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Abstract

Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are 

the most common cause of death in postmenopausal women. Endogenous estrogens inhibit 

vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase-derived 

vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-

coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid 

production and activity under pro-inflammatory conditions. Effects of estrogen on production of 

thromboxane A2 were determined in human endothelial cells stimulated by the pro-inflammatory 

cytokine TNF-α. Moreover, Gper-deficient (Gper−/−) and wild-type mice were fed a pro-

inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous 

estrogens. Thereafter, endothelium-dependent contractions to acetylcholine-stimulated 

vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were 

recorded in isolated carotid arteries. In endothelial cells, TNF-α-stimulated thromboxane A2 

production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In 

ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by 2-fold. 

Ovariectomy also augmented prostanoid-dependent contractions by 2-fold in wild-type mice, but 

had no additional effect in Gper−/− mice. These contractions were blocked by the cyclooxygenase 

inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor L-NAME. 

Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling 

downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory 

conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity 

in intact arteries through GPER. Selective activation of GPER may therefore be considered as a 
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novel strategy to treat increased prostanoid-dependent vasomotor tone or vascular disease in 

postmenopausal women.
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Introduction

Complications of atherosclerotic vascular disease such as myocardial infarction and stroke 

are the most common cause of death in women, although they occur 10 years later in life 

than in men because premenopausal women are largely protected (Schenck-Gustafsson et al. 

2011; Barrett-Connor 2013). Such epidemiological findings point towards potent inhibition 

of atherogenesis by endogenous estrogens such as 17β-estradiol (Schenck-Gustafsson et al. 

2011; Barrett-Connor 2013), and experimental evidence further supports that estrogens exert 

pleiotropic salutary effects on the vascular wall (Murphy 2011). Estrogen signaling 

pathways are complex since 17β-estradiol non-selectively activates soluble transcription 

factors including estrogen receptor α (Green et al. 1986; Greene et al. 1986) and estrogen 

receptor β (Kuiper et al. 1996), as well as the 7-transmembrane, intracellular G protein-

coupled estrogen receptor (GPER) (Revankar et al. 2005; Thomas et al. 2005). GPER is 

highly expressed in the cardiovascular system (Isensee et al. 2009) and has been implicated 

in the regulation of vascular tone and inflammation (Haas et al. 2009; Lindsey et al. 2009; 

Meyer et al. 2010; Chakrabarti and Davidge 2012; Meyer et al. 2012a; Meyer et al. 2012b; 

Meyer et al. 2014b), although the mechanisms involved are only partially understood.

The vascular endothelium is a key regulator of vascular tone through the release of multiple 

vasoactive substances, including both relaxing factors, such as nitric oxide (NO), and 

contracting factors, such as cyclooxygenase (COX)-derived vasoconstrictor prostanoids and 

endothelin-1 (Feletou and Vanhoutte 2006). Studies on endothelial function widely rely on 

acetylcholine as a muscarinic agonist that initiates two distinct endothelium-dependent 

responses: relaxation mediated predominantly by NO at low concentrations (1–100 nmol/L), 

and contraction mediated by vasoconstrictor prostanoids at high concentrations (≥100 

nmol/L) (Kauser and Rubanyi 1995; Traupe et al. 2002b; Zhang and Kosaka 2002; Zhou et 

al. 2005; Feletou and Vanhoutte 2006). Prostanoids such as thromboxane A2 released by the 

endothelium in response to acetylcholine elicit contraction of the underlying vascular 

smooth muscle by activating thromboxane-prostanoid (TP) receptors (Feletou and 

Vanhoutte 2006). In fact, intracoronary infusion of acetylcholine induces vasoconstriction in 

patients with mild and advanced atherosclerosis independent of sex (Horio et al. 1986; 

Ludmer et al. 1986), indicating that release of prostanoids in humans modulates 

vasoconstriction. Since COX-derived prostanoids are also important modulators of vascular 

inflammation involved in atherogenesis (Ricciotti and FitzGerald 2011), biosynthesis of 

thromboxane A2 is increased in atherosclerotic lesions (Mehta et al. 1988).

Although endogenous estrogens contribute to the inhibition of vasoconstriction, vascular 

inflammatory processes and atherosclerosis (Murphy 2011) in part through the reduction of 
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vasoconstrictor prostanoid production and activity (Kauser and Rubanyi 1995; Davidge and 

Zhang 1998; Dantas et al. 1999; Zhang and Kosaka 2002), the specific estrogen receptor 

that modulates these responses is unclear. Given that GPER activation inhibits vascular 

inflammation in mice (Meyer et al. 2014b), we hypothesized that endogenous estrogens 

might reduce the production and activity of vasoconstrictor prostanoids through GPER. We 

therefore set out to determine the effects of 17β-estradiol on vasoconstrictor prostanoid 

production in human endothelial cells under quiescent and pro-inflammatory conditions. In 

addition, functional responses to acetylcholine-stimulated vasoconstrictor prostanoids were 

compared between ovary-intact and ovariectomized wild-type and GPER-deficient 

(Gper−/−) mice fed a high-fat, cholate-containing diet known to induce vascular 

inflammation (Paigen et al. 1987; Lin et al. 2007; Chen et al. 2010; Denes et al. 2012; 

Meyer et al. 2014b).

Materials and methods

Materials

L-NG-nitroarginine methyl ester (L-NAME), 2-[(2,6-dichloro-3-methylphenyl)amino]-

benzoic acid (meclofenamate), and 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α 

(U46619) were from Cayman Chemical (Ann Arbor, MI, USA). Endothelin-1 was from 

American Peptide (Sunnyvale, CA, USA), and TNF-α was from R&D Systems 

(Minneapolis, MN, USA). G36 was synthesized as described (Burai et al. 2010; Dennis et 

al. 2011) and provided by Jeffrey Arterburn (New Mexico State University, Las Cruces, 

NM, USA). All other drugs were from Sigma-Aldrich (St. Louis, MO, USA). For vascular 

reactivity studies, stock solutions were prepared according to the manufacturer’s 

instructions, and diluted in physiological saline solution (PSS, composition in mmol/L: 

129.8 NaCl, 5.4 KCl, 0.83 MgSO4, 0.43 NaH2PO4, 19 NaHCO3, 1.8 CaCl2, and 5.5 

glucose; pH 7.4) to the required concentrations before use. Concentrations are expressed as 

final molar concentration in the organ chamber.

Thromboxane A2 production in human endothelial cells

Human endothelial cells of a hTERT-immortalized umbilical vein endothelial (TIVE) cell 

line, which expresses GPER (Meyer et al. 2014b), were kindly provided by Rolf Renne 

(University of Florida, FL, USA). Cells were isolated from a male donor as confirmed by 

fluorescence in situ hybridization (FISH) analysis (TriCore Reference Laboratories, 

Albuquerque, NM, USA), generated as described (An et al. 2006) and cultured in M199 

basal medium supplemented with 20% FBS bovine endothelial cell growth factor (6 μg/mL) 

and antibiotics (100 U/mL penicillin, 100 mg/mL streptomycin and 50 μg/mL gentamycin). 

TIVE cells express endothelial cell-specific markers at passage 12 that are identical to 

expression patterns observed in primary human umbilical vein endothelial cells at passage 2 

(An et al. 2006), and therefore were used up to passage 12. Their endothelial nature was 

confirmed by assessing expression of von Willebrand factor and endothelial NO synthase, as 

well as acetylcholine-mediated NO production. After replacing with phenol red-free, 

charcoal-stripped medium, TIVE cells were incubated with 17β-estradiol (100 nmol/L), the 

GPER-selective antagonist G36 (1 μmol/L) (Dennis et al. 2011), or solvent (DMSO 0.01%) 

in the presence and absence of TNF-α (1 ng/mL) for 24 hours. The supernatant was 
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collected and analyzed for thromboxane A2 production by determining the concentration of 

its stable hydrolyzed metabolite, thromboxane B2, using a competitive enzyme 

immunoassay (Cayman Chemical) according to the manufacturer’s instructions. 

Thromboxane A2 production was normalized to cell number.

Animals

Female Gper−/− mice (Proctor & Gamble, Cincinnati, OH, USA, provided by Jan S. 

Rosenbaum) were generated and backcrossed onto the C57BL/6J background as described 

(Meyer et al. 2014b). Gper−/− and wild-type littermates (Harlan Laboratories, Indianapolis, 

IN, USA) were housed at the University of New Mexico Animal Resources Facility with a 

12 hour light-dark cycle and unlimited access to chow and water. All procedures were 

approved by the University of New Mexico Institutional Animal Care and Use Committee 

and carried out in accordance with the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals.

To study the role of endogenous estrogens, animals underwent ovariectomy or sham surgery 

using isoflurane anesthesia at 4 weeks of age. Successful ovariectomy was confirmed after 

sacrifice by a profound reduction in uterus weight (data not shown). At 6 weeks of age, 

animals were changed from standard rodent chow to a pro-inflammatory, high-fat, 

phytoestrogen-free diet containing 15.8% w/w fat (representing 37% of total calories), 

1.25% w/w cholesterol, and 0.5% w/w sodium cholate (Teklad TD.90221, Harlan 

Laboratories, Madison, WI, USA) for 16 weeks (Paigen et al. 1987; Lin et al. 2007; Chen et 

al. 2010; Denes et al. 2012; Meyer et al. 2014b).

Carotid artery ring preparation and myography set-up

After sacrifice by intraperitoneal injection of sodium pentobarbital (2.2 mg/g body weight), 

common carotid arteries were immediately excised, carefully cleaned of perivascular 

adipose and connective tissue, and cut into 2 mm long rings in cold (4 °C) PSS. Rings were 

mounted in organ chambers of a Mulvany-Halpern myograph (620 M Multi Wire 

Myograph, Danish Myo Technology, Aarhus, Denmark). A PowerLab 8/35 data acquisition 

system and LabChart Pro software (AD Instruments, Colorado Springs, CO, USA) were 

used for recording of isometric tension.

Vascular reactivity studies

Experiments to measure vascular reactivity of carotid arteries were performed as described 

(Meyer et al. 2014a; Meyer et al. 2015). Briefly, rings were equilibrated in warmed (37 °C) 

PSS bubbled with 21% O2, 5% CO2, and balanced N2 (pH 7.4) before they were stretched 

step-wise to the optimal level of passive tension for force generation. Functional integrity of 

vascular smooth muscle was confirmed by repeated exposure to KCl (PSS with substitution 

of 60 mmol/L potassium for sodium; Table 1). Functional integrity of the endothelium was 

assumed if arteries contracted with phenylephrine (1 μmol/L or 10 μmol/L) dilated >85% in 

response to acetylcholine (100 nmol/L). Acetylcholine initiates two distinct endothelium-

dependent responses in murine carotid arteries, with NO-mediated relaxations at lower 

concentrations (1–100 nmol/L), followed by contractions mediated by COX-derived 

prostanoids at concentrations ≥ 100 nmol/L (Traupe et al. 2002a; Zhou et al. 2005; Meyer et 
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al. 2015). To study the full biphasic response to acetylcholine, rings in protocol 1 were 

contracted with phenylephrine to a stable plateau at 40% of KCl (60 mmol/L)-induced 

contractions, and concentration-dependent effects of acetylcholine (0.1 nmol/L – 10 μmol/L) 

were recorded. These experiments were repeated in the presence of the COX inhibitor 

meclofenamate (1 μmol/L, pretreatment for 30 min). The contractile response to 

acetylcholine is more potent and can be observed in quiescent arteries when endothelial NO 

synthase is inhibited (Kauser and Rubanyi 1995; Traupe et al. 2002a; Zhang and Kosaka 

2002; Zhou et al. 2005; Feletou and Vanhoutte 2006). Therefore and to determine whether 

NO affects acetylcholine-induced, prostanoid-mediated contractions, rings in protocol 2 

were incubated with the nitric oxide (NO) synthase inhibitor L- NAME (300 μmol/L for 30 

min), and concentration-dependent contractions to acetylcholine (10 nmol/L – 10 μmol/L) 

were measured. In protocol 3, responses to the TP receptor agonist U46619 (10 nmol/L, a 

concentration that yields responses similar to acetylcholine-stimulated vasoconstrictor 

prostanoids) were determined. In protocol 4, concentration-dependent responses to 

endothelin-1 (0.1 nmol/L – 100 nmol/L), an endothelium-derived vasoconstrictor implicated 

in acetylcholine-dependent responses (Traupe et al. 2002a), were measured. These rings 

were pretreated with the nitric oxide (NO) synthase inhibitor L- NAME (300 μmol/L for 30 

min) to unmask the weak contractions to endothelin-1 in murine carotid arteries (Traupe et 

al. 2002b; Meyer et al. 2014a).

Calculations and statistical analyses

Contractions are given relative to KCl-induced responses, and relaxations relative to 

precontraction by phenylephrine. Maximal effects, area under the curve and EC50 values (as 

negative logarithm: pD2) were calculated by fitting of dose-response curves as described 

(DeLean et al. 1978). Data was analyzed by one-way or two-way ANOVA followed by 

Bonferroni’s post-hoc test or the unpaired Student’s t-test as appropriate (Prism version 5.0 

for Macintosh, GraphPad Software, San Diego, CA, USA). Values are expressed as mean

±s.e.m.; n equals the number of animals or cell preparations used. Statistical significance 

was accepted at a p value <0.05.

Results

GPER mediates estrogen-dependent inhibition of endothelial prostanoid production under 
pro-inflammatory conditions in vitro

We first studied production of the major vasoconstrictor prostanoid thromboxane A2 in 

human endothelial cells, which was unaffected by 17β-estradiol or the GPER-selective 

antagonist G36 (Dennis et al. 2011) in quiescent cells under basal conditions (Figure 1). 

TNF-α, a pro-inflammatory cytokine, increased thromboxane A2 production by 160% (n=3, 

p<0.05 vs. basal conditions, Figure 1), which was prevented by 17β-estradiol (n=3, p<0.05 

vs. solvent, Figure 1). Inhibition of thromboxane A2 production by 17β-estradiol under pro-

inflammatory conditions was blocked by G36 (n=3, p<0.05, Figure 1), indicating that the 

estrogen-dependent effect is mediated by GPER.
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GPER reduces endothelium-dependent contractions to vasoconstrictor prostanoids under 
pro-inflammatory conditions in vivo

Given that GPER-mediated, estrogen-dependent inhibition of cellular prostanoid production 

was only detectable under pro-inflammatory conditions (Figure 1), we next studied 

acetylcholine-stimulated vasoconstrictor prostanoid activity in intact arteries from animals 

fed an inflammation-inducing diet (Paigen et al. 1987; Lin et al. 2007; Chen et al. 2010; 

Denes et al. 2012; Meyer et al. 2014b). Acetylcholine as a pharmacological agonist initiates 

two distinct endothelium-dependent responses, stimulating NO-mediated vasodilation at low 

concentrations (1–100 nmol/L), followed by prostanoid-mediated vasoconstriction at 

concentrations 100 nmol/L (Kauser and Rubanyi 1995; Zhang and Kosaka 2002; Zhou et al. 

2005; Feletou and Vanhoutte 2006). We found that, whereas NO-mediated vasodilation to 

acetylcholine was not different between groups, prostanoid-mediated contractions were 

increased by Gper deficiency in ovary-intact mice (n=5–6, p<0.05 vs. wild-type, Figure 2A). 

Consistent with a response to vasoconstrictor prostanoids, acetylcholine-induced 

vasodilation was restored in both wild-type and Gper−/− mice by the COX inhibitor 

meclofenamate (n=5–12, p<0.05 vs. untreated rings, Figure 2B).

GPER mediates estrogen-dependent inhibition of endothelium-dependent vasoconstrictor 
prostanoid activity

We next compared responses in arteries from ovary-intact to responses in arteries from 

ovariectomized animals in order to determine the role of endogenous estrogens. In wild-type 

mice, ovariectomy increased prostanoid-mediated contractions (n=5–9, p<0.05 vs. ovary-

intact, Figure 2A), with no additional effect of ovariectomy in Gper−/− mice, indicating that 

in the setting of diet-induced vascular inflammation, inhibitory effects of endogenous 

estrogens on vasoconstrictor prostanoid activity are mediated by GPER.

Contractile responses to acetylcholine are potentiated and can be observed in quiescent 

vascular rings when endothelial NO synthase is blocked (Kauser and Rubanyi 1995; Traupe 

et al. 2002a; Zhang and Kosaka 2002; Zhou et al. 2005; Feletou and Vanhoutte 2006). In 

carotid arteries from ovary-intact animals, upon NO synthase blockade using L-NAME, 

endothelium-dependent, prostanoid-mediated contractions increased by 1.9-fold in mice 

lacking Gper (n=5–6, p<0.05 vs. wild-type, Figure 3 and Table 1). Ovariectomy of wild-

type mice potentiated responses to vasoconstrictor prostanoids by 2.3-fold (n=5–6, p<0.05 

vs. ovary-intact, Figure 3 and Table 1). Furthermore, no additional effect of ovariectomy 

was observed in Gper−/− mice, indicating that GPER mediates the inhibitory effects of 

endogenous estrogens on prostanoid-mediated vasoconstriction, which do not depend on the 

bioavailability of NO. In addition, neither the sensitivity to acetylcholine (pD2 values, Table 

1) nor responses to exogenous TP receptor activation by equal concentrations of the 

synthetic agonist U46619 (Table 1) were different between groups, suggesting that estrogen 

modulates endogenous prostanoid production rather than TP receptor signaling in vascular 

smooth muscle.

Meyer et al. Page 6

J Endocrinol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Endothelin-1-dependent contractions in female mice are unaffected by GPER deletion or 
ovariectomy

To determine whether the effects observed with prostanoid-mediated contractions were 

related to general changes in contractility to G protein-coupled receptor activation, we 

evaluated concentration-dependent contractions to endothelin-1, an endothelium-derived 

vasoconstrictor also implicated in acetylcholine-dependent vasoconstriction (Traupe et al. 

2002a). Neither Gper deficiency nor OVX had any effect on vasoconstriction to 

endothelin-1 in arteries from mice fed a pro-inflammatory, high-fat diet (Figure 4 and Table 

1), further confirming that estrogen modulates contractility through GPER-mediated 

inhibition of prostanoid activity.

Discussion

COX-derived prostanoids are important modulators of vascular tone and inflammation 

(Feletou and Vanhoutte 2006; Nakahata 2008; Ricciotti and FitzGerald 2011). Here, we 

show that GPER mediates estrogen-dependent inhibitory effects on the production and 

activity of endothelium-derived vasoconstrictor prostanoids under pro-inflammatory 

conditions. These findings provide evidence for a novel mechanism through which GPER 

inhibits vascular tone and inflammation.

Epidemiological and experimental data provide strong evidence that endogenous estrogens, 

such as 17β-estradiol, contribute to inhibition of vasoconstriction, vascular inflammation, 

and atherosclerosis (Murphy 2011; Schenck-Gustafsson et al. 2011; Barrett-Connor 2013); 

however, since 17β-estradiol is a non-selective agonist of GPER as well as estrogen 

receptors α and β (Murphy 2011), identifying the specific target is critical to understanding 

the mechanisms mediating estrogen’s salutary effects in the vascular wall. Although we and 

others (Sobrino et al. 2010) found that 17β-estradiol does not affect prostanoid production in 

quiescent endothelial cells, the present study is the first demonstration that under pro-

inflammatory conditions, estrogen-dependent inhibition of thromboxane A2 production 

requires the presence of functional GPER. This finding is in line with previous studies 

demonstrating that Gper deficiency leads to a pro-inflammatory state (Sharma et al. 2013), 

and that activation of GPER inhibits expression of pro-inflammatory proteins in endothelial 

cells (Chakrabarti and Davidge 2012), induces expression of anti-inflammatory cytokines in 

inflammatory T cells (Brunsing and Prossnitz 2011) while inhibiting TNF-α and IL-6 

production by macrophages (Blasko et al. 2009), and inhibits infiltration of immune cells 

into atherosclerotic plaques in vivo (Meyer et al. 2014b). However, given that arachidonic 

acid is converted into various additional metabolites besides thromboxane A2, such as 

prostaglandin G2, prostaglandin H2, prostaglandin D2, prostaglandin E2, prostaglandin F2α, 

and prostaglandin I2, future studies may identify specific components of the prostanoid 

biosynthetic pathway that are regulated by GPER.

Given that GPER activation inhibits vascular prostanoid production in TNFα-stimulated 

endothelial cells, we examined estrogen-dependent functional effects of endothelium-

derived vasoconstrictor prostanoids in animals with diet-induced vascular inflammation 

(Paigen et al. 1987; Lin et al. 2007; Chen et al. 2010; Denes et al. 2012; Meyer et al. 2014b) 

that is associated with increased COX expression and activity (Lin et al. 2007; Chen et al. 

Meyer et al. Page 7

J Endocrinol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2010). In these animals, estrogen-dependent inhibitory effects on prostanoid production and 

activity depend on GPER, which extends the previous observation that GPER inhibits 

responses to vasoconstrictor prostanoids in arteries of male animals (Meyer et al. 2012a). 

Furthermore, given that we observed estrogen-dependent, GPER-mediated inhibitory effects 

on vasoconstrictor prostanoids in male human endothelial cells as well as in arteries from 

female mice, these findings extend previous observations that GPER is capable of regulating 

vascular homeostasis independent of sex (Haas et al. 2009; Lindsey et al. 2009; Meyer et al. 

2010; Meyer et al. 2012a; Meyer et al. 2014b).

Although different vascular cell types such as endothelial cells, vascular smooth muscle 

cells, and adipocytes are all known to synthesize prostanoids, GPER-dependent, estrogen-

mediated effects specifically involve inhibition of prostanoid production in the endothelium, 

since TP receptor signaling in the underlying smooth muscle was unaffected by deletion of 

Gper or ovariectomy. Accordingly, endothelial release of the prostanoid prostaglandin F2α 

in mesenteric arteries of female spontaneously hypertensive rats (SHR) increases following 

ovariectomy (Dantas et al. 1999). Consistent with the regulation of endothelial prostanoid 

production and in line with previous reports (Kauser and Rubanyi 1995; Zhang and Kosaka 

2002), estrogen-dependent, GPER-mediated effects on acetylcholine-induced contractions 

are independent of NO, although GPER is capable of modulating NO bioactivity (Meyer et 

al. 2010; Meyer et al. 2012a; Meyer et al. 2014b).

The present study provides the first mechanistic explanation for the observed inhibitory 

effect of 17β-estradiol on acetylcholine-induced, prostanoid-mediated contractions in female 

animals (Kauser and Rubanyi 1995; Davidge and Zhang 1998; Dantas et al. 1999; Zhang 

and Kosaka 2002) and in postmenopausal women (Gilligan et al. 1994). Such experimental 

evidence was largely obtained in studies using arteries from the SHR (Kauser and Rubanyi 

1995), a model in which immune mechanisms are involved in vascular changes (Schiffrin 

2013). In the SHR, responses to vasoconstrictor prostanoids are greater in males than in 

ovary-intact females (Kauser and Rubanyi 1995), and increased following ovariectomy 

(Dantas et al. 1999). It is intriguing to speculate that in the female SHR, GPER mediates 

inhibitory effects of ovarian estrogens on vasoconstrictor prostanoid activity that contribute 

at least partly to the lower blood pressure compared to male or ovariectomized female 

littermates (Kauser and Rubanyi 1995; Dantas et al. 1999). In addition, blood pressure 

lowering effects of the GPER-selective agonist G-1 in ovariectomized hypertensive rats 

(Lindsey et al. 2009) may be partly mediated by reduced activity of vasoconstrictor 

prostanoids.

Although 17β-estradiol (Sudhir et al. 1997; Teoh et al. 2000) and G-1 (Meyer et al. 2010) 

acutely improve vasodilation by inhibiting contractions to endothelin-1, we found no effect 

of estrogen withdrawal due to ovariectomy or deletion of the Gper gene on responses to 

endothelin-1 in the present study. The current findings are also in contrast to previous 

observations of enhanced contractions to endothelin-1 in carotid arteries from healthy male 

Gper−/− mice (Meyer et al. 2012b), suggesting sex differences or effects of the pro-

inflammatory diet used in the present study on vascular contractility. However, given that 

endothelin-1 and endothelium-derived prostanoids are vasoconstrictors that exhibit similar 

properties with regard to their endothelial origin and their involvement in vascular 
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inflammation (Traupe et al. 2002a; Feletou and Vanhoutte 2006; Nakahata 2008; Ricciotti 

and FitzGerald 2011), the absence of functional changes to endothelin-1 reinforces a specific 

role for prostanoids in the enhanced vasoconstrictor responses following estrogen 

withdrawal.

In summary, we have identified GPER as a novel mediator underlying estrogen-dependent 

inhibition of endothelium-derived vasoconstrictor prostanoid production and thus vascular 

tone. Intra-arterial infusion of acetylcholine causes vasoconstriction in atherosclerotic 

human coronary arteries, but not in individuals with structurally normal coronary arteries 

(Horio et al. 1986; Ludmer et al. 1986). Moreover, increased production of cyclooxygenase-

derived thromboxane A2 has been observed in the aorta from animals with atherosclerosis 

compared to vessels from healthy littermates (Mehta et al. 1988). Together, these data 

support the notion that vasoconstrictor prostanoids are important modulators of vascular 

inflammation and thus involved in the propagation of atherosclerosis (Nakahata 2008; 

Ricciotti and FitzGerald 2011). Although endogenous estrogens inhibit coronary artery 

inflammation (Burke et al. 2001) and 17β-estradiol therapy has been found to slow 

atherosclerosis progression (Hodis et al. 2001), it is currently not a therapeutic option in 

postmenopausal women based on the results of large, randomized, placebo-controlled trials 

using conjugated equine estrogen therapy (Rossouw et al. 2002; Schenck-Gustafsson et al. 

2011; Barrett-Connor 2013). A receptor-targeted approach using the GPER-selective agonist 

G-1 was recently demonstrated to inhibit atherosclerosis, while displaying no uterotrophic 

activity, in mice after ovariectomy (Meyer et al. 2014b). Whether selective GPER activation 

also represents a novel approach to inhibit prostanoid-dependent increased vasomotor tone 

or vascular inflammation in postmenopausal women remains to be determined.
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Figure 1. 
Role of GPER in estrogen-dependent inhibition of thromboxane A2 production in human 

endothelial cells. Endothelial cells were treated with 17β-estradiol (E2, 100 nmol/L), the 

GPER-selective antagonist G36 (1 μmol/L), or solvent (DMSO 0.01%) for 24 hours, and 

thromboxane A2 production was measured under basal conditions or after concomitant 

stimulation with the pro-inflammatory cytokine TNF-α (1 ng/mL). *P<0.05 vs. 

basal; †P<0.05 vs. solvent; #P<0.05 vs. 17β-estradiol. All data (n=3 independent experiments 

per group) are mean±s.e.m.
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Figure 2. 
Effect of GPER and endogenous estrogens on cyclooxygenase-dependent, prostanoid-

mediated vasoconstriction. A, Concentration-dependent dilations and contractions were 

induced by acetylcholine in arteries constricted with phenylephrine (PE). B, Responses to 

acetylcholine (10 μmol/L) were obtained in the absence (−) and presence (+) of the 

cyclooxygenase inhibitor meclofenamate (Meclo, 1 μmol/L). Arteries were isolated from 

ovary-intact and ovariectomized (OVX) wild-type (Gper+/+) and Gper−/− mice fed a pro-

inflammatory, high-fat diet. *P<0.05 vs. wild-type; †P<0.05 vs. ovary-intact; #P<0.05 vs. 
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matched arteries in the absence of meclofenamate. All data (n=5–12 per group) are mean

±s.e.m.
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Figure 3. 
NO-independent contractions to acetylcholine in arteries from ovary-intact and 

ovariectomized (OVX) wild-type (Gper+/+) and Gper−/− mice. Acetylcholine-dependent, 

prostanoid-mediated contractions were induced in the presence of the NO synthase inhibitor 

L-NAME (300 μmol/L). Mice were fed a pro-inflammatory, high-fat diet. *P<0.05 vs. wild-

type; †P<0.05 vs. ovary-intact. All data (n=5–8 per group) are mean±s.e.m.
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Figure 4. 
Endothelin-1-dependent vasoconstriction in ovary-intact and ovariectomized (OVX) mice 

fed a pro-inflammatory, high-fat diet. Responses were recorded in arteries from wild-type 

(Gper+/+) and Gper−/− mice in the presence of the NO synthase inhibitor L-NAME (300 

μmol/L). All data (n=5–8 per group) are mean±s.e.m.
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Table 1

Vasoconstrictor responses to KCl, acetylcholine, the thromboxane-prostanoid receptor agonist U46619, and 

endothelin-1. Responses were determined in carotid arteries from ovary-intact and ovariectomized (OVX) 

wild-type (Gper+/+) and Gper−/− mice. Maximal responses, area under the curve, and pD2 values were 

calculated based on fitting of dose-response curves to acetylcholine (10 nmol/L – 10 μmol/L) and endothelin-1 

(0.1 nmol/L – 100 nmol/L) in the presence of the NO synthase inhibitor L-NAME (DeLean, et al. 1978). Area 

under the curve is expressed as arbitrary units (AU).

Stimulus Ovary-intact OVX

Gper+/+ Gper−/− Gper+/+ Gper−/−

KCl (60 mmol/L)

 Response (mN) 5.8±0.3 5.5±0.3 5.8±0.3 6.2±0.4

Acetylcholine

 Maximal responses (% KCl) 14±4 27±4* 32±6† 29±4

 Area under the curve (AU) 22±6 43±6* 48±8† 43±6

 pD2 values (-log mol/L) 6.5±0.2 6.6±0.1 6.6±0.1 6.5±0.1

U46619 (10 nmol/L)

 Response (% KCl) 14±2 14±4 12±3 11±2

Endothelin-1

 Maximal responses (% KCl) 25±7 23±2 25±3 24±2

 Area under the curve (AU) 34±10 31±3 32±4 32±2

 pD2 values (-log mol/L) 8.3±0.1 8.3±0.1 8.3±0.1 8.3±0.1

*
P<0.05 vs. Gper+/+;

†
P<0.05 vs. ovary-intact.

All data (n=5–16 per group) are mean±s.e.m.
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