; Table 2). Gv for kingfish is the von Berta-

lanffy growth rate (t0 = �4.4, k = 0.54, L∞ = 184) (Ste-

wart et al. 2004) converted to mass from a kingfish

length–weight regression provided by Stewart et al.

(2001). Growth rates decrease with increasing fish age, so

the mean fish length of experimental kingfish (51 cm FL;

1.62 years) was used in calculating daily growth rate.

There are no estimates of energy density for yellowtail

kingfish, so the average energetic content of physiologi-

cally similar species (Katsuwonus pelamis, Thunnus alba-

cares, Pomatomus saltatrix) was used due to similarities in

ecology and trophic levels (Boggs and Kitchell 1991; Hart-

man and Brandt 1995).

Consumption rates of kingfish were also calculated using

two traditional methods. These methods estimate con-

sumption as above (eq. 5), but differ in how they calculate

active metabolic rate. The calculations for active metabolic

rate are presented for each method, and these values are

entered into equation (5) as AMR to estimate kingfish con-

sumption. The first method, hereafter referred to as the

morphometric model, requires relationships between

swimming speed and fish length, and swimming speed and

metabolic rate (eq. 3), to estimate active metabolic rate.

Morphological traits have been used for obligate ram ven-

tilators such as tuna by using the minimum swimming

speed required for hydrodynamic lift as a metric for rou-

tine swimming speed (Magnuson 1973; Essington 2003).

For the morphometric method, routine swimming speed

was estimated using an empirical multiple regression relat-

ing kingfish swimming speed to their standard length and

aspect ratio of their caudal fin (Sambilay 1990) (eq. 8):

log10 Speed ¼ Int þ Lc log10 SLþ Ac log10 AR; (8)

where Speed is routine swimming speed (km�h�1), Int is

the intercept of the regression, Lc is a coefficient, SL is

standard length (cm), Ac is a coefficient, and AR is aspect

ratio of the caudal fin (Table 2). AR is the ratio of the

height and surface area of the caudal fin, and for kingfish

was calculated from photographs (n = 5; 350–670 mm

TL) using ImageJ software (Abr�amoff et al. 2004). The

mean standard length (SL) of the seven experimental

kingfish was used in equation (8). The derived routine

swimming speed was used to determine active metabolic

rate (mgO2 kg�1�h�1) using the relationship derived from

laboratory calibrations (MRS; eq. 3). This value of active

metabolic rate was converted into J�g�1�day�1 and entered

as AMR in equation (5).

The second method, hereafter referred to as the physio-

logical model, used species-specific physiological estimates

of metabolic rate within the bioenergetics formula of the

software Fish Bioenergetics 3.0 (Hanson et al. 1997). This

a common approach for estimating consumption rates

and relies upon sampling physiological parameters of the

species of interest. The function for active metabolic rate

(R; gO2 g�1�day�1) is (eq. 9):

R ¼ RaW
RbTemp AM; (9)

where Ra and Rb are the intercept and slope of the allo-

metric function for mass-specific standard metabolic rate,

W (g) is the wet weight of the predator, Temp is a tem-

perature dependence function (see below), and AM is an

activity multiplier that scales standard metabolic rate to

active metabolic rate (Table 2). Ra and Rb are coefficients

from a general teleost fish allometry function estimated

from Clarke and Johnston (1999). The mean weight (W)

of the seven experimental kingfish was used in equa-

tion (9). The activity multiplier (AM) was set at 2 to esti-

mate the active metabolic rate of wild fish (Winberg

1956). The value of the activity multiplier is subjective

but consistent with other studies (Meskendahl et al. 2010;

Whiterod et al. 2013; Johnson et al. 2015), and is based

on the assumption that active metabolic rate is a fixed

proportion of standard metabolic rate. This fixed propor-

tion is likely to introduce unknown error into consump-

tion rate estimates, but is included here due to its

prevalence in the literature. The temperature dependence

function Temp is calculated as (eq. 10):

Temp ¼ eððlnðQ10Þ=10ÞT ; (10)

where Q10 is the increase in standard metabolism with an

increase in 10°C, and T is temperature (°C). In this study,

T was the mean temperature from the sampling period at

which acoustic transmissions were recorded. Within this

sampling period, only temperatures within the boundary

of the laboratory calibrations (24 � 1°C; Table 2) were

included in calculating the mean. This was done to ensure

that the mean and variance of T matched the observa-

tions included in the accelerometer method. The value

for R (eq. 9) was converted to units of J�g�1�day�1 and

entered as AMR in equation (5).

Sensitivity analysis and consumption rate
simulations

A sensitivity analysis was undertaken to determine the rel-

ative effect of each parameter on consumption rate esti-

mates and included all parameters in each of the three

models (accelerometry, morphometric, and physiological

models). In this analysis, Monte Carlo simulations were

used to select unique parameter values for each model

run, where parameter values were randomly varied to be

either the mean value or the mean value �10%. Simula-

tions were continued until the variance in consumption

rate estimates stabilized (10,000 iterations). The random
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parameter values and model outputs were then standard-

ized following Kleijnen (1997) to allow for a comparison

of parameter relative importance. A multiple linear

regression of standardized simulation results was used to

express consumption as a function of parameter values,

and the resulting parameter coefficients represent the rela-

tive importance of parameters in determining consump-

tion rates (Smith et al. 2012).

The variance, or uncertainty, of parameter values was

incorporated into final consumption rate estimates for

each of the three models using Monte Carlo simulations

in MATLAB (Mathworks Natick, Massachusetts, USA;

Taylor et al. 2013a). Consumption rate simulations

accounted for the uncertainty in parameter estimates by

sampling parameter values from normal probability distri-

butions. Probability distributions were developed using

mean and variance estimates from laboratory calibrations

as well as published sources (Table 2). Parameters that

did not have published sources of error were allocated a

standard deviation equal to 10% of the mean. Each model

simulation sampled a value from each parameter’s normal

probability distribution, with simulations continued until

the variance in consumption rate estimates stabilized

(10,000 iterations). This produced a probability distribu-

tion of consumption rate estimates for each model, with

a log-normal curve fitted to simulation outputs.

Results

Field metabolic rate via accelerometry

Throughout the duration of the laboratory swimming tri-

als, oxygen consumption by the experimental kingfish

declined linearly. Exponential models best described the

increase in kingfish metabolic rate (mgO2 kg�1�h�1) with

swimming speed (Fig. 1A), and activity (Fig. 1B). All seven

experimental kingfish were detected within the South Soli-

tary Island acoustic array for durations between 4 and

69 days after they were released (mean 44 days’ detection

duration). Acceleration values were transmitted frequently

within this period, with a mean 60 detections per day.

Kingfish showed strong diel behavior, with higher activity

values during the day (1.58 � 0.14 m�sec�2; Fig. 2A) than

at night (0.81 � 0.06 m�sec�2; Fig. 2B).

Consumption rate parameters

Sensitivity analyses identified a single parameter in each

of the three models that had a dominant influence on

consumption rate (Fig. 3). For the accelerometry and

morphometric models, the constants log(s) and log(r)

had the greatest influence on consumption rates, respec-

tively (Fig. 3A, B). These parameters [log(s) and log(r)]

are intercepts of the exponential equations to calculate

metabolic rate from activity (MRA; Figs. 1B, 3A; eq. 1)

and swimming speed (MRS; Figs. 1A, 3B; eq. 3). In the

physiological model, parameters were more similar in

their relative influence on consumption rate, but the Q10

parameter (the temperature dependence of metabolism)

had the greatest influence (Fig. 3C). Weight (W) and

assimilation (A) were the only parameters in each model

that were negatively related to consumption rates (Fig. 3).

The parameters that had the lowest relative influence on

consumption rates were von Bertalanffy growth rate (Gv)

and energetic density (Fj), and this was consistent across

all three models.

Consumption rate simulations

Consumption rate estimates for kingfish were similar

between all three models, with the physiological model

having the highest estimate (l = 181 J�g�1�day�1),
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Figure 1. Relationship between metabolic rate and swimming speed

(A) and activity (B) for kingfish (n = 7, symbols and colors represent

individual fish). Solid lines represent the exponential relationship

derived from the linear mixed-effects models (eqs. 1 and 3).
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followed by the accelerometry model (l = 152 J�g�1�day�1)

and then the morphometric model (l = 134 J�g�1�day�1;

Fig. 4). The variance of the log-normal distribution

influences the shape and position of the curves in Figure 4,

with smaller variances shifting the peak of log-normal curve

closer to the mean. The accelerometry model estimate had

the smallest variance for the log-normally distributed con-

sumption rate (r = 0.31), compared with the morphomet-

ric (r = 0.57) and physiological models (r = 0.78; Fig. 4).

The median values of simulated outputs of consumption

rates show a similar pattern to mean consumption, with the

median accelerometry estimate (M = 151 J�g�1�day�1)

greater than the morphometric estimate

(M = 119 J�g�1�day�1) and smaller than the physiological

estimate (M = 178 J�g�1�day�1).

Discussion

Incorporating field-derived activity into a bioenergetics

model should provide more realistic estimates of

consumption rates compared with traditional methods.

The accelerometry method measures real variation in wild

body activity, whereas the physiological method assumes

fixed activity, and the morphometric method derives

activity based on fixed morphological traits. Uncertainty

in active metabolic rate can be accounted for in the mor-

phometric method by using the standard error of the

empirical regression (Sambilay 1990), but this variation

represents intraspecific variation. Neither the physiologi-

cal nor morphometric methods account for the real
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between- and within-individual variation in active meta-

bolic rate. The accelerometry method incorporates both

these types of variation, which are probably the most rele-

vant to estimating accurate species-specific consumption

rates. Another advantage of the accelerometry method is

the ability to partitition active metabolic rate across eco-

logically relevant scales. In this study, for example, wild

kingfish showed strong diel behavior, with mean daytime

activity almost double that of mean nighttime activity.

The relevant scale at which to partition animal activity

can be informed through the behavioral ecology of the

study species. For example, fine temporal scales can be

used to assess the energetic costs of episodic environmen-

tal events (e.g., rainfall; Payne et al. 2013) or diel move-

ment behavior (Gleiss et al. 2013), whereas coarse

temporal scales can be used to assess seasonal trends in

animal activity (Stehfest et al. 2015). Exploring the varia-

tion in active metabolic rate across these scales is not pos-

sible in the physiological or morphometric methods.

Evaluating the metabolic rate equations

The distribution of estimated consumption rates in the

accelerometry method had the smallest variance despite

this method incorporating the variation of wild activity.

This is surprising, given the real variation within and

between wild individuals that was incorporated into the

accelerometry method, and indicates the level of uncer-

tainty inherent in the other methods. The sensitivity anal-

yses revealed that the parameters associated with

estimating metabolic rate had the largest influence on

consumption rate estimates. For the accelerometry and

morphometric models, the most influential parameters

were the intercept of the linear models derived from the

laboratory calibrations [log(s), log(r)]. This occurred

despite the morphometric model including a large source

of uncertainty from the multispecies empirical regression

(eq. 8). The importance of log(s) and log(r) parameters

in the accelerometer and morphometric models indicates

the significance of the functions used to derive active

metabolic rate from activity (eq. 1) and swimming speed

(eq. 3). Log(s) and log(r) are the random intercepts that

included real between-individual variation in the labora-

tory calibrations. The between-individual variation could

have been examined by using whole-animal metabolic

rates instead of mass-specific metabolic rates, which ulti-

mately would have decreased the error of field metabolic

rate estimates. However, insufficient field data for the

experimental kingfish prevented the use of whole-animal

metabolic rates being used in consumption rate estimates.

The laboratory calibration that derived the relationship

between activity (Act) and metabolic rate (MRA) was best

described by an exponential equation, as determined from

AICc. The exponential form was surprising, given that a

majority of studies have found a linear (e.g., Wilson et al.

2013), rather than nonlinear, relationship (e.g., Gleiss

et al. 2010; Payne et al. 2011). Gleiss et al. (2010) found

that an exponential form of the relationship between

body acceleration and metabolic rate could provide better

estimates of the standard metabolic rate for hammerhead

sharks, as standard metabolic rate was determined by

extrapolating the metabolic rate and body acceleration

relationship to zero acceleration (i.e., intercept; Gleiss

et al. 2010). A linear form of this relationship resulted in

a negative standard metabolic rate for hammerhead

sharks, with the result attributed to the limited range of

laboratory swimming speeds the sharks were exposed to

(Gleiss et al. 2010). In this study, the linear form of the

kingfish activity and MRA relationship also had a negative

intercept (MRA = 243 9 Act � 15), a result that is bio-

logically impossible. As the activity and MRA relationship

(eq. 1) was being used to predict the field metabolic rate

of kingfish, the exponential relationship was kept to

improve the predictive power of field estimates and pro-

vide realistic metabolic rate estimates at low activity val-

ues. The experimental kingfish were swum over a

relatively small range of speeds in the laboratory, with

field activity values much higher than the laboratory mea-

surements. In order to prevent extrapolation beyond the

limits of the laboratory-derived equation, the mean

hourly activity of kingfish was used in consumption rate

estimates. The value for both mean hourly activity during

the day (Actday) and night (Actnight) was within range of

the activity values recorded in the laboratory calibrations.

This ensured that the choice of the exponential form of

equation (1) did not provide spurious results, nor inflate

the uncertainty of consumption rate estimates.
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The sensitivity analysis shows that the temperature

dependence of metabolism (Q10) had the greatest

influence on consumption rate estimates in the physiol-

ogy method. Temperature greatly influences metabolism

and activity of animals, yet any scaling relationship

between temperature and active metabolic rates remains

unclear (Halsey et al. 2015). Integrating field-derived

activity values over a greater temperature range than the

range in this study can be done, but the effect of tempera-

ture on activity should first be evaluated. This step is criti-

cal for highly active animals, such as pelagic fish, where

the proportion of energy allocated to active metabolic rate

exceeds that of resting metabolic rate (Halsey et al. 2015).

Determining the relationship between active metabolic rate

and temperature will allow the accelerometry model to be

applied to animals exposed to variable environmental tem-

peratures. For active animals, the effect of temperature can

be accounted for in the accelerometry model by multiply-

ing the equation for Temp (eq. 10) by the equation for

mass-specific oxygen consumption (MRA; eq. 1), where

the Q10 parameter in the Temp equation is the rate of

change in active metabolic rate as a result of a 10°C tem-

perature increase. For inactive animals, where the propor-

tion of energy allocated to active metabolic rate is small or

negligible, environmental temperatures can be incorpo-

rated into the accelerometry model by using the Q10 of

resting metabolic rate. This is because, in inactive animals,

it can be assumed that the relationship between tempera-

ture and active metabolic rate scales similarly to that of

temperature and resting metabolic rate (Halsey et al.

2015). For active animals, determining the effect of tem-

perature on active metabolic rate will improve the accu-

racy of consumption rate estimates, as well as any other

behavioral metric that may be affected by temperature.

The high mean consumption rate estimate of the physi-

ological method is partly due to the activity multiplier.

Despite the common use of the activity multiplier (Mesk-

endahl et al. 2010; Hughes et al. 2014; Frisk et al. 2015),

the assumption that active metabolic rate is a fixed pro-

portion of standard metabolic rate may lead to miscalcu-

lations of consumption rates and should be explicitly

tested for individual species (Mathot and Dingemanse

2015) and treated conservatively (Meskendahl et al.

2010). The activity multiplier can be estimated from labo-

ratory feeding trials (Madenjian et al. 2012; Cerino et al.

2013); however, the estimated value still remains inflexible

in response to changes in environmentally induced fish

behavior (Whiterod et al. 2013).

Application of the bioenergetics models

The three models presented in this study have broad

applications, with each model possessing its own

advantages and limitations to estimating consumption

rates. Accounting for the variation in animal activity

levels is one of the key advantages of using the accelerom-

etry method, as fine-scale temporal variation in consump-

tion rates cannot be resolved using the physiological or

morphometric methods. This study used a highly active

marine predator to provide an example of incorporating

wild activity, but the methods can be applied to species

with different behavioral strategies. For example, less

active species have a strong accelerometer signal, with

transmitters revealing bursts in activity of sedentary spe-

cies (de Almeida et al. 2013) and ambush predators (Gan-

non et al. 2014; Landsman et al. 2015). The broad

application of the accelerometry method to many aquatic

species is a significant advantage; however, the primary

limitation of this approach is the requirement of swim-

tunnel respirometry. The use of respirometry to calibrate

the metabolic costs of activity can be logistically difficult

for large individuals (>10 kg; Payne et al. 2015), or spe-

cies that require very fast water speeds for minimum

swimming requirements (e.g., tuna; Fitzgibbon et al.

2008). For such individuals, the morphometric and physi-

ological methods can provide alternative approaches to

estimating consumption rates. The example morphomet-

ric approach estimated routine swimming speed by

assuming that the caudal fin was the primary mode of

locomotion. This approach also required deriving a rela-

tionship beween swimming speed and metabolic rate

(eq. 3). In other applications, estimates of optimum

swimming speeds based on morphological traits could use

theoretical estimates (Weihs 1973; Ware 1978), or other

empirical approaches that incorporate alternate swimming

modes (Magnuson 1973; Sfakiotakis et al. 1999). The

morphometric approach can also use estimates of opti-

mum swimming speed in an empirical model to estimate

the energetics costs of swimming (Videler and Nolet

1990; Boisclair and Tang 1993; Ohlberger et al. 2006),

which removes the requirement for laboratory calibra-

tions. The advantage of the physiological method is that

it can also be used without a corresponding laboratory

experiment, but doing so requires the use of existing mul-

ti-species regressions that define the relationship between

standard metabolic rate and mass. Incorporating empiri-

cal multi-species relationships into the morphometric and

physiological methods allows these methods to be applied

to a wide range of species, with no requirement for labo-

ratory respirometry calibrations. However, the use of such

empiricial relationships comes with inherent variation,

and such uncertainty must be communicated in the final

estimates of consumption rates.

A reliable understanding of the trophic demand of

predators is needed for ecosystem-based management.

Within the framework of ecosystem-based fisheries
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management, innovative methods are required to gain

comprehensive information about trophic interactions.

For example, the consumption rate estimates reported

here have implications for the modeling of energy flow

through ecosystems and provide a useful estimate for

understanding kingfish production. Kingfish populations

are exhibiting a poleward range shift (Robinson et al.

2015) and consumption rate estimates can potentially

infer the future predatory impact of kingfish on prey

resources, and help promote adaptive management to

altered fisheries resources (Koehn et al. 2011). In future,

consumption rate estimates for multiple species can be

used as a reference point for ecosystem-based manage-

ment and could be used to model the implications of

altered harvest strategies. Interspecies comparisons

revealed similar consumption rates between kingfish

(range of method means: 134–181 J�g�1�day�1) and a

comparable piscivorous predator, Arripis trutta

(102 J�g�1�day�1; Hughes et al. 2014), but were mark-

edly lower than that of a tuna species that occupies a

similar trophic level, K. pelamis (465 J�g�1�day�1; Ess-

ington 2003). Future interspecies comparisons could

benefit from monitoring differences in fish activity and

behavior in the wild. This would help further elucidate

the bioenergetics and trophodynamic impacts between

fish groups that occupy similar trophic levels. Individ-

ual consumption estimates can then be scaled to popu-

lation consumption by linking bioenergetics models

with population models (Essington 2003; Megrey et al.

2007), and using accurate individual-level data should

improve the realism of these population models. There

is often high uncertainty in estimates of consumption

(as seen in this study); however, incorporating wild

activity should ultimately improve accuracy, and the

interpretation and application of consumption rate

estimates.
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