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Abstract

Neuroimaging techniques, such as fMRI, structural MRI, diffusion tensor imaging (DTI), and 

proton magnetic resonance spectroscopy (1H-MRS) have uncovered evidence for widespread 

functional and anatomical brain abnormalities in autism spectrum disorder (ASD) suggesting it to 

be a system-wide neural systems disorder. Nevertheless, most previous studies have focused on 

examining one index of neuropathology through a single neuroimaging modality, and seldom 

using multiple modalities to examine the same cohort of individuals. The current study aims to 

bring together multiple brain imaging modalities (structural MRI, DTI, and 1H-MRS) to 

investigate the neural architecture in the same set of individuals (19 high-functioning adults with 

ASD and 18 typically developing (TD) peers). Morphometry analysis revealed increased cortical 

thickness in ASD participants, relative to typical controls, across the left cingulate, left pars 

opercularis of the inferior frontal gyrus, left inferior temporal cortex, and right precuneus, and 

reduced cortical thickness in right cuneus and right precentral gyrus. ASD adults also had reduced 

fractional anisotropy (FA) and increased radial diffusivity (RD) for two clusters on the forceps 

minor of the corpus callosum, revealed by DTI analyses. 1H-MRS results showed a reduction in 

the N-acetylaspartate/Creatine ratio in dorsal anterior cingulate cortex (dACC) in ASD 

participants. A decision tree classification analysis across the three modalities resulted in 

classification accuracy of 91.9% with FA, RD, and cortical thickness as key predictors. Examining 

the same cohort of adults with ASD and their TD peers, this study found alterations in cortical 

thickness, white matter (WM) connectivity, and neurochemical concentration in ASD. These 

findings underscore the potential for multimodal imaging to better inform on the neural 

characteristics most relevant to the disorder.
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1. Introduction

Autism spectrum disorder (ASD) has been characterized as a disorder of 

neurodevelopmental origin, with widespread abnormalities such as altered cortical anatomy 

(Amaral, Schumann, & Nordahl, 2008; Nickl-Jockschat et al., 2012), abnormal white matter 

(WM) integrity (Travers et al., 2012), altered brain function and connectivity (Anagnostou 

& Taylor, 2011; Kana, Libero, & Moore, 2011; Libero & Kana, 2013; Maximo, Cadena, & 

Kana, 2014; Schipul, Keller, & Just, 2011), increase in the number of neurons (Courchesne, 

Campbell, & Solso, 2011), numerous and smaller cortical minicolumns (Casanova, 

Buxhoeveden, & Brown, 2002; Casanova, Buxhoeveden, Switala, & Roy, 2002; Casanova 

et al., 2006), and alterations in synaptic connections and the organization of neurons within 

cortex (Avino & Hutsler, 2010; Hutsler, Love, & Zhang, 2007; Hutsler & Zhang, 2010; 

Stoner et al., 2014). Such abnormalities point to a complex and multilayered picture of the 

neurobiology of autism. While this may be a true reflection of the multidimensional 

manifestation of the behavioral symptoms of autism, uncovering the neural underpinnings of 

this disorder certainly poses immense challenge to neuroscientists. Previous neuroimaging 

studies have approached this by resorting to different types of imaging techniques, such as 

functional MRI, structural MRI, diffusion tensor imaging (DTI), and proton magnetic 

resonance spectroscopy (1H-MRS), mostly using each modality in isolation resulting in 

significant but not highly consistent findings.

With regard to cortical anatomy, there has been reports of early overgrowth in brain volume 

(Courchesne et al., 2011; Hazlett et al., 2005, 2011; Stanfield et al., 2008), followed by 

abnormal decline and degeneration during adolescence and adulthood (Courchesne et al., 

2011). However, regional volumetric differences found in ASD have been variable with no 

consensus on any single region to be the main culprit. The relatively more consistent 

findings are increased gray matter (GM) volume in frontal, temporal, parietal, and limbic 

areas, decreased WM volume in frontal, temporal, and limbic areas (Chen, Jiao, & 

Herskovits, 2011; Stanfield et al., 2008), and volumetric abnormalities in amygdala, 

hippocampus, corpus callosum, and cerebellum (Brambilla et al., 2003; Stanfield et al., 

2008). Surface based examinations of brain structure in ASD, on the other hand, have 

uncovered alterations in cortical thickness in regions across the entire brain (Chung et al., 

2005; Ecker, Ginestet, et al., 2013; Ecker, Spooren, & Murphy, 2013; Hadjikhani, Joseph, 

Snyder, & Tager-Flusberg, 2006; Hardan, Muddasani, Vemulapalli, Keshavan, & Minshew, 

2006; Hyde, Samson, Evans, & Mottron, 2010; Mak-Fan, Taylor, Roberts, & Lerch, 2012; 

Raznahan et al., 2010; Scheel et al., 2011; Wallace, Dankner, Kenworthy, Giedd, & Martin, 

2010). As cortical thickness and volume are related to dendritic arborization (Huttenlocher, 

1990), myelination (Sowell et al., 2004), and the migration of neurons and organization of 

minicolumns (Rakic, 1988), abnormalities in surface features of cortex in ASD may imply 

significant alterations at cellular and developmental levels. In addition, many of the regions 

implicated are members of a network of brain regions called the social brain, which includes 

Libero et al. Page 2

Cortex. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the amygdala, anterior cingulate cortex, posterior cingulate cortex (PCC), insula, ventral 

striatum, premotor cortex, orbitofrontal cortex, medial prefrontal cortex, fusiform gyrus and 

temporoparietal junction/superior temporal sulcus (Adolphs, 2001, 2009). Function and 

structure of social brain regions are associated with human social cognition, thus 

abnormalities in any of these regions found in individuals with ASD point to potential neural 

underpinnings for the social behavioral deficits seen in ASD.

While volumetric examinations provide valuable information about the neuroanatomical 

organization, it does not address the microstructural aspects of tissues like WM. With 

advanced neuroimaging techniques like DTI, studying the structural integrity of WM in 

disorders like autism has become more promising. Whole brain studies of diffusion in ASD 

have found reduced fractional anisotropy (FA; an index of the directionality of diffusion) 

and increased mean diffusivity (MD; average diffusion in all directions) in overall WM in 

ASD participants (Groen, Buitelaar, Van Der Gaag, & Zwiers, 2011; Shukla, Keehn, 

Lincoln, & Müller, 2010), suggesting significant disturbance in WM integrity across the 

brain. At a finer level, DTI studies in ASD examining specific regions or WM tracts have 

most consistently found reduced FA, indicating alterations in WM tract integrity, in a 

number of tracts including corpus callosum, cingulum bundle, and tracts projecting to the 

temporal lobes, such as the uncinate fasciculus, inferior longitudinal fasciculus, and superior 

longitudinal fasciculus [(A. L. Alexander et al., 2007; Barnea-Goraly et al., 2004; Bloemen 

et al., 2010; Keller, Kana, & Just, 2007; Lee et al., 2007); see (Travers et al., 2012) for a 

review]. These findings indicate significant microstructural abnormalities and alterations in 

the organization of WM fibers in ASD, which may translate into functional impairments in 

brain activation and functional connectivity.

While cortical anatomy and WM fiber orientation provide two different aspects of brain 

organization, the health of individual neurons is yet another factor which determines the 

structural and functional makeup of the brain. 1H-MRS measures tissue metabolite 

concentration, and can be used as an indirect measure of neuronal health and function in 

living tissue (Fayed, Olmos, Morales, & Modrego, 2006; Stanley, 2002). 1H-MRS is applied 

to examine the concentration of specific neurochemicals in the brain, and their potential role 

in disease and treatment. This technique can measure various neurochemicals, including N-

acetylaspartate (NAA; a marker for neuronal and axonal health and density), choline (Cho; 

marking cellular membrane proliferation), glutamate/gluta mine (Glx; measuring glutamate/

glutamine levels), and creatine (Cr; marking energy homeostasis). Previous 1H-MRS studies 

in ASD have found reductions of NAA in both gray and WM in children and adults with 

ASD most consistently (Ipser et al., 2012). These findings suggest significant alterations in 

neurochemicals in certain regions of the ASD brain, specifically pointing to poorer neuronal 

health or possible cellular damage or inflammation.

Thus, neuroimaging evidence coming from cortical morphometry, DTI, and 1H-MRS 

studies in ASD have provided information about alterations in brain structure, WM integrity, 

and neuronal health; yet, these findings span diffuse and spatially distinct brain regions, with 

relatively poor consistency and overlap of results across studies. While heterogeneity among 

individuals with autism may be an important factor driving the inconsistency in findings, 

what's striking is that studies rarely, if ever, have investigated all indices of brain 
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organization (anatomy, WM integrity, and neurochemical concentration) from the same set 

of participants. Therefore, it is difficult to derive a convincing inference that is 

comprehensive and reliable in representing the neuropathology in autism. The current study 

is an attempt to address this gap by using multimodal neuroimaging data from the same 

participants across three modalities of neuroimaging, MRI, DTI, and 1H-MRS. This 

approach is novel and provides a promising venue for understanding the neuropathology of 

autism.

Another objective of this study was to identify patterns across findings from different 

modalities and to apply that knowledge to classify participants into autism and TD control 

groups. Utilizing pattern classification of neuroimaging data, several studies have aimed to 

identify a predictive model for ASD diagnosis. For example, functional brain activation and 

connectivity were used for pattern classification to separate ASD from TD peers (Anderson 

et al., 2011; Coutanche, Thompson-Schill, & Schultz, 2011; Deshpande, Libero, 

Sreenivasan, Deshpande, & Kana, 2013; Kaiser & Pelphrey, 2012; Murdaugh et al., 2012; 

Spencer et al., 2011). A few studies have also applied classification analyses to volumetric 

and surface based structural measures (Akshoomoff et al., 2004; Ecker, Marquand, et al., 

2010; Ecker, Rocha-Rego, et al., 2010; Uddin et al., 2011; Yun Jiao et al., 2010) and DTI 

data (Ingalhalikar, Parker, Bloy, Roberts, & Verma, 2011; Lange et al., 2010) to predict 

ASD group membership. One study has also used a combination of cortical volume and 

thickness measures, along with single-nucleotide polymorphisms (Y Jiao et al., 2011) to 

predict group membership. Thus, accurate and reliable classification of participants with 

autism is a promising step towards the diagnostic utility of such measures. For a 

neurodevelopmental disorder that relies on behavioral diagnosis, an applied neural classifier 

could be helpful, at least in deciding difficult and borderline cases. Attempts at neural 

classifiers thus far have mainly relied on measures of brain function, based on experimental 

tasks, which may be inappropriate for many individuals with ASD, particularly those who 

would be considered low-functioning or young children. ASD has been identified as a neural 

systems disorder with complex neurobiology, and any biomarker will need to be 

multivariate, possibly including several aspects of biology and genetics (Ecker, Spooren, et 

al., 2013). Ultimately, a multimodal technique could become more sensitive to 

symptomatology, which can lead to not only better diagnosis of autism, but also aid in 

designing more tailored interventions. The current study is novel in that it marks the first 

one to examine three neuroimaging modalities (SBM, DTI, and 1H-MRS) in the same 

subjects with ASD, and to apply such measures to a diagnostic classification of autism.

2. Method & materials

2.1. Participants

Nineteen high-functioning adults with ASD (15 males/4 females; mean age: 27.1 years) and 

18 typically developing (TD) peers (14 males/4 females; mean age: 24.6 years) participated 

in this multimodal neuroimaging study (see Table 1 for demographic information). The 

groups were matched on age and IQ. Full-scale IQ (FSIQ), verbal IQ (VIQ), and 

performance IQ (PIQ) were assessed using the Wechsler Abbreviated Scale of Intelligence 

(WASI) (Wechsler, 1999), handedness using the Edinburgh Handedness Inventory 
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(Oldfield, 1971), and ASD symptoms using the Ritvo Autism Asperger Diagnostic Scale-

Revised (RAADS-R) (Ritvo et al., 2011). Age, FSIQ, VIQ, and PIQ were not significantly 

different between groups. The ASD group scored significantly higher on the RAADS-R 

compared to their TD peers (see Table 1). Participants with ASD had received a diagnosis of 

an ASD based on Autism Diagnostic Interview-Revised (ADI-R) (Rutter, Le Couteur, & 

Lord, 2003) symptoms and Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 

2000). TD participants were screened through a self-report history questionnaire to rule out 

neurological disorders, such as ASD, ADHD, or Tourette's Disorder, that could potentially 

confound the results. Several ASD participants reported taking medications, including 

stimulant medication (n =6), antidepressants (n =8), anxiety medication (n=1), and 

antipsychotic medication (n = 1). Eight ASD participants reported no medications, and no 

TD participants reported taking medication. Finally, all participants were reported to be non-

smokers. The study was approved by the Institutional Review Board of our university, and 

all participants provided informed consent for their participation in the study. Structural 

MRI, DTI, and MR spectroscopy data were acquired from all participants. See 

Supplementary Fig. 1 for a flow-chart overview of the procedures involved in multimodal 

neuroimaging method.

2.2. MRI data acquisition & surface based morphometry

MRI images were acquired using a 3T Siemens Allegra head-only scanner (Siemens 

Medical Inc., Erlangen, Germany) housed at the Civitan International Research Center, 

University of Alabama at Birmingham (UAB). Anatomical images have been acquired using 

high resolution T1-weighted scans using a 160 slice 3D MPRAGE volume scan with a TR = 

200 msec, TE = 3.34 msec, flip angle = 12, FOV = 25.6, 256 × 256 matrix size, and 1 mm 

slice thickness. 3D volumes were visually examined by three researchers independently to 

confirm data quality (examining images for significant distortion due to head motion or 

scanner artifact). No participants needed to be excluded due to poor data quality.

Structural images were analyzed using FreeSurfer image analysis suite, which is 

documented and freely available (http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012; Fischl 

& Dale, 2000). The technical details of these procedures can be found in previous 

publications (Dale, Fischl, & Sereno, 1999; Dale & Sereno, 1993; Fischl & Dale, 2000; 

Fischl, Liu, & Dale, 2001; Fischl, Salat, et al., 2004; Fischl, Sereno, & Dale, 1999; Fischl, 

Sereno, Tootell, & Dale, 1999; Han et al., 2006; Jovicich et al., 2006; Ségonne et al., 2004). 

Images undergo skull stripping using a watershed/surface deformation procedure to remove 

non-brain tissue (Ségonne et al., 2004), transformation to Talairach space, segmentation of 

subcortical white and GM structures (Fischl et al., 2002; Fischl, van der Kouwe, et al., 

2004), intensity normalization (Sled, Zijdenbos, & Evans, 1998) in order to correct for MR 

intensity non-uniformity mainly arising from variations in the sensitivity of the reception 

coil and from gradient-driven eddy currents (Sled et al., 1998), tessellation of the GM/WM 

boundaries, automated topology correction (Fischl et al., 2001; Ségonne, Pacheco, & Fischl, 

2007), and surface deformation following intensity gradients to optimally place the gray/

white and gray/CSF borders that most accurately define the transition to the other tissue 

class (Dale et al., 1999; Dale & Sereno, 1993; Fischl & Dale, 2000). Segmented images 

were visually inspected for acceptable segmentation. These images were then inflated and 
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registered to a spherical atlas which separated the cortex into 66 regions of interest (ROI) 

(Desikan et al., 2006; Fischl, Salat, et al., 2004; Fischl, Sereno, et al., 1999). Segmented data 

were then parceled into units based on gyral and sulcal structure, resulting in values for 

cortical thickness, surface area, and volume (Desikan et al., 2006; Fischl, Salat, et al., 2004). 

Cortical thickness measurements as implemented in FreeSurfer have been validated against 

manual measurements (Kuperberg et al., 2003; Salat et al., 2004) and histological analysis 

(Rosas et al., 2002). Previous studies have found FreeSurfer morphometric procedures to 

have sufficient test-retest reliability across scanner manufacturers, field strengths, and other 

imaging parameters (Han et al., 2006; Jovicich et al., 2006; Wonderlick et al., 2009). Groups 

were compared on the resulting cortical thickness values using ANCOVAs conducted using 

SPSS 22.0 software. Age was used as a covariate for all between-group analyses, as well as 

average hemispheric cortical thickness.

2.3. 1H-MRS imaging

Imaging was performed on a 3T head-only scanner (Siemens Allegra, Erlangen, Germany) 

with a circularly polarized transmit/receive head coil. A series of sagittal, coronal, and axial 

T1-weighted anatomical scans were acquired for 1H-MRS voxel placement (gradient-

recalled echo sequence; TR = 250 msec, TE = 3.48 msec, flip angle = 70°, 512 × 512 matrix 

size, 5 mm slice thickness, and 1.5 mm gap). Slices were aligned to anatomical midline to 

control for head tilt. The 1H-MRS voxel for dorsal anterior cingulate cortex (dACC) (20 × 

27 × 10 mm) was positioned around the center of the ACC, identified centrally in the GM 

above the anterior corpus callosum. The 1H-MRS voxel for posterior cingulate cortex (PCC) 

(20 × 27 × 20 mm) was positioned above the splenium of the corpus callosum with the long 

axis parallel to the parietooccipital sulcus. These voxels were placed on the basis of the 

sagittal and coronal images, such that the amount of GM in the voxel as viewed on the T1-

weighted images is maximized. Following manual shimming, to optimize field homogeneity 

across the voxel, water-suppressed spectra were collected with the point-resolved 

spectroscopy sequence (PRESS; TR/TE = 2000/80 msec, 1200 Hz spectral bandwidth, 1024 

points, 128 averages, 4 min 24 sec scanning time).

MRS data were processed in jMRUI (version 5.0) (Naressi et al., 2001). The residual water 

peak was removed using the Hankel-Lanczos singular values decomposition filter 

(Pijnappel, Van den Boogaart, De Beer, & Van Ormondt, 1992). Spectra were quantified in 

the time domain by the AMARES algorithm (advanced method for accurate, robust, and 

efficient spectral fitting) (Vanhamme, van den Boogaart, & Van Huffel, 1997). AMARES is 

a quantification method that has been used to compute the spectral fitting parameters (e.g., 

amplitudes, frequencies, and linewidths for the metabolite peaks). Ratios of NAA, Cho, Cr, 

and Glx, with respect to Cr were calculated using the amplitudes of the time domain signal 

resulting from the AMARES analysis. Cramer-Rao lower bounds (CRLB) were used as a 

measure of uncertainty of the fitting procedure. Inclusion in analyses required ratios to have 

CRLB less than 20%; all participants' ratios were within these limits and were included in 

the final analyses.

High resolution anatomical data were processed using Statistical Parametric Mapping 8 

(SPM8; Wellcome Trust Center for Neuroimaging) in MATLAB version 7.11.0 
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(Mathworks). Each participant's T1-weighted MPRAGE image was segmented into GM, 

WM (WM), and cerebrospinal fluid (CSF) using the segmentation routine in SPM8. Using 

native-space masks, we calculated the total GM, WM, and CSF volumes for the dACC and 

PCC ROI using a script adapted from John's SPM Gems (http://www-personal.umich.edu/

∼nichols/JohnsGems.html) in MATLAB. The GM, WM, and CSF content were obtained in 

order to control for the tissue concentration of our acquired 1H-MRS voxels.

Statistical analyses were performed in SPSS 22.0. 1H-MRS ratios were compared using 

ANCOVA, covarying for age, and GM content.

2.4. DTI

Diffusion weighted images were collected using a single-shot, spin-echo, EPI sequence. A 

diffusion weighted, single-shot, spineecho, echo–planar imaging sequence was used (TR = 

7000 msec, TE = 90 msec, bandwidth = 2790 Hz/voxel, FOV = 220 mm, and matrix size = 

128 × 128 × 27, resulting in an in-plane resolution of 1.7 × 1.7 × 3 mm3). Twenty-seven 3-

mm thick slices were imaged (no slice gap) with no diffusion-weighting (b = 0 sec/mm2) 

and with diffusion-weighting (b = 1000 sec/mm2) gradients applied in 46 orthogonal 

directions. Ninety-two images of each slice by gradient direction combination were acquired 

(two averages) to produce the final diffusion imaging dataset for each participant.

Diffusion images were preprocessed using the mrDiffusion package (Stanford VISTA Lab). 

Through this pipeline, participant head motion and eddy current distortions were removed 

by a 14-parameter constrained non-linear co-registration based on the expected pattern of 

distortions for each phase-encoded direction of the data (Rohde, Barnett, Basser, Marenco, 

& Pierpaoli, 2004). Diffusion weighted images were aligned to the unweighted (b = 0) 

images, and then rigid-body aligned to each subject's anatomical T1 reference image. Data 

were resampled to 2 × 2 × 2 mm3 voxels with a 7th order b-spline interpolation, taking into 

account head motion-correction, eddy-current distortion correction, and anatomical 

alignment transforms (Friston & Ashburner, 2004). The rotation components from the 

alignment steps were combined and applied to correctly orient the respective vectors. 

Finally, the tensor model was fit using a robust least-squares algorithm, and the resulting 

eigenvalues were used to compute FA, MD, radial diffusivity (RD), and axial diffusivity 

(AD) (Basser & Pierpaoli, 1996).

The preprocessed data were analyzed using Automated Fiber Quantification (AFQ) 

(Yeatman, Dougherty, Myall, Wandell, & Feldman, 2012). The data for each participant 

were subjected to whole-brain tractography (using deterministic tractography). The data 

were then segmented into tracts for left thalamic radiation, right thalamic radiation, left 

corticospinal, right corticospinal, left cingulum cingulate, right cingulum cingulate, left 

cingulum hippocampus, right cingulum hippocampus, callosum forceps major, callosum 

forceps minor, left inferior fronto-occipital fasciculus, right inferior fronto-occipital 

fasciculus, left inferior longitudinal fasciculus, right inferior longitudinal fasciculus, left 

superior longitudinal fasciculus, right superior longitudinal fasciculus, left uncinate, right 

uncinate, left arcuate, and right arcuate. The fibers were segmented in two steps: (1) fibers 

are selected if they pass through the waypoint ROIs that define the trajectory of the tract, 

and (2) high probability fibers, after comparison to a fiber probability map, are retained in 
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the group (Hua et al., 2008; Yeatman et al., 2012; Zhang, Olivi, Hertig, van Zijl, & Mori, 

2008). The 20 included fibers were based on the previously defined Mori WM atlas, selected 

due to its high reproducibility in adult WM (Hua et al., 2008; Wakana et al., 2007). Next, 

stray fibers were removed using an algorithm for rejecting statistical outliers, and tract 

properties (FA, RD, MD, and AD) were computed for 100 points along each tract for each 

participant. Norms for each fiber tract were determined using data from TD individuals [see 

(Yeatman et al., 2012) for a more detailed explanation of this method]. For some 

participants, tract properties for specific tracts could not be computed [due to artifact, head 

motion, or qualities (e.g., size or crossing fibers) of the tissue]. Tracts with greater than 10% 

of participants missing data (due to incomplete tractography) were removed from further 

analyses in order to keep the quality of the measures intact. These tracts included the left and 

right cingulum bundles. To compare the ASD and TD groups on FA, RD, MD, and AD, t-

tests were conducted point-wise along each fiber tract for 100 points. A permutation based 

multiple comparison correction was applied to determine statistical significance (Nichols & 

Holmes, 2002), p < .05.

2.5. Decision tree pattern classification and regression

There is emerging consensus that while statistical separability is useful, it is not informative 

for predicting the diagnostic status of an individual subject. Nevertheless, the latter aspect is 

critical for assessing the clinical utility of imaging metrics. Therefore, we employed 

predictive models to examine the utility of multimodal neuroimaging measures for 

forecasting the diagnostic label as well as symptom severity of participants in this study. 

Decision tree is a class of Hierarchical Optimal Discriminant Predictive Models which map 

several input observations into the value of a target variable. When the target variable is 

discrete, the decision tree is referred to as a classification tree and when the target variable is 

continuous, it is referred to as a regression tree. The decision tree is derived by recursively 

partitioning the values of observed variables using top-down induction greedy search 

(Quinlan, 1986). Specifically we used the CART (Classification and Regression Trees) 

algorithm (Barros, Basgalupp, Carvalho, & Freitas, 2011; Loh, 2011) to perform this greedy 

search. The algorithm was initiated with one of the many given variables (FA/RD, CT or 

NAA) as the head node. At each node (including the head node), we determined the variable 

to be tested and the many possible splits of the variable's values. Each possible split yields a 

partition into two child nodes and we chose the partitions which resulted in a tree that 

minimized the weighted sum of the class impurities of each branch of the split. The 

recursion was stopped when further splitting did not improve the prediction. Class impurities 

were determined using the Gini impurity index (Coppersmith, Hong, & Hosking, 1999). 

Decision tree based classification was used for predicting the diagnostic label (TD or ASD) 

of a given subject, while regression was used for predicting autism symptom severity 

(RAADS-R). Leave-one-subject-out cross validation was performed for both regression and 

classification. Many previous studies have demonstrated the efficacy of decision trees for 

applications in MR-based diagnostics (Douglas, Harris, Yuille, & Cohen, 2011; Nair et al., 

2013; Schiffmann & van der Knaap, 2009).

We illustrate decision tree based classification using a toy example. Values of three 

hypothetical variables X1, X2 and X3 were assigned for two classes: Class-1 and Class-2. 
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The variables are analogous to multimodal neuroimaging measures and the classes are 

analogous to groups such as ASD and TD. A 3D scatter plot of the three variables is shown 

in Fig. 1A. The pattern obtained when a decision tree is built on this data is shown in Fig. 

1B. In order to visualize the principle under this decision tree, the data are projected onto 

X1-X3 and X2-X3 planes as shown in Fig. 1C and D, respectively. Fig. 1C illustrates that 

X1 has very little discriminability between the classes. Hence it does not feature in the 

decision tree as it does not minimize class impurity. On the other hand, the decision point of 

X3 < .732 correctly separates examples belonging to Class-1, but for two mis-classifications. 

However, it is not possible to resolve these mis-classifications using information from the 

variable X1. When the X2-X3 projection was examined (see Fig. 1D), it is evident that X3 

< .732 correctly separates examples belonging to Class-1, but for two mis-classifications. 

Critically, it is possible to resolve one of the two mis-classifications using an X2 < .483 

decision point. The process described above is pictorially depicted by the decision tree in 

Fig. 1B. The CART algorithm essentially performs a greedy search in order to arrive at the 

decision tree with least number of mis-classifications. We also performed cross-validation 

so that the decision points are generalizable. This example also illustrates the meaning of the 

directionality shown in the decision tree. Rather than any physiological causal relationship 

between the variables, the directionality simply indicates the order in which the variables are 

considered and usually correspond to the order of importance of the corresponding variables 

for classification. The above example can be easily extended to decision tree based 

regression analyses where in, unlike classification, the target variable is continuous. In 

neuroimaging, a classic way of building a discriminative classification model for data shown 

in Fig. 1A utilizes support vector machines so that a hyper-plane is estimated which 

separates the two groups (Deshpande et al., 2013). Such a hyper-plane would be some linear 

combination of the variables and hence the decision boundary is nonintuitive since we 

understand separation between the classes in terms of each of the distinct variables. The 

decision tree also mirrors the process by which a physician might arrive ata particular 

diagnosis by eliminating alternate possibilities. Further, as shown before, decision trees 

generally perform better than the more popular support vector machines for classification 

(Douglas et al., 2011).

3. Results

3.1. Cortical thickness

Cortical thickness was increased in ASD participants, relative to TD controls, in left caudal 

anterior cingulate cortex [F(2,35) = 5.46, p = .025], left posterior cingulate cortex [F(2,35) = 

5.84, p = .021], left isthmus cingulate cortex [F(2,35) = 7.21, p = .011], left pars opercularis 

aspect of the inferior frontal gyrus [F(2,35) = 4.87, p = .034], left inferior temporal gyrus 

F(2,35)=5.16, p =. 029], and right precuneus [F(2,35)=5.07, p = .03] (See Table 2). Regions 

with reduction in cortical thickness in ASD participants, compared to TD peers, included 

right cuneus [F(2,35)= 4.20, p = .048], and right precentral gyrus [F(2,35) = 5.54, p = .024] 

(See Table 2). It should be noted that these results did not survive multiple comparisons 

correction. Many of these regions are considered to be part of the social brain. These results 

are important given several of these regions have previously been reported as potential 

candidates for a reliable neural marker of ASD (Chiu et al., 2008; Kaiser et al., 2010; 
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Spencer et al., 2011), and also considering their role in mediating the social deficits that are 

hallmark to the disorder.

3.2. Neural metabolite concentration

For the dACC, the mean NAA/Cr ratio for the ASD group was significantly reduced (not 

multiple comparisons corrected) compared to the TD group, while there were no statistically 

significant group differences in Glx/Cr and Cho/Cr ratios (see Table 3). Mean amplitude for 

Cr, which was used as a reference, was not significantly different between the groups (F = 

2.60, p = .11). For the PCC region, metabolite ratios did not significantly differ between the 

groups (see Table 3), and the mean amplitude for Cr was not significantly different between 

groups (F = 1.39, p = .24).

3.3. Diffusion measures

The main finding here is a significant difference in WM connectivity of the forceps minor of 

the corpus callosum, with ASD participants showing significantly reduced FA compared to 

their TD peers on two clusters (p < .05, corrected) (See Fig. 2). Differences in FA occurred 

on two clusters of the forceps minor, one left and one right, towards the middle of each half, 

with no differences in FA in the middle most points of the tract (see Fig. 2 for a graph 

representing mean FA for both ASD and TD groups for the statistically significant cluster on 

the forceps minor). The same two clusters on the forceps minor also showed significant 

increases in RD for the ASD group compared to the TD group (p < .05, corrected). No 

significant differences in FA, RD, MD, or AD emerged between groups for the remaining 19 

tracts after correcting for multiple comparisons.

3.4. Pattern classification: decision tree

Decision trees were generated based on combinations of the data to determine the best 

model for classification of participants by diagnostic group. Three sets of data points (DTI 

measurements, surface based cortical thickness measures, and neurochemical concentration) 

were combined to make two predictions (ASD or TD diagnosis). The data points included 

were the significant resulting values of the statistical analyses of separate neuroimaging 

modalities. The best decision tree model returned a classification accuracy of 91.9% ± .42, 

including RD for the right forceps minor, FA for the left forceps minor, and CT for the pars 

opercularis aspect of the inferior frontal gyrus as the best predictors (see Fig. 3). According 

to the decision tree, when the RD of right forceps minor is high, having higher FA in the left 

forceps minor results in a subject having decreased likelihood of an ASD classification 

while lower FA in the left forceps minor increased the likelihood of an ASD designation 

(see Figs. 3 and 4). Likewise, when the RD cluster is low, having higher CT in left pars 

opercularis of the IFG results in a subject more likely being classified as ASD, with lower 

CT in left pars opercularis reducing one's chance of an ASD classification (see Figs. 3 and 

4).

In order to establish the relationship between the neuroimaging measures and autism 

symptom severity (measured by the RAADS-R), a regression analysis was conducted, 

resulting in a root mean square error for predicting RAADS-R score of 18.72 for all 

subjects. Given that the mean difference in RAADS-R scores between the groups was 83.42, 
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the mean squared error of 18.72 is demonstrating a large predictive effect. Based on the 

decision tree for this model, a number of relationships with symptom severity emerged (see 

Figs. 5 and 6). First, low FA in the left hemisphere cluster of the forceps minor accurately 

predicted higher symptom severity for all subjects. Next, higher symptom severity was 

predicted when the left FA measure was high, but measures of CT for left isthmus cingulate, 

left posterior cingulate, and right cuneus were low, and lower symptom severity was 

predicted when right cuneus CT was higher. Finally, when FA for left forceps minor was 

high, higher cortical thickness for left isthmus cingulate and left posterior cingulate and RD 

for the forceps minor resulted in moderate symptom severity, while low RD for the right 

forceps minor resulted in low symptom severity. See Supplementary Fig. 2 for correlations 

between the significant brain measures from the two classification trees and ASD symptom 

severity.

4. Discussion

The current study examined a cohort of adults with ASD and their TD peers using three 

different neuroimaging techniques, and found alterations in measurements of cortical 

thickness, WM connectivity, and neurochemical concentration in participants with ASD. 

Measures with differences between groups were investigated as potential predictors for 

diagnostic status of participants in a pattern classification analysis. While emphasizing the 

importance of understanding the neurobiology of complex disorders like autism at multiple 

comprehensive levels, our results also provide information about the relative sensitivity of 

these measures in classifying autism from typical individuals.

Surface based brain morphometry results indicated differences between the ASD and TD 

participants in this study. Reduced CT in precentral gyrus and cuneus and increased CT in 

cingulate cortex, IFG, and temporal cortex is in line with previous studies of surface based 

features in ASD (Ecker, Ginestet, et al., 2013; Ecker, Spooren, et al., 2013; Hyde et al., 

2010; Mak-Fan et al., 2012; Wallace et al., 2010). Cortical thickness is an important 

measure of the brain which has anatomical and functional significance, especially to 

cognitive functioning and intelligence (Karama et al., 2009). Differences in CT may also 

reflect alterations in underlying cellular organization, density of neurons, and dendritic 

arborization/synaptic pruning. In postmortem studies of ASD, more numerous, smaller, and 

less compact minicolumns, compared to TD individuals, have been reported within middle 

temporal, superior and middle frontal, and temporoparietal cortices (Casanova, 

Buxhoeveden, et al., 2002; Casanova, Buxhoeveden, Switala, et al., 2002; Casanova et al., 

2006), holding implications for the alterations seen in CT. The DTI finding of significantly 

reduced FA in the forceps minor of the corpus callosum in the ASD group is consistent with 

alterations in FA reported in previous studies of ASD. The forceps minor crosses the genu of 

the corpus callosum and radiates to the lateral and medial sides of prefrontal cortex. 

Previous studies have also found reduced FA (Jou et al., 2011; Keller et al., 2007) and 

increased RD in these regions in autism (Alexander et al., 2007; Ameis et al., 2011). 

Alterations in this tract could potentially affect the communication between the two 

hemispheres in the prefrontal cortex, and in how each side connects to the rest of the brain. 

In addition, the forceps minor may mediate anatomical connections between frontal lobe and 

rostral ACC, and between orbitofrontal cortex and nucleus accumbens (Tadayonnejad, 
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Yang, Kumar, & Ajilore, 2014). Thus, the disruption in the diffusion of this tract can have 

significant consequence in brain connectivity. Our finding of reduced levels of NAA/Cr in 

dACC is in line with previous reports of lower NAA concentration in adults with autism in 

the ACC (Fujii et al., 2010), hippocampal-amygdala formation (Suzuki et al., 2010), and 

frontal, parietal, and occipital cortices (Kleinhans, Schweinsburg, Cohen, Müller, & 

Courchesne, 2007). Reduction in NAA, a neurochemical representing neuronal and axonal 

health and density, can be an indication of disease (Fayed et al., 2006; Maddock & 

Buonocore, 2012; Meyerhoff et al., 1993). Lower NAA level may also reflect alterations in 

soma integrity, the number of axon terminals (Lentz et al., 2005), and/or mitochondrial 

function (Bates et al., 1996; Stork & Renshaw, 2005).

Group differences found across all three neuroimaging modalities in our study point to ASD 

as a complex and multilayered neural disorder, with spatially distinct problems in cortical 

structure, WM integrity, and brain metabolism. It should be noted here that while the 

abnormalities can be seen at multiple levels examinedin this study,itis possible that one or 

more of these, but not all, may be more predictive of the core symptomatology of the 

disorder. Interestingly, the results of our pattern classification analysis are mostly along 

these lines. We found that predictors from DTI and SBM returned the highest classification 

accuracy among the three modalities of imaging (DTI, SBM, and 1H-MRS). In addition, 

higher FA in the left forceps minor decreased the chance of an ASD diagnosis when RD in 

the right forceps minor was high; and lower CT in pars opercularis of the IFG decreased 

one's chance of an ASD diagnosis when coupled with lower RD in the right forceps minor. 

It is certainly possible that the diffusion properties of the forceps minor are linked to CT in 

the left pars oper-cularis, especially considering the anatomical connections of the forceps 

minor with prefrontal cortex and that both measures come from frontal cortex. But it is not 

necessarily the case that they directly influence the anatomical or functional properties of 

one another. More specifically, the directionality in decision trees in classification analysis 

indicates the order in which metrics are considered for the best possible assignment of group 

membership to individual subjects; therefore, the causality indicated by the arrows in 

decision tree figures is information-theoretic rather than physiological.

The group differences in many spatially distinct regions (and across differing modalities) 

may suggest the involvement of several neural processes in ASD (e.g., altered diffusion 

across WM tracts, alterations in metabolic processes in brain cells, and alterations in cortical 

thickness). In the present study, although many differences were found across SBM, 1H-

MRS, and DTI, the classification analysis returned the forceps minor and pars opercularis as 

the most predictive of group membership. This distinction, of which brain measures are 

most predictive of ASD classification, is important considering that many other disorders 

also share altered cortical structure, water diffusion, and brain metabolite concentration. 

Thus, it is critical to investigate which level and type of alterations are specific (or most 

predictive) of ASD. Examining group differences within one modality may not be sufficient 

considering the overlap with other disorders. This is best illustrated from Fig. 4A and B 

where in the number of mis-classified subjects would be much larger if only one of the 

metrics/modalities was considered. The decision tree in Fig. 3 also indicates that a favorable 

value for one of the measures will act as a protective factor against ASD even when another 

metric is unfavorable. This underscores the utility of employing classification using multiple 
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modalities for understanding the etiology of complex neurodevelopmental disorders like 

autism.

While more accurate classification of ASD was made possible by contributions from both 

DTI and SBM, the predictor from 1H-MRS did not contribute the most accurate 

classification model. While these differences may reflect the abnormalities specific to 

individuals or subgroups, some variables may not be sufficient to separate participants for 

diagnostic group membership. In addition, it should be noted that while the diffusion 

measures survived multiple comparison correction, the SBM and 1H-MRS measures did not. 

This is a limitation of the current study (perhaps driven by relatively small sample size). 

This may also explain why the diffusion measures were prominently featured in both 

classification models, while the SBM was to a lesser degree, and the 1H-MRS measures 

were not included at all. However, overall, a multimodal approach returned the highest 

classification percentage, indicative of the potential benefit of including brain measures 

from many systems. Another limitation of the current study is that although high 

classification accuracy of participants was obtained, these results pertain to our sample of 19 

high-functioning individuals. Although our participants were limited to those with normal 

and above average IQ, the brain measures included were advantageous in that they are 

structural and neurochemical in nature, and did not utilize a cognitive task (which would 

make it likely impossible to generalize to lower functioning individuals who may struggle to 

perform cognitive tasks). In order to improve generalizability of these findings, the 

multimodal imaging approach used in this study needs to be applied to a larger sample, to 

lower-functioning individuals, to younger children, and to a larger number of female 

participants. Less reliance on participant input in the measures used in this study, unlike 

fMRI, increases its applicability to classification of younger and lower-functioning patients.

Investigation into the relationship between the predictor variables and symptom severity 

showed relationship between FA for forceps minor and symptom severity, as well as 

combinations of DTI and SBM measures predicting high, moderate, and low symptom 

severity for all participants. Interestingly the DTI and SBM data interacted to mediate 

varying severity of ASD. This suggests different neural systems are related to different 

symptomatology, with perhaps not one modality explaining everything. Also, different 

combinations of variables potentially explain different behavioral outcomes. We found 

measures of CT, FA, and RD together to impact symptom severity. Thus, varying 

combinations of neural abnormalities could account for the heterogeneity in behavioral 

symptoms in ASD. Further research in these lines may aid establishing this relationship, and 

in identifying subgroups of individuals who share similar behavioral and neural profiles. 

Identifying subsets of individuals with differences in DTI, SBM, and 1H-MRS measures 

could lead to interventions that target the specific areas needed and have the most impact. 

This could be most fruitful for a disorder where treatment cannot be one size fits all.

The current study makes a vital contribution to the literature on the neuropathology of ASD, 

with its integrated approach and its application to testing the diagnostic utility of these 

measures. This method could potentially be applied to younger or lower functioning 

individuals in the future, increasing the utility of this approach. The relationship found 

between neural measures and symptoms demonstrate the role of the organization of cortical 
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matter in determining behavior. Future studies should apply multimodal imaging to 

investigate classification and apply such a method to a validation cohort (participants who 

were not included in the analysis determining the predictors to include) to test the validity of 

this method. In addition, applying multimodal neuroimaging classification in younger 

children and lower functioning individuals may likely most benefit from such a technique as 

these methods are task-free. Overall, this study marks a contribution to the literature on 

neural markers of ASD, and is the first one, to our knowledge, to employ three 

neuroimaging modalities together and apply the results to classification of the disorder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) The input feature space for our toy example showing a scatter plot of the three variables 

X1, X2 and X3 for two classes (shown in red and blue); (B) The decision tree obtained for 

the data in the toy example shown in A; (C) A projection of the data in A onto the X1–X3 

plane. The green box corresponds to the feature space for the left arm of the decision tree in 

Fig. 1B, i.e., X3 < .732. It can be seen all that class-1 features (blue) are correctly classified; 

and (D) A projection of the data in A onto the X2-X3 plane. The green box corresponds to 

the feature space for the right arm of the decision tree in Fig. 1B, i.e., X3 < .732 & X2 < .

483 and X3 < .732 & X2 > .483. It can be seen that a class-1 feature (blue) is correctly 

identified for X3 < .732 & X2 < .483 while another class-1 feature (blue) is mis-classified 

along with class-2 features for X3 < .732 & X2 > .483.
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Fig. 2. 
(A) Group means for fractional anisotropy (FA) for the nodes along the forceps minor of the 

corpus callosum for the TD (depicted in blue) and ASD (depicted in green) groups. The 

clusters with significant reduction in FA in ASD participants (p < .05, corrected) are 

indicated with a star; (B) A rendering of FA measurements for the forceps minor of the 

corpus callosum for one subject as a visualization of the tract properties. The tract 

segmentation was based on the previously defined Mori white matter atlas (Hua et al., 2008; 

Wakana et al., 2007).
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Fig. 3. 
Decision tree for classification of autism (ASD) and typically developing (TD) groups, 

including the following predictors: right forceps minor radial diffusivity (RD), left Inferior 

Frontal Gyrus pars opercularis cortical thickness (CT), and left forceps minor fractional 

anisotropy (FA). Classification accuracy reached 91.9% ± .42.
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Fig. 4. 
(A) A projection of the input feature space onto a 2D feature space containing the right 

forceps minor RD and left forceps minor FA as the two axes. The highlighted green box 

indicates the region in the feature space being utilized for classification which corresponds 

to the right side of the decision tree in Fig. 3. Blue indicates TD control participants and Red 

indicates ASD participants. Mis-classified subjects are shown using arrows; (B) A 

projection of the input feature space onto a 2D feature space containing the right forceps 

minor RD and left pars opercularis CT as the two axes. The highlighted box indicates the 

region in the feature space being utilized for classification which corresponds to the left side 

of the decision tree in Fig. 3. Blue indicates TD participants and Red indicates ASD 

participants. Mis-classified subject is shown using an arrow.
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Fig. 5. Decision tree for a regression model including symptom severity scores (measured by 
RAADS-R) and significant factors including left forceps minor fractional anisotropy (FA), 
cortical thickness (CT) for left isthmus cingulate, left posterior cingulate, and right cuneus, and 
radial diffusivity (RD) for right forceps minor
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Fig. 6. Original (blue) and predicted (red) symptom severity (measured by RAADS-R) using a 
regression model including typically developing (TD) and autism (ASD) participants

Libero et al. Page 26

Cortex. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Libero et al. Page 27

T
ab

le
 1

P
ar

ti
ci

pa
nt

 d
em

og
ra

ph
ic

 in
fo

rm
at

io
n

A
ut

is
m

C
on

tr
ol

G
ro

up
 d

if
fe

re
nc

e

N
 =

 1
9

N
 =

 1
8

M
ea

n
R

an
ge

SD
M

ea
n

R
an

ge
SD

t-
va

lu
e

p-
va

lu
e

A
ge

27
.1

19
–4

0
1.

38
24

.6
19

–3
8

1.
22

1.
39

.1
7

V
er

ba
l I

Q
11

3.
7

95
–1

39
3.

15
11

3.
0

88
–1

41
3.

04
.1

5
.8

8

Pe
rf

or
m

an
ce

 I
Q

11
3.

9
89

–1
38

3.
18

11
5.

2
99

–1
33

3.
08

.2
7

.7
8

Fu
ll-

sc
al

e 
IQ

11
5.

4
99

–1
40

2.
88

11
7.

1
10

3–
14

0
2.

73
.4

1
.6

8

R
A

A
D

S 
to

ta
l

12
8.

9
72

–1
81

7.
04

39
.8

13
–7

7
3.

99
10

.8
<

.0
00

1

Cortex. Author manuscript; available in PMC 2016 March 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Libero et al. Page 28

Table 2
Group differences in cortical thickness, comparing TD and ASD adults

Region F-statistic p-value Direction

(1) L Caudal Anterior Cingulate 5.46 .025 ASD > TD

(2) L Posterior Cingulate 5.84 .021 ASD > TD

(3) L Isthmus Cingulate 7.27 .011 ASD > TD

(4) L Pars Opercularis 4.87 .034 ASD > TD

(5) L Inferior Temporal 5.16 .029 ASD > TD

(6) R Cuneus 4.20 .048 TD > ASD

(7) R Precentral 5.54 .024 TD > ASD

(8) R Precuneus 5.07 .030 ASD > TD
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