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ABSTRACT

Background. Worldwide predictions suggest that up to 75% of the freshwater fish

species occurring in rivers with reduced discharge could be extinct by 2070 due to the
combined effect of climate change and water abstraction. The Mediterranean region is
considered to be a hotspot of freshwater fish diversity but also one of the regions where
the effects of climate change will be more severe. Iberian cyprinids are currently highly
endangered, with over 68% of the species raising some level of conservation concern.

Methods. During the FISHATLAS project, the Portuguese hydrographical network was
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Results. When the genetic diversity of these populations was mapped, it highlighted
differences among populations from the same species and between species with identical
distribution areas. Factors shaping the contemporary patterns of genetic diversity were
explored and the results revealed the role of latitude, inter-basin connectivity, migratory
behaviour, species maximum size, species range and other species intrinsic traits in

determining the genetic diversity of sampled populations. Contrastingly, drainage

area and hydrological regime (permanent vs. temporary) seem to have no significant
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Discussion. Targeting multiple co-distributed species of primary freshwater fish
allowed us to assess the relative role of historical versus contemporary factors affecting
genetic diversity. Since different patterns were detected for species with identical
distribution areas we postulate that contemporary determinants of genetic diversity
(species’ intrinsic traits and landscape features) must have played a more significant
role than historical factors. Implications for conservation in a context of climate change
and highly disturbed habitats are detailed, namely the need to focus management and
conservation actions on intraspecific genetic data and to frequently conduct combined
genetic and demographic surveys.

Subjects Biodiversity, Conservation Biology, Genetics

Keywords Cyprinidae, Haplotype diversity, Nucleotide diversity, Mediterranean streams,
Freshwater fish conservation, Genetic diversity drivers, Endangered species

INTRODUCTION

Freshwater biodiversity has declined faster than terrestrial and marine biodiversity over
the last decades (Jenkins, 2003). Up to 75% of the freshwater fish species occurring

in rivers with reduced flow could be extinct by 2070 due to climate change and water
abstraction (Xenopoulos et al., 2005). The Iberian freshwater ichthyofauna is very rich
in diversity and endemisms (Doadrio et al., 2011), a feature that was potentiated by
geographical isolation and that is common to other Mediterranean peninsulas (Clavero,
Blanco-Garrido & Prenda, 2004). Cyprinids are the most diverse and ecologically impor-
tant components of the Iberian native ichthyofauna, contributing to the Mediterranean
hotspot of freshwater fish diversity (Myers et al., 2000) with at least 16 endemic species
(Doadrio et al., 2011). However, native cyprinids are highly endangered, with over 68%
(26 out of 38) of the species raising some level of conservation concern (Cabral et al.,
2005; Doadrio et al., 2011).

Most endangered Iberian cyprinids have extremely restricted geographical ranges and
occur in temporary Mediterranean-type Rivers with autumn-winter floods and extended
summer droughts, resulting in a series of disconnected pools (Gasith ¢ Resh, 1999;
Alvarez-Cobelas, Rojo & Angeler, 2005). Although these pools act as summer refugia, the
congregation of fish in these pools also results in increased predation, high competition
for limited space and food, low concentration of oxygen, high water temperature, and
a higher probability of being affected by infectious diseases (Magoulick ¢ Kobza, 2003;
Dekar ¢ Magoulick, 2007). Thus, summer droughts are often responsible for population
fragmentation and depletion that cyclically affect the structure of these freshwater fish
communities (Magalhdes et al., 2002). Moreover, endemic cyprinids face the direct and
indirect effects of continuous and multiple anthropogenic threats: pollution, damming,
habitat loss or degradation and proliferation of exotic species. As a consequence, pop-
ulations of cyprinids are suffering a generalised decline (Macedo-Veiga, 2013) that will
likely increase with the effects of climate change, expected to be particularly severe in
Mediterranean climate regions (Schriter et al., 2005). Indeed, both gradual climatic
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changes and extreme events are likely to impact freshwater fish populations, resulting

in drastic reductions and/or changes in species-distribution ranges, communities and
life-histories that ultimately may lead to extinction (Filipe, Lawrence & Bonada, 2013).
Migrating or dispersing to more favourable sites might obviate extinction. However, as
Iberian cyprinids are primary freshwater fish, they are confined to their habitats and,
thus, their evolutionary history closely resembles the evolution of paleodrainages and the
rearrangements of the fluvial network through time (Reyjol et al., 2007). This obligatory
confinement makes them excellent models to study speciation and the radiation of
ancient lineages throughout Iberia (e.g., Salgueiro et al., 2003; Mesquita et al., 2005; Sousa
et al., 2007; Almada & Sousa-Santos, 2010; Gante, 2011; Lopez-Cunha et al., 2012; Aboim et
al., 2013; Sousa-Santos et al., 2014a; Sousa-Santos et al., 2014Db).

Although crucial, the application of genetics in the management of wild threatened
species is still far from being common (Frankham, 2010). Thus, given the imperilment
of most of the Portuguese native cyprinid species, the FISHATLAS project was launched
to contribute with valuable data on the genetic diversity distribution patterns of native
cyprinid species that would help to prioritize target populations for conservation.

As the distribution of the genetic diversity may have been shaped by historical and
contemporary events we aimed to disentangle the factors underlying the observed pat-
terns. As such, in parallel with the spatial patterning of genetic diversity, the broad-scale
sampling also allowed for testing the effects of species intrinsic traits and environmental
characteristics on observed levels of genetic diversity. Data obtained allowed us to address
the following questions: (1) Is the genetic diversity of endemic fish populations influenced
by the specific status of each population and by other characteristics that are intrinsic
to the species, such as the maximum size or migratory behaviour? (2) Is the genetic
diversity of each population influenced by the area and by the hydrological regime of
the river drainages they inhabit? (3) Does latitude influence genetic diversity, given
that populations from northern rivers are subjected to lower temperatures and fewer
temperature fluctuations, contrasting with those from southern rivers which are exposed
to higher temperatures, lower oxygen concentrations and cyclical regimes of floods and
droughts (Magalhaes, Schlosser ¢ Collares-Pereira, 2003; Henriques, Sousa & Coelho,
20105 Fiissel et al., 20125 Jesus, Indcio & Coelho, 2013)? (4) Do populations of species
with wider distribution ranges show higher overall genetic diversity than those with
more geographically confined distributions? and (5) do populations inhabiting isolated
drainages show less genetic diversity than those occupying interconnected sub-basins of a
dendritic river basin?

MATERIALS AND METHODS

Target species

A total of 17 Iberian endemic cyprinids were selected as target species: Anaecypris hispan-
ica (Steindachner, 1866), Achondrostoma oligolepis (Robalo, Doadrio, Almada & Kottelat,
2005), Achondrostoma occidentale (Robalo, Almada, Sousa-Santos, Moreira & Doadrio,
2005), Iberochondrostoma lemmingii (Steindachner, 1866), Iberochondrostoma lusitanicum
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(Collares-Pereira, 1980), Iberochondrostoma almacai (Coelho, Mesquita & Collares-
Pereira, 2005), Pseudochondrostoma polylepis (Steindachner, 1865), Pseudochondrostoma
duriense (Coelho, 1985), Pseudochondrostoma willkommii (Steindachner, 1866), Luciobar-
bus microcephalus (Almaca, 1967), Luciobarbus bocagei (Steindachner, 1865), Luciobarbus
sclateri (Giinther, 1868), Luciobarbus comizo (Steindachner, 1865), Squalius carolitertii
(Doadrio, 1987), Squalius pyrenaicus (Guinther, 1868), Squalius torgalensis (Bogutskaya,
Rodrigues & Collares-Pereira, 1998) and Squalius aradensis (Bogutskaya, Rodrigues

& Collares-Pereira, 1998). Of all the cyprinids native to Portugal, only four species
[Squalius alburnoides (Steindachner, 1866), Luciobarbus steindachneri (Almaga, 1967),
Achondrostoma arcasii (Steindachner, 1866) and Iberochondrostoma olisiponensis (Gante,
Santos & Alves, 2007)] were not included a priori due to their hybridogenetic origin
(Sousa-Santos, Collares-Pereira ¢» Almada, 2007), uncertain taxonomic classification
(Robalo et al., 2006; Gante et al., 2015) or extreme scarcity in wild populations (Sousa-
Santos et al., 2014a). L. microcephalus was posteriorly excluded from the analyses due to
the low number of individuals sampled in each population (see below).

Sampling

Thirty four river basins were sampled in the Portuguese mainland hydrographical net-
work. The six largest river basins (Douro, Vouga, Mondego, Tagus, Sado and Guadiana)
were further sub-divided into 47 sub-basins resulting in a total number of 81 geographical
units sampled (Table S1 and Fig. 1A). Populations for which less than 15 individuals were
collected were excluded from analyses.

Fish were collected with standard wadable electrofishing procedures (CEN, 2003) and
returned to the water immediately after non-destructive sampling. Collected fin clips were
preserved in 96% ethanol and vouchers were kept at the tissue collection of MARE/ISPA
for subsequent DNA extraction, amplification and sequencing. Permits for field work
were given by ICNF (permit number 176/2010/CAPT and 53/2012/CAPT).

DNA extraction, amplification and sequencing

Total genomic DNA was extracted from fin clips using REDExtract-N-Amp Tissue PCR
kits (Sigma-Aldrich) following the manufacturer’s instructions. The mitochondrial
cytochrome b (cytb) gene was amplified using the primers LCB1-new ACTTGAAGAAC-
CACCGTTG (adapted from the LCB1 primer described by Brito et al., 1997) and HA-
CAACGATCTCCGGTTTACAAGAC (Schmidt ¢ Gold, 1993). PCR conditions were the
following: 35x (94 °C 1’450 °C 1'+72 °C 2’). PCR products were purified and sequenced
in the forward direction using the LCB1-new primer, at GATC Biotech (Konstanz,
Germany). Obtained sequences were trimmed at the 3" and 5" ends so they had the same
length for all the individuals sampled (720bp) and deposited in GenBank (KU366823—
KU370500).

DNA analyses and gene diversity mapping

All sequences were edited and aligned using CodonCode Aligner v4.0.4 (CodonCode
Corp., USA). The search for shared haplotypes and the listing of representative sequences
was conducted by DNAcollapser (FaBox v.1.41; http://www.birc.au.dk/software/fabox).
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Number of species
9

Figure 1 Studied area. (A) sampled river basins and sub-basins; (B) number of native cyprinid species
occurring in each sampled river basin/sub-basin. Legend: 1-Minho, 2-Ancora, 3-Cabanas, 4-Pego, 5-Lima,
6-Neiva, 7-Cdvado, 8-Ave, 9-Douro—Sousa, 10-Douro-Tamega, 11-Douro—Corgo, 12-Douro-Tua,
13-Douro—-Sabor, 14-Douro—Paiva, 15-Douro—T4vora, 16-Douro—Coa, 17-Vouga—Caima, 18-Vouga—Sul,
19-Vouga—Mel, 20-Vouga—-Agueda, 21- Mondego-Mortégua, 22-Mondego-Dao, 23-Mondego—Arunca,
24-Mondego—Corvo, 25-Mondego—Ceira, 26-Mondego—Alva, 27-Lis, 28-Sdo Pedro, 29-Alcoa, 30-
Tornada, 31-Real, 32-Alcabrichel, 33-Sizandro, 34-Safarujo, 35-Lizandro, 36-Samarra, 37-Colares,
38-Barcarena, 39-Jamor, 40-Tagus—Erges, 41-Tagus—Ponsul, 42-Tagus—Ocreza, 43-Tagus—Zezere,
44-Tagus—Zézere Nabao, 45-Tagus—Zezere Sertd, 46-Tagus—Almonda, 47-Tagus—Alviela, 48-Tagus—Maior,
49-Tagus—Ota, 50-Tagus—Grande da pipa, 51-Tagus—Trancao, 52-Tagus—Sever, 53-Tagus—Nisa, 54-
Tagus—Muge, 55-Tagus—Sorraia, 56-Tagus—Coina, 57-Sado—Roxo, 58-Sado—Odivelas, 59-Sado—Xarrama,
60-Sado—Alcagovas, 61-Sado—S.Martinho, 62-Sado—Marateca, 63-Sado—Campilhas, 64-Sado—Corona,
65-Sado—Gréandola, 66-Mira, 67-Seixe, 68-Aljezur, 69-Alvor, 70-Arade, 71-Quarteira, 72-Gilao, 73-
Guadiana—Ardila, 74-Guadiana—Changa, 75-Guadiana—Caia, 76-Guadiana—Degebe, 77-Guadiana—Cobres,
78-Guadiana—Oeiras, 79-Guadiana—Vascdo, 80-Guadiana—Odeleite, 80a-Guadiana—Foupana.
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ARLEQUIN software package V.3.5 (Excoffier ¢ Lischer, 2010) was used to quantify
the number of private haplotypes for each population (i.e., haplotypes that were exclusive
for the considered population and that were not found elsewhere). These values were
then used to calculate the percentage of private haplotypes per population (of all the
haplotypes found in the considered population) and the average percentage of private
haplotypes per population for each target species (%Npy). Mean, standard deviation,
minimum and maximum values of %Npy; were obtained with EXCEL 2013 (Microsoft®).

ARLEQUIN was also used to estimate gene diversity (h index, defined as the proba-
bility that two randomly chosen haplotypes are different in a sample; used as a measure
of haplotype diversity for haploid data), nucleotide diversity (7 index, defined as the
probability that two randomly chosen homologous nucleotides are different) and mean
number of pairwise differences (MNPD, defined as the mean number of differences
between all pairs of haplotypes in a sample) for each population. Analyses of molecular
variance (AMOVA) were also performed with ARLEQUIN.

Values obtained for the h index were mapped in the sampling areas by Yris Graphics
(www.yrisgraphics.com). This index, which varies between 0 and 1, reflects the probability
of two randomly chosen haplotypes being different in a sample, and was selected to
illustrate haplotype diversity of sampled populations. Using this index, diversity classes
(common for all species) were established, allowing for an automatic visual inspection
of the diversity level of distinct populations. The maps and database are available for
download at the project’s webpage (www.fishatlas.net).

Data analyses and hypothesis testing
Populations, regardless of species, were considered the unit of comparison. In order to
test whether the obtained genetic diversity pattern was influenced by species’ intrinsic
traits and extrinsic factors, data concerning 8 variables were collected and organized
in a matrix (Table 52). Six of these variables are categorical: (1) “species” (with 16
categories, corresponding to the 16 species studied: L. bocagei, L. sclateri, L. comizo,
P. duriense, P. polylepis, P. willkommii, I. almacai, I. lusitanicum, 1. lemmingii, S. carolitertii,
S. pyrenaicus, S. aradensis, S. torgalensis, A. hispanica, A. oligolepis and A. occidentale),
and the dichotomous variables (2) “hydrological regime,” (3) “latitude,” (4) “migratory
behaviour,” (5) “species range,” and (6) “inter-basin connectivity.” The quantitative
variables “drainage area” and “species maximum size” were also included in the matrix.
“Hydrological regime” was classified as either permanent or temporary, depending
on whether or not the population occurs in river basins that maintain flowing water
throughout the year; “latitude” as northern or southern (for river basins located north
or south of the Central Massif of Estrela, which divides the Portuguese territory in
two halves of distinct reliefs and climate); “migratory behaviour” as non-migratory
or potamodromous (using ecological data compiled by Ribeiro et al., 2007); “species
range” as wide or restricted if the species occurs, respectively, in more or less than 12
river basins/sub-basins (see Sousa-Santos et al., 2013 for the distribution areas of each
species); and “inter-basin connectivity” as connected or unconnected to other water
bodies. Drainage areas were calculated from the shape file of Portuguese hydrographical
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network (downloaded from http://sniamb.apambiente.pt/Home/Default.htm) by using
the polygon area as implemented in QGIS 2.10.1 software. Whenever a population
inhabits a sub-basin of a larger basin, the area of the sub-drainage was considered, as
for the studied small fish species the main course of a large river may represent a natural
barrier to gene flow.

Individual linear regressions were performed to test the effect of each of these inde-
pendent variables on h, 7 and MNPD indices calculated for each population. Dummy
variables were created for the categorical independent variable “species,” enabling the use
of the 16 categories of this variable in a regression model.

Predictor variables with significant effects (o < 0.05) were selected as candidate variables
for the modelling process. Then, a hierarchical linear regression was performed, first
including all selected variables (excluding “species”) with a stepwise method and, finally
including the categorical variable “species.” This procedure sought to first analyse the effect
of each of the variables regardless of the effect of “species.” This variable was then included
to test whether other aspects intrinsic to the species, not measured by the remaining
independent variables, were significant. This method was adopted independently for each
of the three dependent variables: i, 7 and MNPD. We search for the presence of outliers
and excluded them to avoid spurious trends or masking of valid ones.

For the analyses of each species separately, given the lower number of samples, non-
parametric tests were performed: Spearman’s p, to test the correlation between “drainage
area” and each of the dependent variables; and Mann—Whitney’s U tests to compare groups
(populations inhabiting connected or unconnected water bodies; populations occurring in
permanent or temporary river basins; and northern and southern populations) concerning
their genetic diversity (h, 7 and MNPD indices). All statistical analyses were conducted
using IBM SPSS Statistics, version 22 (IBM Corporation, 2013).

RESULTS

Species richness concerning the Portuguese native cyprinid ichthyofauna varied between

1 and 9 species per river basin/sub-basin (Fig. 1B). The larger river basins, such as those

of the Douro, Tagus and Guadiana, accommodate the highest values of species richness,

while in the smaller coastal river basins draining into the Atlantic only one to three native
cyprinids were found (Fig. 1B).

Patterns of genetic diversity
In general, populations of the small sized non-migratory species A. hispanica, A. oligolepis,
I lemmingii, 1. lusitanicum, I. almacai, S. aradensis, S. carolitertii and S. pyrenaicus show
higher percentages of private haplotypes (average values per species ranging from 27.84%
to 75.00%, Table 1) than populations of the larger sized potamodromous species L. bocagei,
L. comizo, L. sclateri, P. willkommii, P. duriense and P. polylepis (average values per species
ranging from 2.14% to 25.00%, Table 1).

The average values of haplotype diversity ranged between h = 0.061 + 0.029
(for L. comizo) and h =0.936 £ 0.010 for (A. hispanica). The average nucleotide
diversity and the average mean number of pairwise differences showed the same
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Table 1 Genetic diversity of populations. Number of sampled individuals (Nip), number of sampled populations (Npop), number of haplotypes
retrieved (Ny) and average percentage of private haplotypes per population (%Npy), for each target species. Values obtained for haplotype diversity
(h), nucleotide diversity (;r) and mean number of pairwise differences (MNPD) are also presented.

Species Ninp Npop Ny %Npy [mean % sd (min—-max)] h /4 MNPD

A. hispanica 109 5 36 46.76 £ 15.01% (22.22%-60.00%) 0.936 £ 0.010 0.005 £ 0.003 3.625 + 1.852
A. occidentale 72 3 9 45.24 + 43.06% (0%—85.71%) 0.752 + 0.033 0.002 + 0.002 1.655 + 0.986
A. oligolepis 501 26 47 27.84 £ 31.18% (0%—87.50%) 0.824 £ 0.016 0.012 £ 0.007 9.301 &+ 4.281
L. lemmingii 57 3 10 75.00 £ 0% 0.710 %+ 0.057 0.002 + 0.002 1.780 + 1.045
L lusitanicum 297 14 25 32.74 £ 33.73% (0%—100%) 0.827 £ 0.016 0.008 £ 0.004 5.835 + 2.797
L almacai 40 2 4 41.67 £+ 11.79% (33.33%—-50.00%) 0.512 + 0.080 0.001 % 0.001 0.573 £+ 0.474
S. carolitertii 430 21 34 35.48 £ 32.73% (0%—100%) 0.704 £ 0.022 0.006 £ 0.003 4.524 £ 2.230
S. aradensis 98 5 11 29.33 + 40.44% (0%—-80.00%) 0.739 + 0.025 0.004 + 0.002 2.587 4+ 1.398
S. pyrenaicus 343 18 83 48.81 £ 30.59% (0%—85.71%) 0.930 £ 0.007 0.014 £ 0.007 10.080 £ 4.616
S. torgalensis 21 1 4 - 0.271 £ 0.124 0.001 £ 0.001 1.038 + 0.720
L. bocagei 716 39 11 2.14 £ 9.50% (0%-50.00%) 0.386 £ 0.022 0.001 £ 0.001 0.537 £ 0.447
L. comizo 130 25.00 =£ 27.39% (0%-50.00%) 0.061 £ 0.029 0.000 £ 0.000 0.061 £ 0.133
L. sclateri 209 14.81 + 22.74% (0%—50.00%) 0.311 + 0.040 0.001 % 0.001 0.815 + 0.588
P. willkommii 113 16 17.02 £ 10.11% (0%—28.57%) 0.818 £ 0.024 0.002 £ 0.002 1.793 + 1.044
P. duriense 254 14 22 15.82 =4 22.77% (0%—71.43%) 0.892 + 0.007 0.003 + 0.002 2.181 £+ 1.212
P. polylepis 288 16 26 24.43 £ 19.97% (0%-50.00%) 0.747 £ 0.018 0.002 +£ 0.001 1.407 £ 0.865
Total 3,678 188 349

pattern (Table 1): L. comizo presented the lowest values (r = 0.000 £ 0.000 and
MNPD =0.061 % 0.133, respectively) and S. pyrenaicus the highest (x =0.014 £ 0.007
and MNPD = 10.080 + 4.616, respectively).

At the population level, the spatial distribution of haplotype diversity values revealed
distinct levels of diversity among populations of the same species and distinct patterns
among species (Fig. 2). Indeed, analyses of molecular variance (AMOVAs) conducted for
each target species separately revealed two contrasting patterns: in eight of the 15 species
most of the variation (ranging from 50.65% for L. bocagei to 91.91% for A. oligolepis)
could be attributed to differences among populations, while for the remaining seven
species 53.26% (for P. polylepis) to 98.95% (for L. comizo) of the variation was explained
by genetic differentiation within populations (Table 2).

Genetic diversity determinants

Preliminary linear regressions retrieved no outliers when using h as the dependent variable.
Contrastingly, when using the other genetic diversity indices six outlier populations were
detected: S. carolitertii from Mondego-Ceira (for = only), S. pyrenaicus from Tagus-
Erges (for MNPD only), and S. pyrenaicus from Tagus-Grande da Pipa, S. pyrenaicus
from Sado-Sao Martinho, I. lusitanicum from Sado-Sao Martinho and A. hispanica from
Guadiana-Ardila (for both 7 and MNPD). These populations show a higher number of
point mutations, probably due to an admixture of individuals from distinct haplogroups,
and those differences between the sequences are reflected in the higher values of 7 and
MNPD obtained.
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Figure 2 Genetic diversity mapping. Spatial distribution of the haplotype diversity (h) values obtained
for each population of the target species.
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Table2 AMOVAs. Results from the analyses of molecular variance (AMOVAs) conducted independently
for each target species. For each species, the highest % of variation explained is presented in bold. Signifi-
cant Fsr values (p < 0.005) indicate significant evidence of population subdivision.

Species 9% variation % variation Fsr
among populations within populations

A. hispanica 56.94 43.06 0.569, p < 0.001
A. occidentale 75.58 24.42 0.756, p < 0.001
A. oligolepis 91.91 8.09 0.919, p < 0.001
I lemmingii 37.89 62.11 0.379, p < 0.001
L lusitanicum 83.86 16.14 0.839, p < 0.001
L almacai 24.29 75.71 0.243, p=0.002
S. carolitertii 71.28 28.72 0.713, p < 0.001
S. aradensis 81.85 18.15 0.819, p < 0.001
S. pyrenaicus 71.88 28.12 0.719, p < 0.001
S. torgalensis® - - -

L. bocagei 50.65 49.35 0.507, p < 0.001
L. comizo 1.05 98.95 0.011, p=0.139
L. sclateri 9.31 90.69 0.093, p=0.001
P. willkommii 5.73 94.27 0.057, p=0.003
P. duriense 45.22 54.78 0.452, p < 0.001
P. polylepis 46.74 53.26 0.467, p < 0.001

Notes.

2AMOVA was not conducted for this species since it has only one population.

Linear regressions between selected independent variables and h values showed

PR IN{S]

that “species maximum size,” “inter-basin connectivity,

<<

species range,” “latitude,”
“migratory behaviour” and “species’ had a significant effect on the diversity of populations
(Table 3). The independent variables “drainage area” and “hydrological regime” had no
significant effect on haplotype diversity (Table 3). After the removal of the outliers, linear
regressions using 7 and MNPD as dependent variables retrieved the same pattern (Table 3).

Regarding the effect on the h index, the inclusion of all independent variables (excluding
“species”) in the linear regression, using a stepwise method, indicated that the best fit
model only includes “species maximum size,” “inter-basin connectivity” and “latitude.”
Non-significant predictor variables “range” and “migratory behaviour” were excluded
from the analysis (Table 4). This model explains 26.7% of the haplotype diversity variance
(Table 4). The inclusion of the variable “species” in a hierarchical regression analysis had
a significant effect, increasing the explained variance to 32.3% (Table 4).

When applying the same stepwise procedure to the remaining two genetic diversity
indices, the results from the linear regressions showed a similar pattern: the same
variables were included in the model (“species maximum size,” “inter-basin connectivity,”
“latitude” and “species”) and the best fit model explained 33.7% and 26.7% of the variance,
respectively, for 7 and MNPD (Table 4).

Concerning the maximum size attained by the species, the results showed a negative
correlation with all three genetic diversity indices (Table 3). Regarding “inter-basin
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Table 3 Correlation coefficients. Regression correlation coefficients (RCC) and their respective p-values
obtained for the linear regressions between the dependent variables haplotype diversity (), nucleotide di-
versity (1) and mean number of pairwise differences (MNPD) and eight independent variables.

Dependent
variables
h T MNPD

Independent variable RCC 4 RCC 4 RCC P
Species 0.516 <0.001 0.385 0.018 0.485 <0.001
Species maximum size —0.374 <0.001 —0.348 <0.001 —0.341 <0.001
Inter-basin connectivity 0.239 0.001 0.244 0.001 0.182 0.001
Species range 0.193 0.008 0.145 0.050 0.172 0.020
Latitude 0.187 0.010 0.226 0.002 0.186 0.012
Migratory behaviour 0.167 0.022 0.154 0.037 0.143 0.054
Drainage Area 0.113 0.122 0.090 0.227 0.067 0.371
Hydrological regime 0.002 0.978 0.089 0.233 0.078 0.292

Table 4 Hierarchical regression models. Results of the different hierarchical regression models between
selected independent variables and the three genetic diversity indices (haplotype diversity, h; nucleotide
diversity, 7r; and mean number of pairwise differences, MNPD) as dependent variables. For each measure
of genetic diversity a series of hierarchical models were fitted based on four key predictor variables (species
maximum size, MS; inter-basin connectivity, IBC; latitude, L; and species, S). Four other measured vari-
ables were not included because they were shown to be individually unimportant (see Methods). For each
model we present adjusted R* (coefficient of determination), AR (R* change), test statistics (F test statis-
tics) and p-values.

Variables included  Adjusted R> AR Test statistics 4

Dependent variable: h

Model I MS 0.135 0.135  F(1,186 =30.214  <0.001
Model II MS, IBC 0.231 0.096  Fi,185 =24.126  <0.001
Model III MS, IBC, L 0.267 0.036  F1,184y =10.139  0.002
Model IV MS, IBG, L, S 0.323 0.056  F(14,170) = 2.087 0.015
Dependent variable:

Model T MS 0.116 0.116  Fyis =24.896  <0.001
Model 1T MS, IBC 0.213 0.097  Fi,180) =23.288  <0.001
Model III MS, IBC, L 0.269 0.053  F1,179) =14.762  <0.001
Model IV MS, IBG, L, S 0.337 0.068  F(i4,165 = 2.322 0.006
Dependent variable: MNPD

Model I MS 0.111 0.058  Fi,151) =23.744  <0.001
Model IT MS, IBC 0.171 0.060  F(;,180 =14.013  <0.001
Model 11T MS, IBC, L 0.208 0.037  F1,179) =9.557 0.002
Model IV MS, IBG, L, S 0.267 0.059  F(i4,165 = 2.015 0.019

connectivity,” the results indicated that populations occurring in sub-basins connected
with other water bodies have higher genetic diversity (mean h=0.413 & 0.306, N = 135;
mean 7 =0.00121 + 0.00120, N =131; mean MNPD =0.831 & 0.856,N = 131) than
those occurring in unconnected river basins (mean h=0.252 + 0.267, N = 53; mean
7 =0.000606 £+ 0.000766, N = 52; mean MNPD = 0.508 £+ 0.614, N = 52). Finally,
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regarding “latitude,” southern populations exhibited higher levels of haplotype diversity
and mean number of pairwise differences (mean h=0.417 £+ 0.292, N = 108; mean

7 =0.00126 £ 0.0.00119, N = 104; mean MNPD = 0.871 + 0.830, N = 103) than
northern populations (mean h=0.302 £ 0.308, N = 80; mean 7 = 0.000749 £ 0.000974,
N =79; mean MNPD =0.570 £ 0.747,N = 80), a tendency which was already evident
from the diversity mapping depicted for the National Genetic Atlas (Fig. 2).

It is worth mentioning that the variable “species” was significantly correlated with the
three genetic diversity indices (Table 3) and was included in the model which best explains
the observed variance for all of the genetic diversity indices (Table 4). The inclusion of this
variable in the best fit models highlights the influence of species intrinsic idiosyncrasies other
than those tested explicitly herein (migratory behaviour, maximum size and range). Since
it is not possible, with the present dataset, to disentangle which intrinsic traits influence
genetic diversity the most, we further analysed which of the extrinsic factors (“drainage
area,” “inter-basin connectivity,” “latitude” and “hydrological regime”) were determinant
for the genetic diversity pattern observed for each species. The results presented in Table 5
show that the environmental variables tested have no influence on the genetic diversity
for most of the species, except for four species (L. bocagei, P. polylepis, S. pyrenaicus and L.
lusitanicum).

More specifically, all of the genetic diversity indices were significantly correlated
with “inter-basin connectivity” for I lusitanicum and with “latitude” for L. bocagei and
P. polylepis (Table 5). The haplotype diversity obtained was also significantly correlated
with “inter-basin connectivity” for S. pyrenaicus and with “drainage area” for I. lusitanicum
(Table 5).

DISCUSSION

The sampling of a broad number of populations throughout the distribution range of
cyprinid species in Portugal allowed for the publication of the first National Genetic Atlas
of native cyprinid ichthyofauna (available online at www.fishatlas.net). The analysis of the
genetic diversity variation highlighted differences among populations within species and
also differences between species with identical distribution areas and threat categories. In
general, the percentage of private haplotypes and the average values of genetic diversity
per population were higher for small sized non-migratory species of the genera Anaecypris,
Achondrostoma, Iberochondrostoma and Squalius than for the larger sized potamodromous
Luciobarbus and Pseudochondrostoma species, raising the hypothesis of species intrinsic
determinants of genetic diversity. Also, the analyses of molecular variance revealed that for
some species most of the variance could be attributed to differences among populations,
while in others to differentiation within populations. The spatial distribution of the genetic
diversity was undoubtedly distinct for co-occurring species, but what are the underlying
causes of such distinct patterns?

Concerning freshwater fish, the distribution of the genetic diversity on the landscape may
be determined by (1) historical geological/climatic processes (e.g., drainage rearrangements,
persistent climatic gradients, glaciations), (2) species intrinsic traits (e.g., body size,
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Table 5 Non-parametric tests for all the species. Results of the non-parametric tests (Spearma’s p and Mann—Whitney’s U) conducted separately to each species to test
the correlation between the genetic diversity indices (h, # and MNPD) and the independent variables “drainage area,” “inter-basin connectivity,” “hydrological regime”
and “latitude.” All tests were bilateral and p-values were Bonferrori corrected for multiple comparisons. Significant p-values (p < 0.005) are highlighted in bold and the
direction of the Mann—Whitney’s U tests was indicated: the group (unconnected vs. connected, temporary vs permanent, and southern vs northern) with the highest me-
dian was shaded in grey. Analyses were not conducted for species with less than 5 populations (marked with a “*” symbol). In some cases (marked as “constant”), all the

populations of a species showed the same values for a given categorical variable (e.g., all were classified as southern regarding “latitude”).

Drainage area (DA) Inter-basin connectivity (IBC) Hydrological regime (HR) Latitude (L)
Species (Nb. popula- Spearman p p U P §) 4 U P
tions)
Unconnected Connected Temporary Permanent Southern  Northern

Dependent variable: h
L. b i (N =39) 0.040 0.808 128 0.578 108 0.988 i 0.008

e ' ' I N e '

88 34 35
A. oligolepis (N = 26) —0.169 0.409 _ 0.698 _ 1.00 _ 0.560
. 29

P. duriense (N =14) 0.465 0.094 _ 0.240 constant constant
P. polylepis (N = 16) 0.257 0.337 20 0.441 : 0.002

PR ‘ ‘ onstant [ ] - '
P. willkommii (N =6) —0.543 0.266 constant constant constant
S. carolitertii (N = 21) 0.114 0.623 ® 0.149 13> 0.667 1> 0.667

55.5 51

S. pyrenaicus (N =18) 0.326 0.186 _ 0.019 _ 0.075 constant
S. torgalensis (N =1) * * * *
S. aradensis (N =5) 0.447 0.450 constant constant constant
L izo (N =6) 0.395 0.439 ! 0.667

. COM1Z0 = . K constant _ . constant

. 12

L. sclateri (N =9) 0.402 0.284 _ 0.730 constant constant
L lusitani (N =14) 0.804 0.001 45 0.001 37 0.060

. lusttanicum = . . _ <0. _ . constant
L almacai (N =2) * * * *
I lemmingii (N = 3) * * * *
A. occidentale (N = 3) * * * *
A. hispanica (N =5) 0.300 0.624 constant constant constant

(continued on next page)
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Table 5 (continued)

Drainage area (DA) Inter-basin connectivity (IBC) Hydrological regime (HR) Latitude (L)
Species (Nb. popula- Spearman p P U 4 U 4 U 4
tions)
Unconnected Connected Temporary Permanent Southern  Northern
Dependent variable:
L. b i (N =39) 0.074 0.074 2 0.462 1> 0.670 o4 0.006
ST ’ ’ I N e '
. . 94 33 31
A. olzgolepzs (N = 26) —0.088 0.669 _ 0.482 _ 0.940 _ 0.389
. 30.5
P. duriense (N = 14) 0.251 0.387 _ 0142 constant constant
P. polylepis (N = 16) 0.257 0.337 '8 0.320 ! 0.001
AR ' ' ot [ ] - -
P. willkommii (N = 6) —0.486 0.329 constant constant constant
L 63 12.5 13.5
S. carolitertii (N =21) 0.226 0.338 _ 0.183 _ 0.700 _ 0.667
. 51 49
S. pyrenaicus (N =18) 0.094 0.711 _ 0.075 _ 0.117 constant
S. torgalensis (N =1) * * *
S. aradensis (N =5) 0.447 0.450 constant constant constant
1
L. comizo (N =6) 0.339 0.510 constant _ 0.667 constant
14
L. sclateri (N =9) 0.485 0.185 _ 0.413 constant constant
.. 45 30
L lusitanicum (N = 14) 0.453 0.120 _ <0.001 _ 0.364 constant
I almacai (N =2) * * *
I lemmingii (N = 3) * * *
A. occidentale (N = 3) * * *
A. hispanica (N =5) 0.1 0.873 constant constant constant
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Table 5 (continued)

Drainage area (DA) Inter-basin connectivity (IBC) Hydrological regime (HR) Latitude (L)
Species (Nb. popula- Spearman p P U 4 U 4 U 4
tions)
Unconnected Connected Temporary Permanent Southern  Northern

Dependent variable:
MNPD
Lb i (N =39) 0.074 0.656 2 0.462 > 0.670 > 0.006

T ' ' I A e '

. . 94 33 31
A. oligolepis (N = 26) —0.088 0.669 _ 0.484 _ 0.940 - 0.389
30.5

P. duriense (N =14) 0.251 0.387 _ 0.142 constant constant
P. polylepis (N = 16) 0.257 0.337 '8 0.320 ! 0.001

AT ’ ’ ot [ ] - -
P. willkommii (N =6) —0.486 0.329 constant constant constant

. 70 13.5 13.5
S. carolitertii (N =21) 0.185 0.422 _ 0.128 _ 0.667 _ 0.667
. 41 51

S. pyrenaicus (N =18) —0.125 0.621 _ 0.443 _ 0.075 constant
S. torgalensis (N =1) * * * *
S. aradensis (N =5) 0.200 0.747 constant constant constant
L izo (N =6) 0.395 0.439 ! 0.667

. COM1Z0 = . K constant _ . constant

. 14 0.413
L. sclateri (N =9) 0.485 0.185 _ constant constant
L. 45 30

L lusitanicum (N =14) 0.453 0.120 _ <0.001 _ 0.364 constant
L almacai (N =2) * * * *
I lemmingii (N = 3) * * * *
A. occidentale (N = 3) * * * *
A. hispanica (N =5) 0.1 0.873 constant constant constant
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fecundity, dispersal ability), and (3) landscape features, including human-mediated habitat
changes (e.g., damming, river dewatering, destruction of optimal habitats) (Osborne et al.,
2014). Determinants of genetic variation have been, however, difficult to identify and/or
disentangle (Husemann et al., 20125 Leffler et al., 2012).

Historical determinants of genetic diversity

The present study, targeting multiple co-distributed species of primary freshwater fish,
assessed the relative role of historical versus contemporary factors affecting genetic diversity.
Indeed, the origin of Iberian lineages of Anaecypris, ex-Chondrostoma, Luciobarbus and
Squalius dates back to the Miocene, around 19-7.7 Mya (Levy, Doadrio ¢» Almada, 2008;
Gante, 2011). Speciation within these genera and subsequent diversification must have
occurred through the same available connections between paleobasins until the Pleistocene-
Holocene, when the current hydrographical network became established (Sousa-Santos,
Collares-Pereira & Almada, 2007; Gante et al., 2009; Almada ¢ Sousa-Santos, 2010; Sousa-
Santos et al., 2014a; Sousa-Santos et al., 2014b; Mesquita et al., 2005). As such, if populations
responded identically to landscape rearrangements and climatic conditions through time,
one would expect the patterns of genetic diversity to be similar for co-occurring species,
despite their intrinsic traits.

It is known that during the last glacial maximum (LGM, 0.018 Mya) the ice sheet
reached the central part of the Portuguese territory, presumably as far as the Tagus River
(Fig. 1A, Dias et al., 2000). Previous phylogenetic data, obtained with a calibrated molecular
marker (cytochrome b), indicates that, at the time of the LGM, all contemporary species
were already differentiated (Levy, Doadrio ¢» Almada, 2008; Gante, 2011). Additionally,
the extirpation of fish populations at northern latitudes and the persistence of Iberian
fish species in southern refugia throughout the Quaternary had already been reported
by several authors (e.g., Mesquita et al., 2005; Gante et al., 2009; Almada ¢ Sousa-Santos,
2010; Araguas et al., 2013; Sousa-Santos et al., 2014b; Perea & Doadrio, 2015). Thus, as a
consequence of the LGM, species inhabiting northern river basins should exhibit similar
low levels of genetic diversity. Data presented in this paper shows that although this is
true for L. bocagei, it is far from being a generalized pattern among northerly distributed
species. The relatively high levels of genetic diversity observed in A. oligolepis, P. duriense
and S. carolitertii could be explained by posterior recolonizations of northern streams
by migrants from southern refugia, as suggested for many aquatic species (e.g., Hewitt,
2004; Gémez & Lunt, 2007; Provan & Bennett, 2008; Rosellé & Morales, 2010; Oberdoff et
al., 2011). However, this hypothesis is not plausible for the target species since at the time of
the LGM most of the connections between river basins had already ceased (Pais et al., 2012).
Since differences between species with identical distribution areas were detected for the
three genetic diversity indices used, one must postulate than contemporary determinants
of genetic diversity must have played a more significant role than historical ones.

Potential contemporary determinants of genetic diversity
As referred above, species intrinsic traits and landscape features may influence current
levels of genetic diversity. Habitat loss and fragmentation, for instance, may result in
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declining population sizes and genetic diversity depletion, ultimately leading to local
extinctions (Frankham, 1995; Spielman, Brook & Frankham, 2004; Ewers ¢ Didham, 2006;
Lowe & Allendorf, 2010). Husemann et al. (2012) found that frequent local extinction and
re-colonization cycles in seasonal pools may even obscure historical signatures in the
genetic patterns of some North American cyprinids as a result of repeated bottlenecks and
population expansions. Demographic and genetic changes will impact species differently,
according to their dispersal ability, life-history characteristics and habitat requirements
(Faulks, Gilligan & Beheregaray, 2011).

Ecological traits such as tolerance to stagnant disconnected summer pools (Husemann
et al., 2012), preference for flowing headwaters (Faulks, Gilligan ¢ Beheregaray, 2011;
Buonerba et al., 2015) or reproductive strategies (benthic vs. pelagic spawning, Osborne et
al., 2014) were pointed out as determinants of genetic diversity in a vast array of freshwater
fish. Our results showed that there are intrinsic characteristics (maximum size attained)
and environmental characteristics (inter-basin connectivity and latitude) that are clearly
determinant for genetic differences between populations. The variable “species” includes
additional intrinsic characteristics other than those considered explicitly that could be
causing the observed patterns of genetic variation. The relevance of this component is
underlined by its significant correlation with genetic diversity indices and by its inclusion
in the best fit model (together with “species maximum size,” “inter-basin connectivity” and
“latitude” explained 26.7%—33.7% of the variance). The causes explaining the remaining
66.3%—-73.3% of the genetic diversity variance remained currently unexplained and should
ideally be addressed in future studies.

(i) Species intrinsic traits

The species maximum size was negatively correlated with genetic diversity, a feature
that was already reported for several taxa (e.g., Romiguier et al., 2014). Body size is a
good predictor of maturation age and egg size (Moyle ¢ Cech, 2004): small sized fish are
precocious spawners and lay more eggs per batch (r-strategists) than larger sized fish
that typically mature later and produce a smaller number of eggs (k-strategists). As a
consequence, in disturbed environments that impose shorter than normal life spans, it is
expected that small sized species would be favoured as they will most likely leave more
progeny than larger species and will presumably be less prone to genetic depletion due to
inbreeding and genetic drift (more intense in populations with small effective sizes, Gilpin
& Soulé, 19865 Vrijenhoek, 1994). As argued by Romiguier et al. (2014), the demographic
impact of environmental perturbations will depend on the species life-history strategy:
typically genetic diversity levels will be higher r-strategists than in k-strategists irrespective
of their current demography which, according to the authors, also explains why r-strategists
might be in risk of extinction without any warning genetic signal (see “Implications for
conservation’ below).

(ii) Environmental characteristics

Drainage area and hydrological regime (permanent vs. temporary) were not significantly
correlated with genetic diversity, while connectivity between sub-basins and latitude had a
significant effect.

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 17/28


https://peerj.com
http://dx.doi.org/10.7717/peerj.1694

Peer

The results show that populations occurring in sub-basins connected with other water
bodies had higher genetic diversity than those occurring in unconnected river basins. As
the drainage had no significant effect on the genetic diversity of the populations inhabiting
them, the observed effect of the inter-basin connectivity may be related to (1) the possibility
of inter-population gene exchange or (2) historical features. This later explanation relates
to the fact that the colonization of Iberia by the ancestral lineages of primary freshwater
fish seems to have followed a westward path (from the Pyrenees to the margins), with
the major basins as vehicles for colonizers and playing a crucial role in the radiation of
these species throughout the Peninsula (e.g., Gante et al., 2009; Almada & Sousa-Santos,
2010; Perea ¢ Doadrio, 2014). As a consequence, the unconnected river basins that showed
lower levels of genetic diversity are precisely the small coastal streams from the west and
southwest margins of Iberia which received their colonizers through past connections with
the wider and dendritic river basins. Hence, this pattern may be a result of a decrease in
genetic diversity along routes of colonization (Taberlet et al., 1998).

Future studies should also address connectivity at an intrabasin scale, by quantifying
the number of unsurmountable barriers preventing gene flow. Predictions point to lower
global levels of genetic diversity due to fragmentation and population declines expected
to occur in highly impounded river basins (e.g., Alo ¢ Turner, 2005; Wofford, Gresswell ¢
Banks, 2005; Raeymaekers et al., 2008; Blanchet et al., 2010).

Genetic diversity also seems to be related with latitude: southern populations show
higher levels of haplotype diversity and mean number of pairwise differences than
northern populations. This pattern may be the result of a higher impact of glaciations
in northern populations, and in situ survival in the southernmost populations, far from
the glaciers (e.g., Hoagstrom ¢ Berry, 2006; Abelldn & Svenning, 2014; Osborne et al., 2014).
The successive cycles of expansion—contraction of glacial ice sheets must have played an
extremely important role in shaping the distribution of taxa and in inducing population
declines and local extinctions (Rowe et al., 2004). However, if glaciations were the main
driver of genetic diversity depletion in northern populations, one should expect that all
those populations inhabiting northern rivers (where the effect of the LGM was more
effective, as described by Dias et al., 2000) would exhibit low levels of genetic diversity
independently of the species considered, which was not the case. This expectation would
fail if species inhabiting northern rivers had distinct tolerances to low water temperatures
and, consequently, showed differential survival during glacial periods. Additionally, the
effect of temperature should not be ruled out since it is known that high water temperatures
may induce genetic damage and errors in DNA replication (Gillooly et al., 2005), which
may eventually promote higher levels of diversity in the populations inhabiting warmer
southern rivers.

The fragmentation of populations imposed annually by extreme droughts (Prenda &
Gallardo, 19965 Pires, Cowx & Coelho, 1999; Magalhaes et al., 2002) could also be pointed
out as one of the determinants for higher genetic diversity levels of southern populations, by
imposing higher drift and lineage sorting effects. If true, one would expect that populations
inhabiting temporary rivers show distinct genetic diversity from those inhabiting permanent
rivers. However, our results show that the “hydrological regime” had no significant effect.
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Finally, when looking to each isolated species rather than using populations as
the comparison units, the results showed that environmental characteristics did not
explain the genetic diversity variance for most of the species, with the exception of
the potamodromous large sized L. bocagei and P. polylepis and the smaller sized non-
potamodromous S. pyrenaicus and L lusitanicum. These species showed higher genetic
diversity in larger river basins (I. lusitanicum), in southern latitudes (L. bocagei and
P. polylepis) and in connected sub-basins (S. pyrenaicus and I. lusitanicum). These results
are in agreement with the view of Kahilainen, Puurtinen & Kotiaho (2014) regarding
the differential influence of environmental characteristics on the genetic diversity of
co-occurring species and highlights the need to establish specific rather than generalized
management and conservation plans.

In conclusion, as multiple intrinsic and extrinsic drivers may be acting synergistically,
future studies should ideally be conducted for each species separately and should adopt
sampling procedures that would allow for an exhaustive collection of data concerning
habitat-, landscape- and species-related variables.

Implications for conservation

Different populations of the same species exhibit not only distinct gene pools but also
distinct genetic diversity levels, reinforcing the need to preserve them as individual entities
and to establish Operational Conservation Units (OTU’s), as defined by Doadrio, Perdices
& Machordom (1996).

A high risk of extinction is commonly associated with low levels of genetic diversity
and small effective population size (e.g., Blomqvist et al., 2010; McCusker ¢ Bentzen, 2013).
As argued by some authors, most taxa are not driven to extinction before genetic factors
affect them adversely (Van Noordwijk, 1994; Spielman, Brook ¢ Frankham, 2004), thus,
endangered species should be closely monitored to assess potential future drops in
gene diversity levels. Among Squalius species, the critically endangered S. aradensis and
S. torgalensis showed lower haplotype diversities than the remaining Squalius species, which
are considered to be endangered (S. pyrenaicus) and least concerned (S. carolitertii). The
same occurs among Iberochondrostoma and Achondrostoma species, with the critically
endangered I. almacai and A. occidentale showing lower haplotype diversity than their less
threatened congeneric species I. lemmingii (endangered) and A. oligolepis (vulnerable).

A similar pattern was also detected among Luciobarbus, with the endangered L. comizo
and L. sclateri showing lower haplotype diversities than the least concerned L. bocagei.
Interestingly, however, the results obtained in this study indicate that a higher conservation
status is not necessarily synonymous with genetic depletion, as demonstrated by the
high haplotype diversity values shown by the critically endangered A. hispanica and L.
lusitanicum. The reverse was also not always observed since non-endangered L. bocagei, P.
polylepis or S. carolitertii showed relatively low levels of haplotype diversity (when compared
to their congeneric species). These results highlight the need to focus management and
conservation actions on intraspecific genetic data, instead of erroneously concluding that
a species with low genetic diversity is more susceptible to extinction than a co-occurring
more diversified one. Frequent genetic monitoring is also crucial since it is known that
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there is a time lag between the action of factors causing genetic change and the change itself,
i.e., changes or disturbances that impact populations may not be immediately reflected
in genetic metrics (Epps ¢» Keyghobadi, 2015). The combination of long term genetic and
demographic surveys of threatened species should be the norm in conservation practices,
as suggested by Paz-Vinas et al. (2013).

The dataset produced under the scope of the FISHATLAS project is available to be used by
managers, decision-makers and authorities not only in the present context of hydrological
resources management aiming to minimize the effects of climate changes, but also for
the implementation of conservation and management plans aiming to preserve native
Iberian cyprinids. More specifically, these data may allow for the definition of priorities in
conservation policies, when choices have to be made concerning which populations of each
species must be preserved first, a decision that must take into account the maximization
of genetic diversity. Although it is widely recognized that genetic data should be taken into
account to draw conservation guidelines and prioritize conservation actions (Frankham,
2010), studies on conservation genetics of Iberian cyprinids are recent (Salgueiro et al.,
2003; Robalo et al., 2007; Sousa et al., 2007; Almada ¢ Sousa-Santos, 2010; Sousa et al.,
20105 Sousa-Santos et al., 2014a; Sousa-Santos et al., 2014b) and practical applications of
their conclusions and suggestions are still scarce. The results presented herein constitute
a comprehensive baseline dataset which, supplemented with future monitoring of the
observed genetic patterns, will be crucial to support the establishment of conservation
priorities, design reserves, signal target populations for ex situ conservation, define OUT’s,
and propose ex situ and in situ actions to allow for the long-term survival of endangered
species and preservation of their genetic integrity.

ACKNOWLEDGEMENTS

We are grateful to G Lemos, C Lima, P Coelho, L Ferreira, C Carrapato, A Albuquerque,
R Rivaes, G Duarte, S Rodriguez, RA Pizarro, J Oliveira and P Pinheiro for their help in
the field. We dedicate this paper to the loving memory of Vitor Almada to whom we owe
much of what was done for the preservation of native freshwater fish species in Portugal.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This study was funded by the European Fund for Economic and Regional Development
(FEDER) through the Program Operational Factors of Competitiveness (COMPETE) and
National Funds through the FCT—Portuguese Foundation of Science and Technology,
under the Eco-Ethology Research Unit Strategic Plan (PEst-OE/MAR/UI0331/2011)
and the project PTDC/AAC-CLI/103110/2008. CSS was supported by a Post-doctoral
grant from FCT (SFRH/BPD/29774/2006). PB was supported by grants from FCT
(SFRH/BD/44938/2008, SFRH/BPD/94686/2013). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 20/28


https://peerj.com
http://dx.doi.org/10.7717/peerj.1694

Peer

Grant Disclosures

The following grant information was disclosed by the authors:

European Fund for Economic and Regional Development (FEDER).

National Funds: PEst-OE/MAR/UI0331/2011, PTDC/AAC-CLI/103110/2008.
FCT: SFRH/BPD/29774/2006, SFRH/BD/44938/2008, SFRH/BPD/94686/2013.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Carla Sousa-Santos and Ana M. Pereira conceived and designed the experiments,
performed the experiments, analyzed the data, contributed reagents/materials/analysis
tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.

e Joana I. Robalo, Paulo Branco, José Maria Santos, Maria Teresa Ferreira, Ménica
Sousa and Ignacio Doadrio conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the
paper, reviewed drafts of the paper.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Permits for field work were given by ICNF (176/2010/CAPT and 53/2012/CAPT).

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:
GenBank accession numbers: KU366823-KU370500.

Data Availability
The following information was supplied regarding data availability:

Besides sequencing data, raw data for the statistical analyses performed are provided in
Table S2.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.1694#supplemental-information.

REFERENCES

Abellan P, Svenning J-C. 2014. Refugia within refugia—patterns in endemism and ge-
netic divergence are linked to Late Quaternary climate stability in the Iberian Penin-
sula. Biological Journal of the Linnean Society 113:13-28 DOI 10.1111/bij.123009.

Aboim MA, Mesquita N, Drago M, Coelho MM, Alves M]J. 2013. Assessing inter-
drainage connections: patterns of genetic diversity in an Iberian cyprinid fish.
Biological Journal of the Linnean Society 109:656—669 DOI 10.1111/bij.12059.

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 21/28


https://peerj.com
https://www.ncbi.nlm.nih.gov/nucleotide?term=KU366823
https://www.ncbi.nlm.nih.gov/nucleotide?term=KU370500
http://dx.doi.org/10.7717/peerj.1694/supp-2
http://dx.doi.org/10.7717/peerj.1694#supplemental-information
http://dx.doi.org/10.7717/peerj.1694#supplemental-information
http://dx.doi.org/10.1111/bij.12309
http://dx.doi.org/10.1111/bij.12059
http://dx.doi.org/10.7717/peerj.1694

Peer

Almada V, Sousa-Santos C. 2010. Comparisons of the genetic structure of Squalius
populations (Pisces, Cyprinidae) from rivers with contrasting histories, drainage
areas and climatic conditions. Molecular Phylogenetics and Evolution 57:924-931
DOI10.1016/j.ympev.2010.08.015.

Alo D, Turner TF. 2005. Effects of habitat fragmentation on effective population size of
the endangered Rio Grande silvery minnow. Conservation Biology 19:1138—1148
DOI10.1111/j.1523-1739.2005.00081.x.

Alvarez-Cobelas M, Rojo C, Angeler DG. 2005. Mediterranean limnology: current status,
gaps and the future. Journal of Limnology 64:13-29 DOI 10.4081/jlimnol.2005.13.

Araguas RM, Vidal O, Pla C, Sanz N. 2013. High genetic diversity of the endangered
Iberian three-spined stickleback (Gasterosteus aculeatus) at the Mediterranean edge
of its range. Freshwater Biology 57:143—154.

Blanchet S, Rey O, Etienne R, Lek S, Loot G. 2010. Species-specific responses to
landscape fragmentation: implications for management strategies. Evolutionary
Applications 3:291-304 DOI 10.1111/§.1752-4571.2009.00110.x.

Blomgyvist D, Pauliny A, Larsson M, Flodin LA. 2010. Trapped in the extinction vortex?
Strong genetic effects in a declining vertebrate population. BMC Evolutionary Biology
10:33 DOI10.1186/1471-2148-10-33.

Brito RM, Briolay J, Galtier N, Bouvet Y, Coelho MM. 1997. Phylogenetic relationships
within genus Leuciscus (Pisces, Cyprinidae) in Portuguese freshwaters, based on
mitochondrial cytochrome b sequences. Molecular Phylogenetics and Evolution
8:435-442 DOI 10.1006/mpev.1997.0429.

Buonerba L, Zaccara S, Delmastro GB, Lorenzoni M, Salzburger W, Gante HF.

2015. Intrinsic and extrinsic factors act at different spatial and temporal scales
to shape population structure, distribution and speciation in Italian Barbus
(Osteichthyes: Cyprinidae). Molecular Phylogenetics and Evolution 89:115-129
DOI10.1016/j.ympev.2015.03.024.

Cabral MJ, Almeida J, Almeida PR, Dellinger TR, Ferrand de Almeida N, Oliveira ME,
Palmeirim JM, Queiroz Al, Rogado L, Santos-Reis M. 2005. Livro Vermelho dos
Vertebrados de Portugal. Lisboa: Instituto da Conservagao da Natureza.

CEN (Comité Européen de Normaliation). 2003. Water quality: sampling of fish with
electricity. Brussels: CEN, European Standard EN 14011, European Committee for
Standardization.

Clavero M, Blanco-Garrido F, Prenda J. 2004. Fish fauna in Iberian Mediterranean river
basins: biodiversity, introduced species and damming impacts. Aquatic Conservation:
Marine and Freshwater Ecosystems 14:575-585 DOI 10.1002/aqc.636.

Dekar MP, Magoulick DD. 2007. Factors affecting fish assemblage structure during
seasonal stream drying. Ecology of Freshwater Fish 16:335—342
DOI10.1111/j.1600-0633.2006.00226.x.

Dias JMA, Boski T, Rodrigues A, Magalhaes F. 2000. Coast line evolution in Portu-
gal since the Last Glacial Maximum until present—a synthesis. Marine Geology
170:177-186 DOI 10.1016/50025-3227(00)00073-6.

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 22/28


https://peerj.com
http://dx.doi.org/10.1016/j.ympev.2010.08.015
http://dx.doi.org/10.1016/j.ympev.2010.08.015
http://dx.doi.org/10.1111/j.1523-1739.2005.00081.x
http://dx.doi.org/10.1111/j.1523-1739.2005.00081.x
http://dx.doi.org/10.4081/jlimnol.2005.13
http://dx.doi.org/10.1111/j.1752-4571.2009.00110.x
http://dx.doi.org/10.1186/1471-2148-10-33
http://dx.doi.org/10.1006/mpev.1997.0429
http://dx.doi.org/10.1016/j.ympev.2015.03.024
http://dx.doi.org/10.1016/j.ympev.2015.03.024
http://dx.doi.org/10.1002/aqc.636
http://dx.doi.org/10.1111/j.1600-0633.2006.00226.x
http://dx.doi.org/10.1016/S0025-3227(00)00073-6
http://dx.doi.org/10.7717/peerj.1694

Peer

Doadrio I, Perdices A, Machordom A. 1996. Allozymic variation of the endangered
killifish Aphanius iberus and its application to conservation. Environmental Biology
of Fishes 45:259-271 DOI 10.1007/BF00003094.

Doadrio I, Perea S, Garzén-Heydt P, Gonzalez JL. 2011. Ictiofauna Continental Espaiiola.
Bases para su segquimiento. Direccién General Medio Natural y Politica Forestal,
Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid.

Epps CW, Keyghobadi N. 2015. Landscape genetics in a changing world: disentangling
historical and contemporary influences and inferring change. Molecular Ecology
24:6021-6040 DOI 10.1111/mec.13454,

Ewers RM, Didham RK. 2006. Confounding factors in the detection of species responses
to habitat fragmentation. Biological Reviews 81:117-142.

Excoffier L, Lischer H. 2010. Arlequin suite ver 3.5: a new series of programs to perform
population genetics analyses under Linux and Windows. Molecular Ecology Resources
10:564-567 DOI 10.1111/j.1755-0998.2010.02847 .x.

Faulks LK, Gilligan DM, Beheregaray LB. 2011. The role of anthropogenic vs. natural
in-stream structures in determining connectivity and genetic diversity in an
endangered freshwater fish, Macquarie perch (Macquaria australasica). Evolutionary
Applications 4:589-601 DOT 10.1111/j.1752-4571.2011.00183 x.

Filipe AF, Lawrence JE, Bonada N. 2013. Vulnerability of stream biota to climate
change in mediterranean climate regions: a synthesis of ecological responses and
conservation challenges. Hydrobiologia 719:331-351.

Frankham R. 2010. Challenges and opportunities of genetic approaches to biological
conservation. Biological Conservation 143:1919-1927
DOI 10.1016/j.biocon.2010.05.011.

Frankham R. 1995. Conservation genetics. Annual Review of Genetics 29:305-327
DOI 10.1146/annurev.ge.29.120195.001513.

Fiissel H, Jol A, Kurnik B, Hemming D. 2012. Climate change, impacts and vulnerability
in Europe 2012: an indicator-based report. EEA Report 304.

Gante HF. 2011. Diversification of circum-mediterranean barbels. In: Grillo O, Venora
G, eds. Changing diversity in changing environment. Rijeka: InTech, 283-298.

Gante HF, Doadrio I, Alves MJ, Dowling T. 2015. Semi-permeable boundaries in Iberian
barbels (Barbus and Luciobarbus, Cyprinidae). BMC Evolutionary Biology 15:111
DOI10.1186/512862-015-0392-3.

Gante HF, Micael ], Oliva-Paterna FJ, Doadrio I, Dowling TE, Alves MJ. 2009. Diversifi-
cation within glacial refugia: tempo and mode of evolution of the polytypic fish Bar-
bus sclateri. Molecular Ecology 18:3240-3255 DOT 10.1111/j.1365-294X.2009.04264.x.

Gasith A, Resh VH. 1999. Streams in Mediterranean climate regions: abiotic influences
and biotic responses to predictable seasonal events. Annual Review of Ecology and
Systematics 30:51-81 DOI 10.1146/annurev.ecolsys.30.1.51.

Gillooly JF, Allen AP, West GB, Brown JH. 2005. The rate of DNA evolution: ef-
fects of body size and temperature on the molecular clock. Proceedings of the
National Academy of Sciences of the United States of America 102:140-145
DOI 10.1073/pnas.0407735101.

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 23/28


https://peerj.com
http://dx.doi.org/10.1007/BF00003094
http://dx.doi.org/10.1111/mec.13454
http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
http://dx.doi.org/10.1111/j.1752-4571.2011.00183.x
http://dx.doi.org/10.1016/j.biocon.2010.05.011
http://dx.doi.org/10.1146/annurev.ge.29.120195.001513
http://dx.doi.org/10.1146/annurev.ge.29.120195.001513
http://dx.doi.org/10.1186/s12862-015-0392-3
http://dx.doi.org/10.1186/s12862-015-0392-3
http://dx.doi.org/10.1111/j.1365-294X.2009.04264.x
http://dx.doi.org/10.1146/annurev.ecolsys.30.1.51
http://dx.doi.org/10.1073/pnas.0407735101
http://dx.doi.org/10.1073/pnas.0407735101
http://dx.doi.org/10.7717/peerj.1694

Peer

Gilpin ME, Soulé ME. 1986. Minimum viable populations: processes of species ex-
tinction. In: Soulé ME, ed. Conservation biology: the science of scarcity and diversity.
Sunderland: Sinauer, 19-34.

Gomez A, Lunt DH. 2007. Refugia within refugia: patterns of phylogeographic con-
cordance in the Iberian Peninsula. In: Weiss S, Ferrand D, eds. Phylogeography of
southern European refugia. Dordrecht: Springer, 155-188.

Henriques R, Sousa V, Coelho MM. 2010. Migration patterns counteract seasonal
isolation of Squalius torgalensis, a critically endangered freshwater fish inhabiting a
typical Circum-Mediterranean small drainage. Conservation Genetics 11:1859-1870
DOI 10.1007/s10592-010-0078-8.

Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary.
Philosophical Transactions of the Royal Society of London B: Biological Sciences
359:183-195 DOI 10.1098/rstb.2003.1388.

Hoagstrom CW, Berry CR. 2006. Island biogeography of native fish faunas among Great
Plains drainage basins: basin scale features influence composition. American Fisheries
Society Symposium 48:221-264.

Husemann M, Ray JW, King RS, Hooser EA, Danley PD. 2012. Comparative biogeogra-
phy reveals differences in population genetic structure of five species of stream fishes.
Biological Journal of the Linnean Society 107:867—885
DOI10.1111/j.1095-8312.2012.01973.x.

IBM Corporation. 2013. IBM SPSS statistics for Windows. Version 21.0. Armonk, New
York.

Jenkins M. 2003. Prospects for biodiversity. Science 302:1175-1177
DOI 10.1126/science.1088666.

Jesus TF, Inacio MA, Coelho MM. 2013. Different levels of hsp70 and hsc70 mRNA
expression in Iberian fish exposed to distinct river conditions. Genetics and Molecular
Biology 36:61-69 DOI 10.1590/51415-47572013000100009.

Kabhilainen A, Puurtinen M, Kotiaho JS. 2014. Conservation implications of species-
genetic diversity. Global Ecology and Conservation 2:315-323
DOI 10.1016/j.gecco.2014.10.013.

Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L, Venkat A, Andolfatto
P, Przeworski M. 2012. Revisiting an old riddle: what determines genetic diversity
levels within species? PLoS Biology 10:e1001388 DOI 10.1371/journal.pbio.1001388.

Levy A, Doadrio I, Almada VC. 2008. Historical biogeography of European leuciscins
(Cyprinidae): evaluating the Lago Mare dispersal hypothesis. Journal of Biogeography
36:55-65.

Lopez-Cunha M, Aboim MA, Mesquita N, Alves MJ, Doadrio I, Coelho MM.

2012. Population genetic structure in the Iberian cyprinid fish Iberochondros-
toma lemmingii (Steindachner, 1866): disentangling species fragmentation and
colonization processes. Biological Journal of the Linnean Society 105:559-572
DOI10.1111/j.1095-8312.2011.01827 .x.

Lowe WH, Allendorf FW. 2010. What can genetics tell us about population connectivity?
Molecular Ecology 19:3038-3051 DOT 10.1111/j.1365-294X.2010.04688.x.

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 24/28


https://peerj.com
http://dx.doi.org/10.1007/s10592-010-0078-8
http://dx.doi.org/10.1007/s10592-010-0078-8
http://dx.doi.org/10.1098/rstb.2003.1388
http://dx.doi.org/10.1111/j.1095-8312.2012.01973.x
http://dx.doi.org/10.1126/science.1088666
http://dx.doi.org/10.1590/S1415-47572013000100009
http://dx.doi.org/10.1016/j.gecco.2014.10.013
http://dx.doi.org/10.1371/journal.pbio.1001388
http://dx.doi.org/10.1111/j.1095-8312.2011.01827.x
http://dx.doi.org/10.1111/j.1095-8312.2011.01827.x
http://dx.doi.org/10.1111/j.1365-294X.2010.04688.x
http://dx.doi.org/10.7717/peerj.1694

Peer

Macedo-Veiga A. 2013. Towards the conservation of freshwater fish: Iberian Rivers as an
example of threats and management practices. Reviews in Fish Biology and Fisheries
23:1-22 DOI110.1007/s11160-012-9275-5.

Magalhaes MF, Beja P, Canas C, Collares-Pereira MJ. 2002. Functional heterogeneity
of dryseason refugia across a Mediterranean catchment: the role of habitat and
predation. Freshwater Biology 47:1919—-1934 DOI 10.1046/j.1365-2427.2002.00941 .x.

Magalhaes MF, Schlosser IJ, Collares-Pereira MJ. 2003. The role of life history in
the relationship between population dynamics and environmental variabil-
ity in two Mediterranean stream fishes. Journal of Fish Biology 63:300-317
DOI10.1046/j.1095-8649.2003.00148.x.

Magoulick DD, Kobza RM. 2003. The role of refugia for fishes during drought: a review
and synthesis. Freshwater Biology 48:1186—1198
DOI10.1046/j.1365-2427.2003.01089.x.

McCusker MR, Bentzen P. 2013. Positive relationships between genetic diversity and
abundance in fishes. Molecular Ecology 19:4852-4862.

Mesquita N, Hinfling B, Carvalho GR, Coelho MM. 2005. Phylogeography of
the cyprinid Squalius aradensis and implications for conservation of the en-
demic freshwater fauna of southern Portugal. Molecular Ecology 14:1939-1954
DOI10.1111/5.1365-294X.2005.02569.x.

Moyle PB, Cech JJ. 2004. Fishes, an introduction to ichthyology. New Jersey: Prentice Hall.

Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J. 2000. Biodiversity
hotspots for conservation priorities. Nature 403:853—-858 DOI 10.1038/35002501.

Oberdoff T, Tedesco PA, Hugueny B, Leprieur F, Beauchard O, Brosse S, Diirr HH.
2011. Global and regional patterns in riverine fish species richness: a review.
International Journal of Ecology 2011:Article 967631.

Osborne MJ, Perkin JS, Gido KB, Turner TF. 2014. Comparative riverscape genetics
reveals reservoirs of genetic diversity for conservation and restoration of Great Plains
fishes. Molecular Ecology 23:5663-5679 DOI 10.1111/mec.12970.

Pais J, Cunha PP, Pereira D, Legoinha P, Dias R, Moura D, Brum da Silveira A,
Kullberg JC, Gonzalez-Delgado JA. 2012. The Paleogene and Neogene of Western
Iberia (Portugal). A Cenozoic record in the European Atlantic domain. Berlin: Springer
Briefs in Earth Sciences, Springer.

Paz-Vinas I, Comte L, Chevalier M, Dubut V, Veyssiere C, Grenouillet G, Loot G,
Blanchet S. 2013. Combining genetic and demographic data for prioritizing
conservations actions: insights from a threatened fish species. Ecology and Evolution
3:2696-2710 DOI 10.1002/ece3.645.

Perea S, Doadrio I. 2014. Phylogeography, historical demography and habitat suitability
modelling of freshwater fishes inhabiting seasonaly fluctuating Mediterranean
river systems: a case study using the Iberian cyprinid Squalius valentinus. Molecular
Ecology 24:3706-3722.

Perea S, Doadrio I. 2015. Phylogeography, historical demography and habitat suitability
modelling of freshwater fishes inhabiting seasonally fluctuating Mediterranean river

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 25/28


https://peerj.com
http://dx.doi.org/10.1007/s11160-012-9275-5
http://dx.doi.org/10.1046/j.1365-2427.2002.00941.x
http://dx.doi.org/10.1046/j.1095-8649.2003.00148.x
http://dx.doi.org/10.1046/j.1095-8649.2003.00148.x
http://dx.doi.org/10.1046/j.1365-2427.2003.01089.x
http://dx.doi.org/10.1111/j.1365-294X.2005.02569.x
http://dx.doi.org/10.1111/j.1365-294X.2005.02569.x
http://dx.doi.org/10.1038/35002501
http://dx.doi.org/10.1111/mec.12970
http://dx.doi.org/10.1002/ece3.645
http://dx.doi.org/10.7717/peerj.1694

Peer

systems: a study using the Iberian cyprinid Squalius valentinus. Molecular Ecology
24:3706-3722.

Pires AM, Cowx IG, Coelho MM. 1999. Seasonal changes in fish community structure of
intermittent streams in the middle reaches of the Guadiana basin, Portugal. Journal
of Fish Biology 54:235-249.

Prenda J, Gallardo A. 1996. Self-purification, temporal variability and the macroinverte-
brate community in small lowland Mediterranean streams receiving crude domestic
sewage effluents. Archiv fur Hydrobiologie 136:159—170.

Provan ], Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends
in Ecology and Evolution 23:564-571 DOI 10.1016/j.tree.2008.06.010.

Raeymaekers JAM, Maes GE, Geldof S, Hontis I, Nackaerts K, Volckaert FAM. 2008.
Modeling genetic connectivity in sticklebacks as a guide for river restoration.
Evolutionary Applications 1:475-488 DOI 10.1111/j.1752-4571.2008.00019.x.

Reyjol Y, Hugueny B, Pont D, Bianco PG, Beier U, Caiola N, Casals F, Cowx IG,
Economou A, Ferreira MT, Haidvogl G, Noble R, De Sostoa T, Vigneron T,
Virbickas T. 2007. Patterns in species richness and endemism of European fresh-
water fish. Global Ecology and Biogeography 16:65-75
DOI10.1111/j.1466-8238.2006.00264.x.

Ribeiro F, Beldade R, Dix M, Bochechas J. 2007. Carta Piscicola Nacional [National
Fish Atlas]. Direc¢dao Geral dos Recursos Florestais—Fluviatilis, Lda. Available at
http:// www.cartapiscicola.org (accessed 20 December 2015).

Robalo JI, Doadrio I, Valente A, Almada VC. 2007. Identification of ESUs in the criti-
cally endangered Portuguese minnow Chondrostoma lusitanicum (Collares-Pereira
1980) based on a phylogeographical analysis. Conservation Genetics 8:1225-1229
DOI 10.1007/s10592-006-9275-x.

Robalo J1, Sousa-Santos C, Almada VC, Doadrio 1. 2006. Paleobiogeography of two
Iberian endemic cyprinid fishes (Chondrostoma arcasii-Chondrostoma macrolepi-
dotus) inferred from mitochondrial sequence data. Journal of Heredity 97:143—149
DOI 10.1093/jhered/esj025.

Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, Chiari Y, Der-
nat R, Duret L, Faivre N, Loire E, Louren¢o JM, Nabholz B, Roux C, Tsagkogeorga
G, Weber AA-T, Weinert LA, Belkhir K, Bierne N, Glémin S, Galtier N. 2014.
Comparative populations genomics in animals uncovers the determinants of genetic
diversity. Nature 515:261-263 DOI 10.1038/nature13685.

Rosell6 E, Morales A. 2010. Lapa dos Coelhos: informe sobre los restos de peces. In:
Mata E, ed. Homenaje a Francisco Giles Pacheco. Sevilla: Publicaciones Junta de
Andalucia, 261-276.

Rowe KC, Heske EJ, Brown PW, Paige KN. 2004. Surviving the ice: Northern refugia and
postglacial colonization. Proceedings of the National Academy of Sciences of the United
States of America 101:10355-10359 DOI 10.1073/pnas.0401338101.

Salgueiro P, Carvalho G, Collares-Pereira MJ, Coelho MM. 2003. Microsatellite analysis
of genetic population structure of the endangered cyprinid Anaecypris hispanica

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 26/28


https://peerj.com
http://dx.doi.org/10.1016/j.tree.2008.06.010
http://dx.doi.org/10.1111/j.1752-4571.2008.00019.x
http://dx.doi.org/10.1111/j.1466-8238.2006.00264.x
http://www.cartapiscicola.org
http://dx.doi.org/10.1007/s10592-006-9275-x
http://dx.doi.org/10.1007/s10592-006-9275-x
http://dx.doi.org/10.1093/jhered/esj025
http://dx.doi.org/10.1093/jhered/esj025
http://dx.doi.org/10.1038/nature13685
http://dx.doi.org/10.1073/pnas.0401338101
http://dx.doi.org/10.7717/peerj.1694

Peer

in Portugal: implications for conservation. Biological Conservation 109:47-56
DOI10.1016/S0006-3207(02)00132-5.

Schmidt TR, Gold JR. 1993. Complete sequence of the mitochondrial cytochrome b
gene in the Cherryfin Shinner, Liturus roseipinnis (Teleostei: Cyprinidae). Copeia
3:880-883.

Schréter D, Cramer W, Leemans R, Prentice IC, Aratijo MB, Arnell NW, Bondeau A,
Bugmann H, Carter TR, Gracia CA, De la Vega-Leinert AC, Erhard M, Ewert F,
Glendining M, House JI, Kankaanpii S, Klein RJT, Lavorel S, Lindner M, Metzger
MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith
B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl
B. 2005. Ecology: ecosystem service supply and vulnerability to global change in
Europe. Science 310:1333—1337 DOI 10.1126/science.1115233.

Sousa V, Penha F, Collares-Pereira MJ, Chikhi L, Coelho MM. 2007. Genetic structure
and signature of population decrease in the critically endangered freshwater cyprinid
Chondrostoma lusitanicum. Conservation Genetics 9:791-805.

Sousa V, Penha F, Pala I, Chikhi L, Coelho MM. 2010. Conservation genetics of a criti-
cally endangered Iberian minnow: evidence of population decline and extirpations.
Conservation Genetics 13:162—-171.

Sousa-Santos C, Collares-Pereira M]J, Almada VC. 2007. Reading the history of a hybrid
fish complex from its molecular record. Molecular Phylogenetics and Evolution
45:981-996 DOI 10.1016/j.ympev.2007.05.011.

Sousa-Santos C, Gante HF, Robalo J, Proen¢a Cunha P, Martins A, Arruda M,

Alves MJ, Almada V. 2014a. Evolutionary history and population genetics
of a cyprinid fish (Iberochondrostoma olisiponensis) endangered by intro-
gression from a more abundant relative. Conservation Genetics 15:665-677
DOI 10.1007/s10592-014-0568-1.

Sousa-Santos C, Robalo JI, Francisco SM, Carrapato C, Cardoso AC, Doadrio I.
2014b. Metapopulations in temporary streams—the role of drought-flood cycles in
promoting high genetic diversity in a critically endangered freshwater fish and its
consequences for the future. Molecular Phylogenetics and Evolution 80:281-296.

Sousa-Santos C, Robalo J, Santos JM, Branco P, Ferreira T, Sousa M, Ramos A, Castilho
R, Doadrio I, Almada V. 2013. Atlas Genético Nacional dos peixes ciprinideos
nativos. (in Portuguese). Available at http:// www.fishatlas.net.

Spielman D, Brook B, Frankham R. 2004. Most species are not driven to extinction
before genetic factors impact them. Proceedings of the National Academy of Sciences
of the United States of America 101:15261-15264 DOI 10.1073/pnas.0403809101.

Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F. 1998. Comparative phylogeogr-
pahy and postglacial colonization routes in Europe. Molecular Ecology 7:453—464
DOI 10.1046/j.1365-294x.1998.00289.x.

Van Noordwijk AJ. 1994. The interaction of inbreeding depression and environmental
stochasticity in the risk of extinction of small populations. Conservation Genetics
68:131-146.

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 27/28


https://peerj.com
http://dx.doi.org/10.1016/S0006-3207(02)00132-5
http://dx.doi.org/10.1016/S0006-3207(02)00132-5
http://dx.doi.org/10.1126/science.1115233
http://dx.doi.org/10.1016/j.ympev.2007.05.011
http://dx.doi.org/10.1007/s10592-014-0568-1
http://dx.doi.org/10.1007/s10592-014-0568-1
http://www.fishatlas.net
http://dx.doi.org/10.1073/pnas.0403809101
http://dx.doi.org/10.1046/j.1365-294x.1998.00289.x
http://dx.doi.org/10.1046/j.1365-294x.1998.00289.x
http://dx.doi.org/10.7717/peerj.1694

Peer

Vrijenhoek RC. 1994. Genetic diversity and fitness in small population. In: Loeschcke V,
Tomiuk J, Jain SK, eds. Conservation genetics. Basel: Birkhduser Verlag, 38-53.

Wofford JEB, Gresswell RE, Banks MA. 2005. Influence of barriers to movement on
within-watershed genetic variation of coastal cutthroat trout. Ecological Applications
15:628-637 DOI 10.1890/04-0095.

Xenopoulos MA, Lodge DM, Alcamo J, Mirker M, Schulze K, Van Vuuren DP. 2005.
Scenarios of freshwater fish extinctions from climate change and water withdrawal.
Global Change Biology 11:1557-1564 DOI 10.1111/j.1365-2486.2005.001008.x.

Sousa-Santos et al. (2016), PeerJ, DOI 10.7717/peerj.1694 28/28


https://peerj.com
http://dx.doi.org/10.1890/04-0095
http://dx.doi.org/10.1111/j.1365-2486.2005.001008.x
http://dx.doi.org/10.7717/peerj.1694

