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Abstract

Recent data have demonstrated that cancer drug resistance reflects complex biological factors 

including tumor heterogeneity, varying growth, differentiation, apoptosis pathways, and cell 

density. As a result, there is a need to find new ways to incorporate these complexities in the 

mathematical modeling of multidrug resistance. Here, we derive a novel structured population 

model that describes the behavior of cancer cells under selection with cytotoxic drugs. Our model 

is designed to estimate intratumoral heterogeneity as a function of the resistance level and time. 

This updated model of the multidrug resistance problem integrates both genetic and epigenetic 

changes, density-dependence, and intratumoral heterogeneity. Our results suggest that treatment 

acts as a selection process, while genetic/epigenetic alterations rates act as a diffusion process. 

Application of our model to cancer treatment suggests that reducing alteration rates as a first step 

in treatment causes a reduction in tumor heterogeneity, and may improve targeted therapy. The 

new insight provided by this model could help to dramatically change the ability of clinical 

oncologists to design new treatment protocols and analyze the response of patients to therapy.

Major Findings—We suggest that chemotherapeutic treatment acts as a selection process in the 

effective drug concentrations range, while genetic/epigenetic alterations act as a diffusion process 

that results in trait spread based on different stress signals. Application of our model to cancer 

treatment suggests that reducing the alteration rate as a first step in treatment causes a reduction in 

tumor heterogeneity, and may improve targeted therapy.
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Quick Guide to Equations and Assumptions

A structured population model

Here, using a continuous deterministic population model, we aim to describe the problem of 

MDR by including key mechanisms that control the dynamics of the cancer system. Such a 
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model should be viewed as a simplification of the full, complex system. We consider all 

variables and parameters (e.g., death, mutation rates, etc.) to be functions of the resistance 

level (i.e., traits), where a trait is assumed to be a continuous variable. Based on the Lorz et 

al. approach (1) of using a system of integro-differential equations (IDEs) parameterized by 

the variable of the resistance level (x), we provide a basis for structured population models 

designed to estimate the intratumoral heterogeneity as a function of the resistance level (x ∈ 

[0, 1]) and time (t), with density, ρ, dependence. The evolution over time of each 

subpopulation n(x, t), is based on the rate of cell division, r(x), the natural rate of death, d(x), 

and the initial system conditions, n(x,0). In addition, there are contributions from all other 

subpopulations, depending on the genetic and epigenetic alteration function, M(x, y), that 

can be thought of as a spread or diffusive effect. θ(x) denotes the fraction of cells with trait x 

that can carry out new modifications, where 0 ≤ θ(x) ≤ 1. These alterations, M, can be either 

short-or long-term in relation to the daughter cells. If a drug is included, there is the 

additional rate of drug-induced death as a function of the dose, c(x,α), where the drug is 

assumed to be applied uniformly in time. f (ρ(t)) and g(ρ(t)) are included to add density 

dependence to the division and death rates, where . Mathematically, the 

system is modeled by equation (1). All variables are listed and defined in Supplementary 

Table S1. For further mathematical descriptions and assumptions of the system, see the 

supplementary material.

[1]

We demonstrate in detail how the model can qualitatively predict three common biological 

observations based on density limitation, but with different assumptions about the cell 

division, death and alteration rates of cancer cells. In the first case, we study the cell density 

response as a function of the cell division and death rates, where the drug-induced death rate 

could be generalized as a function of the drug dose and the resistance level. We show how 

the relationship between these rates can create a heterogeneous tumor over time, and 

illustrate how different treatments could decrease the variation in the heterogeneity by 

selection, in the effective concentrations range. In the second case, we discuss the effects of 

genetic/epigenetic permanent alterations that occur in different fixed rates. In the third case, 

we present the contributions of additional temporal changes that can evolve from specific 

environmental causes. For full details concerning the parameters and numerical results, see 

the supplementary material.

Introduction

Resistance to chemotherapy remains a major cause of the failure of cancer treatment. This 

resistance results from numerous mechanisms. The 'traditional' understanding of multidrug 

resistance (MDR) and its driving mechanisms oversimplifies the complexity of a perturbed 

cellular cancer network and focuses on several pathways/gene families. From that 

perspective, drug resistance is associated instead with the induction of drug efflux, 

activation of DNA repair, variations of target proteins, decreased drug uptake, altered 

metabolisms, sequestration, and changes in apoptotic pathways (2, 3).
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Recently, intratumoral heterogeneity has also been found to be a major facilitator of drug 

resistance. Intratumoral heterogeneity refers to differences between cancer cells originating 

within the same tumor. Many primary human tumors have been found to contain genetically 

distinct cellular subpopulations reported to be mainly the result of stochastic processes and 

microenvironment signals (reviewed in (4)). In addition to the genetic differences within a 

tumor, therapeutic resistance can also be caused by several other non-genetic processes, 

such as epigenetic changes associated with chromatin modification or DNA methylation (5–

8). One study of these processes was done by Kreso et al. (9, 10), who found, in a system 

with a single genetic clone, that there was functional variability among the tumor cells. 

Clearly, the integration of both genetic and non-genetic assumptions as well as heterogeneity 

should be included in the design of new experimental and computational models in order to 

have a better description of and ultimately, a solution to the problem of MDR.

In order to study intratumoral heterogeneity, we consider a mathematical modeling 

approach. As mentioned above, drug resistance is far from being a black-and-white, resistant 

or not resistant phenomenon. Accordingly, a continuous variable is a more appropriate way 

to describe, estimate and measure the resistance level. This estimator is a key variable in any 

mathematical representation of the MDR system and without it, a comprehensive 

mathematical model cannot be developed.

Several direct and indirect approaches have been suggested to estimate the drug resistance 

level, depending on the type of data that is analyzed. For instance, in in vitro experiments, 

the dose-response assay (e.g., the MTT assay) can quantify the number of surviving cells 

after exposure to different drug concentrations for a certain time period and can be presented 

by 'killing curves'. The 50% inhibitory concentration (IC50) values can be defined as the 

drug concentrations required to reduce cell viability to 50% of the untreated control 

population. Thus, for example, the resistance level can be described here by the IC50 value 

of each clone in the global population. A similar trend in killing curves would be expected, 

to some extent, for other drugs with similar features (targets, mechanisms, etc.). A linear 

generalization of such an approach would be the number of different drugs that can be 

separately applied to those cells and yet the cells still survive, where the level of resistance 

can be calculated as a score of two variables: the number of drugs and the IC50 value of each 

drug. A non-linear generalization would be the survival percentage of the treated population 

with drug combinations administered at the same time point. In all of these cases, the higher 

the score, the higher the resistance level.

Unfortunately, most clinical data do not include the IC50 values and the in vitro conclusions 

have not led to success in the clinic (11). Usually, clinical data include the physiological 

properties that describe the progress, extent or severity of a tumor ('staging'). All 

assignments of cancer stage are made at the time of diagnosis, before any treatment is given 

and thus cannot directly assess the resistance level. Combining clinical data with gene 

expression and survival data from the same patients can help to categorize them as 'good' or 

'poor' responders, and a score for their resistance level can be calculated. Accordingly, any 

theoretical model should include subpopulations with resistance levels that can vary within 

the interval between 'good' and 'poor' scores.
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The number of cellular mutations has also been proposed as a way to characterize resistance 

level. Due to the stochastic nature of the mutation process, there are mutations that do not 

necessarily contribute to cancer progression, and are not essential to the resistance level of a 

tumor. Yet such mutations certainly increase the intratumoral heterogeneity. Of course, once 

the number of passenger mutations accumulates to a certain level, they can be expected to 

have a global effect on tumor growth and sensitivity to certain drugs (12). The number of 

mutations does not necessarily go hand in hand with the resistance level, but rather the type 

of mutated pathways affects the evolution of MDR. For instance, mutations in the apoptosis 

pathway cause a decrease in the death rate (13), mutations in the RAS-RAF pathway cause 

increased cell proliferation and resistance to apoptosis (14), and mutator genes increase 

genetic alterations throughout the genome. Moreover, there are certain genes that promote 

genetic stability, including DNA repair genes, DNA damage sensor genes and cell cycle 

checkpoint genes. Changes in these stability genes affect the mutation rate and therefore this 

rate is not necessarily a constant parameter over time and space (15).

Many mathematical models related to MDR have been developed (reviewed in (16)). Most 

of these models quantify the resistance level as proportional to the number of mutations. 

Some models quantify the resistance level by considering the expression of a single gene. 

Our work can be viewed mainly as an extension of the mathematical model of Lorz et al., 

who developed a physiologically-structured population model that is structured according to 

a continuous variable that can represent the level of a phenotypic trait that has been selected 

as relevant to describe population heterogeneity (1). Lorz et al. assumed that the cell 

division rate is dependent on the cell density of normal cells, while cancer cells are assumed 

to grow exponentially with a low mutation rate. Inspired by their model, we propose an 

extended mathematical model for cancer cells with cell density dependence on cell division 

and death rates, and account for both genetic and epigenetic changes. Moreover, we describe 

the drug-induced death rate as a function of the dose and the trait. This work is important for 

optimizing the efficacy of treatment. It has obvious implications for understanding the 

complexity of cancer growth dynamics and for the analysis of drug resistance data.

Results

Heterogeneity arising from treatment

The first case we study is a hypothetical scenario in which the system cannot have genetic or 

epigenetic changes, and its dynamic is solely driven by cell division and death rates (Fig. 

1A). Since the mass of the tumor is limited by the density functions (Supplementary 

Material, Eq. 7, mathematical proof can be found elsewhere (Greene J, Lavi O, Gottesman 

M. M, and Levy, D., submitted)), the model predicts a stable distribution of cells with 

different traits after a finite time without any treatment (Fig. 1B, C0 lines for IC1 and IC2). 

The administration of chemotherapy to such a system leads to changes in the original 

distribution and a selection process that depends on the drug-induced death rate, c(x, α). 

This rate of death is a function of the drug dose,α, and the resistance level, x.

Drug-induced death rate based on a fixed dose—If the dose is administered at a 

fixed value α, then c(x, α) can be replaced by c(x). The drug-induced death rates of two 
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qualitative examples of different drugs are plotted in Fig. 1A as CDrug1 and CDrug2. The 

spikes in Fig. 1B labeled as CDrug1 and CDrug2 show tumor homogeneity, since most cells 

have similar traits. The CDrug1 curve has a spike at a higher resistance level (i.e., x-value). 

Fig. 1A shows that higher x-values correspond to lower values of r(x), i.e., slower cell 

division rates, an assumption made when the model was developed. If only a few cells with 

different resistance levels survive the treatment, that would be sufficient to allow the 

distribution of intratumoral heterogeneity to return to its original stable profile (Fig. 1B, C0: 

IC1 curve), since the cell division and death rates have not changed. The time needed to 

reach that control state varies based on the treatment and its drug-induced death rate. 

Whereas if after the treatment several subpopulations located in the non-zero range of the 

original stable profile (Fig. 1B, C0: IC1 curve) die out, the system would not restore this 

distribution (Fig. 1B, C0: IC2 curve). Kreso et al. provide evidence for a slowly proliferating 

cell population in primary human CRC cells that still retains potent tumor propagation 

potential, thus preferentially driving tumor growth after chemotherapy (9). A similar 

mechanism that reduces cell proliferation and induces a dormant non-dividing state was 

reported by Lewis, in his review on MDR in microbiology (17). Kreso et al. noted that 

although cancer cells may have a uniform genetic lineage, individual tumor cells are 

functionally heterogeneous, with a wide variety in terms of growth dynamics and response 

to therapy. Dividing cells are most likely to be eradicated first, whereas the relatively slower 

growing/dormant cells are the major population during tumor re-initiation after 

chemotherapy. Of course, in the study of Kreso et al. there could be non-genetic alterations 

that could change one resistance level to another. In our theoretical case, we show that even 

if the cells are unable to mutate/change to another resistance level, it is possible to have the 

same dynamic, if only a few slowly proliferating cells that resist the drug remain. Once there 

is a density limitation, the distribution of cells as a function of the trait would be totally 

different from the control.

Drug-induced death rate as a function of the dose—Drugs are usually categorized 

by their biochemical mechanisms of action, targets, molecular structure, gene expression 

and in general by the cell response. However, from a mathematical perspective, there is 

another dimension to drug efficacy, which is the effect of the drug on the shape of the 

survival curve. Given two sub-populations, resistant and sensitive cells, the efficacy of a 

treatment could be estimated by the IC50 values, the slope of the survival curves and the 

distance between the two curves of the two cell types (Fig. 2A,B). The slopes could be 

compared at their IC50 values (i.e., at their maximum values). The differences in treatment 

outcomes are not expressed solely by the percentage of cells that survive, but also by the 

effect on the remaining cells as a function of the dose and the resistance level. A better 

treatment would result in a lower number of surviving cells and a more homogeneous 

population. This can be expressed as survival curves with low IC50 values (solid vs. dashed 

lines, Fig. 2A), with steeper slopes (slope1 vs. slope2, Fig. 2B) and a smaller distance 

between the two curves (Δ1 vs. Δ2, Fig. 2A) with different levels of resistance. These three 

factors influence the drug efficacy.

Data from survival curves, drug sensitivity assays and apoptosis assays can be used to 

estimate the drug-induced death rate in at least two ways when incorporating the features 
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that were mentioned above. Here, we describe two different functions (c1 (x,α) and c2 (x,α)) 

in order to accommodate the two different biological data sets that indirectly measure the 

drug-induced death rate as a function of the dose (α) or the trait (x). Each data set supplies 

different pieces of information that are needed to estimate the death rate. Thus, different 

assumptions should be made when using each type of data set. The first type involves data 

that measure the percentage of apoptotic cells for a range of resistance levels. Usually, this 

kind of data is based on different staining of a tumor from a patient treated with a specific 

dose. Thus, the data include information on the death rate as a function of the trait, and can 

be used to infer the dependence of function c(x,α) on the dose. The second type of data set is 

mainly from in vitro experiments. This type of data measures the survival curves for a range 

of drug concentrations for a few cell populations. The data include information on the death 

rate as a function of the dose, and can be used to infer the dependence of function c(x,α) on 

the trait. In general, both functions c1 (x,α) and c2 (x,α) would be expected to be non-

increasing functions of the dose, for a given resistance level. For high doses, the rate is at its 

maximum value, while for low doses, the rate is at its minimum value. Thus, there is a range 

of effective doses that this function of the death rate can meaningfully model and a sigmoid 

function is a very natural function to use in this case. The second variable of the death rate is 

the trait (i.e., resistance level). For a given dose in the effective range, the rate would be 

expected to decrease as a function of the trait. Theoretically, with these two types of data 

and the drug efficacy factors, the drug-induced death rate is illustrated in Fig. 2C–D. Fig. 2C 

demonstrates the case in which this rate can be written as a product of the death rate for a 

typical dose and with the dose response as a decreasing sigmoid. The function in Fig. 2D, in 

contrast, demonstrates a case in which the survival curves are used to describe the function 

c(x,α) as a complex, non-separable dependence. All functions are listed in Supplementary 

Table S2.

Using our model, we estimated the cell density as a function of the dose and duration of a 

treatment (Fig. 2E,F). Our results show, in general, the desired sigmoid response to a drug as 

a function of the dose and describe two factors that are important to the efficacy of a 

treatment, the effective-concentration range and the critical-drug concentration (α*). The 

effective concentration range is the range of drug concentrations where the cell density is 

decreased. It is preferable to have as wide a range as possible. The critical drug 

concentration is the value at which the cell density reaches a threshold for the first time (e.g., 

minimum tumor size that is detectable by the scanning instrument). Clearly, a low threshold 

is preferred. Furthermore, for each death rate (C1 or C2), we compared the cell density for 

two different drugs (Supplementary Fig. S1A, S1C). A more efficient treatment has a wider 

effective-concentration range, a lower critical-drug concentration, and a steeper cell-density 

slope, as occurs with drug 1 in both cases (Supplementary Fig. S1B, S1D).

In addition, during treatment the cell density is shown to be a more complex curve than a 

simple sigmoid curve. The success of a treatment is related to the shape of the corresponding 

density curve. For an example, see the density curves based on treatment of drug 1 vs. drug 

2 in both Supplementary Fig. S1B, D. The density response is a nonlinear function of the 

cell division rate, drug-induced death rate and the density limitation in the effective 

concentrations range. For many drugs, the cell division rate also changes as a function of the 
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dose, with higher doses usually leading to lower division rates. In practice, most drugs that 

cause a decrease in cell division rate also cause a decrease in the death rate. The strategy of 

combining multiple drugs, in which the first drug causes an increase in the death rate and the 

second drug causes a decrease in the cell division rate, may result in a better response, at 

lower drug concentrations.

Heterogeneity arising from both epigenetic and genetic changes

Spontaneous genetic mutations occur infrequently, but some cancer cells have increased 

rates of genetic change for various reasons. For example, in breast cancer, mutation of a 

single gene, Brca2, can lead to increased rates of mutations in other genes (18). The tumor 

microenvironment can also cause genetic changes. As tumors are exposed to repeated cycles 

of hypoxia and reoxygenation, DNA repair pathways are downregulated, thus leading to 

genetic instability (19, 20). Some of the mechanisms that lead to stable genetic changes are 

due to epigenetic alterations. Genome-scale genomic and epigenomic analyses have only 

recently revealed the complexity of the nonlinear relationship between these two types of 

changes and cancer. While genetic mutations alter the sequence of DNA, epigenetic changes 

do not (reviewed in (21, 22)). Yet epigenetic changes can be inherited by causing mutations 

and silencing important genes by methylation (e.g., MGMT, CDKN2B and RASSF1A), 

with a greater rate of epimutations than the rate of spontaneous genetic mutations (21). On 

the other hand, not all epigenetic changes are inherited, so they may lead to relatively rapid 

phenotype switching. In addition, these two types of changes can evolve from different 

causes. Genetic mutations can occur as a result of random processes or may be induced by 

stress (e.g., hypoxia, nutrient starvation, toxic molecules etc.), whereas epigenetic alterations 

are mainly linked to stress. It has also been shown that a central epigenetic control circuit 

can be disrupted by a genetic mutation (22). Clearly, the complexity of genetic and 

epigenetic networks has not yet been fully characterized, though it is clear that the outcome 

largely depends on external stresses. Thus, in the following cases we assume an indirect 

relationship between both networks that is based on an external stress.

Stable changes—The second case considers the possibility of having epigenetic and/or 

genetic stable alterations when cells undergo division. M(y, x) denotes the probability that, 

given an alteration, a mother cell with trait y will yield a daughter cell with trait x. We 

considered M(y, x) to be a Gaussian distribution confined to [0, 1] with mean y and variance 

ε2/2. The variance is one of the most important factors that must be considered, since it 

reflects the impact of an alteration on the global system. Hence, the changes in variance can 

be written as a function of the external stress and time, ε(stress, t). As time progresses, 

different traits become advantageous or disadvantageous, and the overall dynamics are 

determined by various rates, mutation parameters, and the initial distribution of the cells. 

Fig. 3 summarizes several examples of three variances (0 = ε0 < ε2 < ε1) prior to (Fig. 3A) 

and post (Fig. 3B,C) treatment in a given effective dose. From these examples, it is obvious 

that different assumptions cause a divergence in predictions related to heterogeneity, even 

when using a single model. The general trend in these results indicates that mutations/

epimutations (even at low rates) can serve as a diffusion process, over x, since the cells with 

a given trait may spread to an interval of x-values that initially was set to zero. As expected, 

cases with high variation have high stable heterogeneity, whereas small variation slightly 
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changes their dynamic from the non-altered case. All other values and sequences of ε are 

constrained in that range, and affect the time to reach the control state (ε0 = 0).

Temporal changes—In the third case, the additional contribution of the M function is 

only valid for a specific period of time, when certain signals stress the tumor. We studied 

two possible mathematical modifications to system. The first system assumes an 

accumulation of changes that occur with different time scales. Thus, we separate the 

alteration function into two functions. The first type of changes is related to hereditary 

alterations, and it is therefore applied for all time points, and the second type is applied only 

to a limited period of time, since it is based on temporal epigenetic variations (marked as M1 

and M2, respectively). As mentioned above, there is an indirect assumption of interaction 

between the M functions, which is qualitatively expressed by the activity timing of M2 and 

the ε of both functions. We studied the effect of ε, and its variation in each M function, on 

the dynamic with drug for a given dose, c(x). Supplementary Fig. S2 and Table S3 

summarize several examples of different variances for both functions post stress.

These results highlight the tradeoff between changing the alteration rate and the drug 

selection process, which in turn affects the heterogeneity of the cancer cell population. If the 

alteration rate remains low during the entire process, the treatment would be more efficient, 

and the surviving cells would constitute a more homogenous population (Supplementary 

Fig. S2B). Once this selection is achieved, it is recommended that the second treatment 

should be more specifically targeted to the surviving population. However, if the first 

treatment is known to increase the alteration rate, a combination of drugs should be applied 

instead, where one of these drugs (such as a drug that affects pattern of gene expression) 

aims to reduce this rate. On the other hand, if the initial alteration rate is too high and there 

is no effective treatment to reduce it, the model predicts (see Fig. 1A and red curve in 

Supplementary Fig. S2C) that increasing the alteration rate, at the time of treatment, should 

also result in a better response to the selective drug. In any event, at the end of the treatment, 

the rate of alteration must be decreased as much as possible.

The second modification to system [1] includes the temporal epigenetic changes by varying 

the parameters θ and ε based on the external stress (θ (stress, t), ε (stress, t)), with a single M 

function (supplementary material, system (12)). During treatment, the results show that if θ 

increases, with a constant set of parameters, the density decreases but with a similar 

Gaussian shape of distribution. The cell density becomes significantly low when the ε 

reaches a certain level (Supplementary Table S4). A possible biological interpretation for the 

parameterθ, is the percentage of proliferating cancer cells based on stress.

Discussion

Enormous progress has been made in understanding the molecular mechanisms leading to 

cancer, but our perspective on resistance to treatment is still in its infancy. A systems 

approach combines empirical, mathematical, and computational methods to gain an 

understanding of this complex phenomenon. Recent data show that the diverse intratumoral 

heterogeneity is mainly the result of stochastic processes and microenvironment signals. 

Thus, it is important to quantify the resistance levels in a non-discrete manner. Resistance 
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evolves parallel to the progression of cancer. However, not all abnormal changes contribute 

to the resistance level. Hence, the next experimental efforts should incorporate a 

characterization of the intratumoral heterogeneity based on the resistance level, since this 

classification plays key roles in the development of MDR and in modeling such a system.

Here, we have presented a mathematical analysis of the MDR problem with the assumption 

that resistance is induced by adaptation to drug and/or environmental signals in a 

deterministic manner. We have used physiologically structured equations in which a 

continuous variable represents the resistance level. Such a variable may be generated by 

integrating a collection of physiological measurements, as discussed in the introduction. 

Using our model, one can explain how the density plays an important part in the dynamic of 

a tumor. Adding this density dependence results in a different distribution/heterogeneity.

Many observations of heterogeneous tumors have been reported (4), but not all of those 

tumors were sampled after drug treatments (23). Therefore the drug was not necessarily the 

only component that affected the heterogeneity and the alteration rate. This rate varies 

widely across mammalian genomes (24), and this variation has important consequences for 

our understanding of the global evolutionary process, and in particular concerning cancer. 

We have sought to investigate such cases by examining heterogeneity as it relates to 

resistance level and time, where the alteration rate varies over time with or without 

chemotherapeutic treatment and external stress. We assume that the alteration rate could be 

affected by either the treatment or the external stress, but the induced-death rate varies only 

based on the treatment. Certainly, there is a possibility of having a mutation in the apoptosis 

pathway and therefore affecting the induced-death rate, but there is no clear way of 

expressing this rate as a function of the trait.

Our results suggest that treatment acts as a selection process in the effective drug 

concentrations range, while genetic/epigenetic changes act as a diffusion process based on 

different stress signals. In a case with no changes and no treatment, the dynamic is 

determined solely by the cell density, cell division and natural death rates as functions of the 

resistance level. We further examined the effects of two types of mathematical 

modifications. In this model, the resulting dynamic and response are expressed by only three 

main elements: density (ρ (t)), heterogeneity (n(x,t)), and alteration rate (ε).

Thus, the design of a new treatment protocol should also incorporate the individual status 

regarding these variables that should be estimated at the time of diagnosis. The common 

approach for selecting a protocol is to find and target genes that are significantly expressed 

in most cells in that tumor. Successful treatment is determined by the substantial reduction 

in the tumor size. The next obvious questions would be: What will happen with the 

remaining cells? Will these cells evolve into a more aggressive and resistant tumor or not? If 

these cells are low in number, how can we identify them? The model predicts that it is 

recommended to develop/bioengineer a treatment that targets the alteration rate of all cells in 

order to reduce this rate as much as possible before any other treatment, so the heterogeneity 

will not increase over time. In any event, it is predicted that it is better to first treat the small 

subset of cells with high alteration rate, than the bulk of the tumor using a specifically 

targeted therapy but with low alteration rate. If this rate is very high and cannot be affected 
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by external intervention, during treatment it is predicted that the increase in the alteration 

rate increases the spread to other traits that are not necessarily better in their survival; 

therefore, the density decreases and the entire system results in a better response. Increasing 

the alteration rate per se is an extreme approach; therefore, there is a need to bioengineer 

such a modification in a temporary and reversible manner. Another possibility is to increase 

the percentage of cells that could be exposed to alterations. By the end of the treatment, 

there is a need to reduce the alteration rate as much as possible.

Our findings imply that at certain levels of resistance, when the division rate is higher than 

the death rate (including the contribution of the alteration rate), this deterministic approach 

can be applied. It is possible that when the difference between those rates is low and there is 

additional stochastic noise, the stochastic results will differ from the deterministic 

prediction. Also, the study conducted in this paper focused on the role of cell density and 

intratumoral heterogeneity in drug resistance. If several drugs are administered, a full study 

will be required to consider the multidimensional analog in which the resistance level is a 

vector in a space whose dimension is the number of drugs being administered. A complete 

study of this nature is beyond the scope of this paper, as it will require detailed information 

about the cross-reactivity between the various drugs. An alternative approach would be to 

view the level of drug resistance as the magnitude of such a vector of resistance. In this case, 

changing the drug can be modeled by shifting the values of the distributions with respect to 

the trait. A full study addressing these two issues is left for future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heterogeneity arising from the administration of chemotherapeutic drugs, without genetic/

epigenetic changes. A, Rates of cell division, r(x), natural death, d(x), and drug-induced 

death for a given dose, c(x) (see supplementary material for all functions and simulation 

details). All rates are functions of the trait x. The two types of treatments are administered 

separately, where drug 1 is a more effective treatment than drug 2. B, Numerical predictions 

of the net growth (n(x, t)) after a certain time (t=12.5), when no alterations (e.g., mutations) 

occur, with different initial conditions (solid and dashed lines, IC1 vs. IC2). In addition to 

the two treatments, the control (growth without treatment) is also plotted and labeled as C0. 

This plot shows the selection process resulting from treatment with respect to the trait, and 

demonstrates the time scale it would take to develop a fast-growing tumor. C, Initial 

conditions. IC1: n(x,t=0)=1 for all x (solid curves), IC2: n(x≤0.25,t=0)=0 or 

n(x>0.25,t=0)>0 (dashed curves). D–E, Cell density, ρ(t), for the two types of treatments: 

drugs 1–2, with the initial condition of IC1.
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Figure 2. 
Death rate as function of dose and resistance level. Panels A and B represent two common 

types of treatment (dashed and solid curves) for cells with different resistance levels (red 

curves for sensitive cells and blue for resistant cells). The cells may react differently to 

certain drugs. For example, a very toxic drug produces a lower IC50 value (solid vs. dashed 

lines), with a smaller distance between the two curves representing these cells (Δ1 vs. Δ2). 

Also, the slope can demonstrate the response to a treatment, where the steeper slope is the 

desired one (slope1 vs. slope2). Panels C and D show two examples of death rates (c1 (x,α) 

vs. c2 (x,α)), where the heights and gradients of the functions vary according to the type of 

treatment. Panels E and F show the cell density as a function of the dose and duration of a 

treatment for the cases described in panels C and D.
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Figure 3. 
Heterogeneity arising from genetic/epigenetic changes. A, Numerical predictions of the net 

growth (n(x,t)) after a certain time (t=12.5), when no chemotherapeutic drugs were 

administered. The effects of genetic/epigenetic changes act as a diffusion process, where ε0 

= 0, ε1 = 0.01, ε2 = 1 with two initial conditions (solid and dashed lines, IC1 vs. IC2). For all 

simulation details, see supplementary material. The initial conditions are shown in Fig. 1C. 

This graph shows the cases in which the diffusion potentially controls the tumor dynamic 

and its heterogeneity. B–C, Net growth (n(x,t)) plotted at three time points: t1=2.5, t2=5, 

t3=12.5, with initial condition IC1. The administration of the drug takes place over a certain 

period of time (t1<t<t2), for a given dose. These panels demonstrate the effect of varying the 

alteration rates on the dynamic in the presence of anti-cancer drugs (ε1 =0.01 in panel B, ε2 

=1 in panel C).
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