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Abstract

Most cancers in humans are large, measuring centimetres in diameter, and composed of many 

billions of cells1. An equivalent mass of normal cells would be highly heterogeneous as a result of 

the mutations that occur during each cell division. What is remarkable about cancers is that 

virtually every neoplastic cell within a large tumour often contains the same core set of genetic 

alterations, with heterogeneity confined to mutations that emerge late during tumour growth2–5. 

How such alterations expand within the spatially constrained three-dimensional architecture of a 

tumour, and come to dominate a large, pre-existing lesion, has been unclear. Here we describe a 

model for tumour evolution that shows how short-range dispersal and cell turnover can account 

for rapid cell mixing inside the tumour. We show that even a small selective advantage of a single 
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cell within a large tumour allows the descendants of that cell to replace the precursor mass in a 

clinically relevant time frame. We also demonstrate that the same mechanisms can be responsible 

for the rapid onset of resistance to chemotherapy. Our model not only provides insights into 

spatial and temporal aspects of tumour growth, but also suggests that targeting short-range cellular 

migratory activity could have marked effects on tumour growth rates.

Tumour growth is initiated when a single cell acquires genetic or epigenetic alterations that 

change the net growth rate of the cell (birth minus death), and enable its progeny to outgrow 

surrounding cells. As these small lesions grow, the cells acquire additional alterations that 

cause them to multiply even faster and to change their metabolism to survive better the harsh 

conditions and nutrient deprivation. This progression eventually leads to a malignant tumour 

that can invade surrounding tissues and spread to other organs. Typical solid tumours 

contain about 30–70 clonal amino-acid-changing mutations that have accumulated during 

this multi-stage progression1. Most of these mutations are believed to be passengers that do 

not affect growth, and only ∼5–10% are drivers that provide cells with a small selective 

growth advantage. Nevertheless, a major fraction of the mutations, particularly the drivers, 

are present in 30–100% of neoplastic cells in the primary tumour, as well as in metastatic 

lesions derived from it2,5.

Most attempts at explaining the genetic make-up of tumours assume well-mixed populations 

of cells and do not incorporate spatial constraints6–10. Several models of the genetic 

evolution of expanding tumours have been developed in the past11–14, but they assume 

either very few mutations11,12 or one- or two-dimensional growth13,14. Conversely, models 

that incorporate spatial limitations have been developed to help to understand processes such 

as tumour metabolism15, angiogenesis16,17 and cell migration12, but these models ignore 

genetics. Here, we formulate a model that combines spatial growth and genetic evolution, 

and use the model to describe the growth of primary tumours and metastases, as well as the 

development of resistance to therapeutic agents.

We first model the expansion of a metastatic lesion derived from a cancer cell that has 

escaped its primary site (for example, breast or colorectal epithelium) and travelled through 

the circulation until it lodged at a distant site (for example, lung or liver). The cell initiating 

the metastatic lesion is assumed to have all the driver gene mutations needed to expand. 

Motivated by histopathological images (Fig. 1a), we model the lesion as a conglomerate of 

‘balls’ of cells (see Methods and Extended Data Fig. 1). Cells occupy sites in a regular 

three-dimensional lattice (Extended Data Fig. 2a, b). Cells replicate stochastically with rates 

proportional to the number of surrounding empty sites (non-neoplastic cells or extracellular 

matrix), hence replication is faster at the edge of the tumour. This is supported by 

experimental data (Fig. 1b–d and Extended Data Table 1). A cell with no cancer cell 

neighbours replicates at the maximal rate of b = ln(2) = 0.69 days−1, in which b denotes the 

initial birth rate, equivalent to 24 h cell-doubling time, and a cell that is completely 

surrounded by other cancer cells does not replicate. Cells can also mutate, but we assume all 

mutations are passengers (they do not confer fitness advantages). After replication, a cell 

moves with a small probability (M) to a nearby place close to the surface of the lesion and 

creates a new lesion. This ‘sprouting’ of initial lesions could be due to short-range migration 
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after an epithelial-to-mesenchymal transition18 and consecutive reversion to a non-motile 

phenotype. Alternatively, it could be the result of another process such as angiogenesis 

(Methods), through which the tumour gains better access to nutrients. The same model 

governs the evolution of larger metastatic lesions that have already developed extensive 

vasculature. Cells die with a death rate (d) independent of the number of neighbours, and are 

replaced by empty sites (non-neoplastic cells within the local tumour environment).

If there is little dispersal (M ≈ 0), the shape of the tumour becomes roughly spherical as it 

grows to a large size (Fig. 2a and Supplementary Video 2). However, even a very small 

amount of dispersal markedly affects the predicted shape. For M>0, the tumour forms a 

conglomerate of ‘balls’ (Fig. 2b, Extented Data Fig. 2c and Supplementary Video 3), much 

like those observed in actual metastatic lesions, with the balls separated by islands of non-

neoplastic stromal cells mixed with extracellular matrix. In addition to this remarkable 

change in topology, dispersal strongly affects the growth rate and doubling time of the 

tumour. Although the size (N) of the tumour increases with time (T) from initiation as ∼T3 

without dispersal (Extended Data Fig. 3a, b), it grows much faster (∼exp(const × T) for 

large T) when M>0 (Fig. 2c). This also remains true for long-range dispersal in which M 

affects the probability of escape from the primary tumour into the circulation to create new 

lesions in distant organs (metastasis). Using plausible estimates for the rates of cell birth, 

death and dispersal probability, we calculate that it takes 8 years for a lesion to grow from 

one cell to one billion cells in the absence of dispersal (M = 0), but less than 2 years with 

dispersal (Fig. 2c). The latter estimate is consistent with experimentally determined rates of 

metastasis growth as well as clinical experience, while the conventional model (without 

dispersal) is not.

Non-spatial models point to the size of a tumour as a crucial determinant of 

chemotherapeutic drug resistance19–21. To determine whether a spatial model would 

similarly predict this dependency in a clinically relevant time frame, we calculated tumour 

regrowth probabilities after targeted therapies. We assume that the cell that initiates the 

lesion is susceptible to treatment, otherwise the treatment would have no effect on the mass, 

and that the probability of a resistant mutation is 10−7 (Methods); only one such mutation is 

needed for a regrowth.

Figure 3a shows snapshots from a simulation (Supplementary Video 1) performed before 

and after the administration of a typical targeted therapy at time T = 0. At first, the size of 

the lesion (∼3 mm at T = 0) rapidly decreases, but 1 month later resistant clones begin to 

proliferate and form tumours of microscopic size. Such resistant sub-clones are predicted to 

be nearly always present in lesions of sizes that can be visualized by clinical imaging 

techniques21,22. By 6 months after treatment, the lesions have regrown to their original size. 

The evolution of resistance is a stochastic process—some lesions shrink to zero and some 

regrow (Extended Data Fig. 4a). Figure 3b, c shows the probability of regrowth versus the 

time from the initiation of the lesion to the onset of treatment upon varying net growth rates 

b–d and dispersal probabilities. Regardless of growth rate, the capacity to migrate makes it 

more likely that regrowth will occur sooner, particularly for more aggressive cancers, that is, 

those which have higher net growth rates (Fig. 3b). This conclusion is in line with recent 

theoretical work on evolving populations of migrating cells23. If resistant mutations 
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additionally increase the dispersal probability before or during treatment, regrowth is faster 

(Extended Data Fig. 4b, c).

Having shown that the predictions of the spatial model are consistent with metastatic lesion 

growth and regrowth times, we turn to primary tumours. In contrast to metastatic lesions, 

here the situation is considerably more complex because the tumour cells are continually 

acquiring new driver gene mutations that can endow them with fitness advantages over 

adjacent cells within the same tumour. Our model of a primary tumour assumes that it is 

initiated via a single driver gene mutation that provides a selective growth advantage over 

normal neighbouring cells. Each subsequent driver gene mutation reduces the death rate as d 

= b(1–s)k, in which k is the number of driver mutations in the cell (k ≥ 1), and s is the 

average fitness advantage per driver. Almost identical results are obtained if driver gene 

mutations increase cell birth rather than decrease cell death, or affect both cell birth and cell 

death (Extended Data Fig. 5b); the most important parameter is the fitness gain, s, conferred 

by each driver mutation.

Figure 4a shows that in the absence of any new driver mutations (as for a perfectly normal 

cell growing in utero), clonal subpopulations would be restricted to small, localized areas. 

Each of these areas has at least one new genetic alteration, but none of them confers a fitness 

advantage (they are ‘passengers’). In an early tumour, in which the centre cell contains the 

initiating driver gene mutation, the same structure wouldbe observed—as long as nonew 

driver gene mutations have yet appeared. The occurrence of a new driver gene mutation, 

however, markedly alters the spatial distribution of cells. In particular, the heterogeneity 

observed in normal cells (Fig. 4a) is substantially reduced (Fig. 4b and Supplementary 

Video 5). The degree of heterogeneity can be quantified by calculating the number of 

genetic alterations (passengers plus drivers) shared between two cells separated by various 

distances (Fig. 4d–f). The genetic diversity is markedly decreased (Fig. 4e), even with 

relatively small fitness advantages (s = 1%). This also has implications for the number of 

genetic alterations that will be present in a macroscopic fraction (for example, >50%) of all 

cells. Figure 4f shows that this number is many times larger for s = 1% than s = 0%. 

Furthermore, our model predicts that virtually all cells within a large tumour will have at 

least one new driver gene mutation after 5 years of growth (Extended Data Fig. 5a). The 

faster the clonal expansion occurs (the larger s is), the smaller the number of passenger 

mutations (Extended Data Fig. 5d, e). Our results are also robust to changes to the model 

(Methods and Extended Data Figs 5 and 6). We stress that an important prerequisite for 

limiting heterogeneity is cell turnover in the tumour, because in the spatial setting cells with 

driver mutations can ‘percolate’ through the tumour only if they replace other cells. In the 

absence of cell turnover, tumours are much more heterogeneous (Extended Data Fig. 6d).

In summary, our model accounts for many facts observed clinically and experimentally. Our 

results are robust and many assumptions can be relaxed without qualitatively affecting the 

outcome (Methods and Supplementary Information). Although tumour cell migration has 

historically been viewed as a feature of cancer associated with late events in tumorigenesis, 

such as invasion through basement membranes or vascular walls, this classical view of 

migration pertains to the ability of cancer cells to migrate over large distances24. Instead, our 

analysis reveals that even small amounts of localized cellular movement are able to 
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markedly reshape a tumour. Moreover, we predict that the rate of tumour growth can be 

substantially altered by a change in dispersal rate of the cancer cells, even in the absence of 

any changes in doubling times or net growth rates of the cells within the tumour. Some of 

our predictions could be experimentally tested using new cell labelling techniques25,26. Our 

results could also greatly inform the interpretation of mutations in genes whose main 

functions seem to be related to the cytoskeleton or to cell adhesion rather than to cell birth, 

death, or differentiation27,28. For example, cells that have lost the expression of E-cadherin 

(a cell adhesion protein) are more migratory than normal cells with intact E-cadherin 

expression29, and loss of E-cadherin in pancreatic cancer has been associated with poorer 

prognosis30, in line with our predictions.

Methods

No statistical methods were used to predetermine sample size. Experiments were not 

randomized and investigators were not blinded to allocation during experiments and 

outcome assessment.

Spatial model for tumour evolution

Tumour modelling has a long tradition31. Many models of spatially expanding tumours were 

proposed in the past12–14,16,32–42, but they either assume very few32,34–37,39,41,43–47 or no 

new mutations at all12,15,38,48,49, or one- or two-dimensional growth12,13,32,33,50–52. On the 

other hand, well-mixed models with several mutations6,8,53,54 do not often include space, 

and computational models aimed at being more biologically realistic15,55–61 require too 

much computing resources (time and memory) to simulate realistically large tumours 

(N≈109 cells). Our model builds on the Eden lattice model62 and combines spatial growth 

and accumulation of multiple mutations. Since we focus on the interplay of genetics, spatial 

expansion and short-range dispersal of cells, for simplicity we do not explicitly model 

metabolism14, tissue mechanics, spatial heterogeneity of tissues, different types of cells 

present or angiogenesis16.

A tumour is made of non-overlapping balls (microlesions) of cells. Tumour cells occupy 

sites of a regular 3D square lattice (Moore neighbourhood, 26 neighbours). Empty lattice 

sites are assumed to be either normal cells or filled with extracellular matrix and are not 

modelled explicitly. Each cell in the model is described by its position and a list of genetic 

alterations that have occurred since the initial neo-plastic cell, and the information about 

whether a given mutation is a passenger, driver, or resistance-carrying mutation. A 

passenger mutation does not affect the net growth rate whereas a driver mutation increases it 

by disrupting tight regulation of cellular divisions and shifts the balance towards increased 

proliferation or decreased apoptosis. The changes can also be epigenetic and we do not 

distinguish between different types of alterations. We assume that each genetic alteration 

occurs only once (‘infinite allele model’63). The average numbers of all genetic alterations, 

driver and resistant genetic alterations produced in a single replication event are denoted by 

γ, γd, and γr, respectively. When a cell replicates, each of the daughter cells receives n new 

genetic alterations of each type (n being generally different in both cells) drawn at random 

from the Poisson probability distribution:
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(1)

in which x denotes the type of genetic alteration.

In model A shown in Figs 2–4, replication occurs stochastically, with rate proportional to 

the number of empty sites surrounding the replicating cell, and death occurs with constant 

rate depending only on the number of drivers. We also simulated other scenarios (models B, 

C and D, see below). Driver mutations increase the net growth rate (the difference between 

proliferation and death) either by increasing the birth rate or decreasing the death rate by a 

constant factor 1+s, in which s>0.

Dispersal is modelled by moving an offspring cell to a nearby position where it starts a new 

microlesion (Extended Data Fig. 1a). Microlesions repel each other; a ‘shoving’ 

algorithm64,65 (Extended Data Fig. 1b) ensures they do not merge.

Code availability

The computer code (available at http://www2.ph.ed.ac.uk/∼bwaclaw/cancer-code) can 

handle up to 1 × 109 cells, which corresponds to tumours that are clinically meaningful and 

can be observed by conventional medical imaging (diameter >1 cm). The algorithm is 

discussed in details in the Supplementary Information. It is not an exact kinetic Monte Carlo 

algorithm because such an algorithm would be too slow to simulate large tumours. A 

comparison with kinetic Monte Carlo for smaller tumours (Supplementary Information) 

shows that both algorithms produce consistent results.

Model parameters

The initial birth rate b = ln(2) ≈ 0.69 days−1, which corresponds to a 24 h minimum 

doubling time. The initial death rate d = 0…0.995b depends on the aggressiveness of the 

tumour (larger values = less aggressive lesion). In simulations of targeted therapy, we 

assume that, before treatment, b = 0.69 days−1 and d = 0.5b = 0.35 days−1, whereas during 

treatment b = 0.35 days−1 and d = 0.69 days−1, that is, birth and death rates swap places. 

This rather arbitrary choice leads to the regrowth time of about 6 months, which agrees well 

with clinical evidence. Mutation probabilities are γ = 0.02, γd = 4 × 10−5, γr = 1 × 10−7, in 

line with experimental evidence and theoretical work8,66–68. Since there are no reliable data 

on the dispersal probability M, we have explored a range of values between M = 1 × 10−7 

and 1 × 10−2. All parameters are summarized in Extended Data Fig. 1c, see also further 

discussion in Supplementary Information.

Validity of the assumptions of the model

Our model is deliberately oversimplified. However, many of the assumptions we make can 

be experimentally justified or shown not to qualitatively affect the model.

Waclaw et al. Page 6

Nature. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www2.ph.ed.ac.uk/~bwaclaw/cancer-code


Three-dimensional regular lattice of cells

The 3D Moore neighbourhood was chosen because it is computationally fast and introduces 

relatively fewer artefacts related to lattice symmetries. Real tissues are much less regular 

and the number of nearest neighbours is different69. However, recent simulations of similar 

models of bacterial colonies70,71 show that the structure of the lattice (or the lack thereof in 

off-lattice models) has a marginal effect on genetic heterogeneity.

Asynchronous cell division

Division times of related cells remain correlated for a few generations. However, stochastic 

cell division implemented in our model is a good approximation for a large mass of cells and 

is much less computationally expensive than modelling a full cell cycle.

Replication faster at the boundary than in the interior

Several studies have described a higher proliferation rate at the leading edge of tumours, and 

this has been associated with a more aggressive clinical course72. To estimate the range of 

values of death rate d for our model, we used the proliferation marker Ki67. Representative 

formalin-fixed, paraffin-embedded tissue blocks were selected from four small 

chromophobe renal cell carcinomas and six small hepatocellular carcinomas by the 

pathologist (M.E.P.). A section of each block was immunolabelled for Ki67 using the 

Ventana Benchmark XT system. Around 8–12 images, depending on the size of the lesion, 

were acquired from each tumour. Fields were chosen at random from the leading edge and 

the middle of the tumour and were not necessarily ‘hot spots’ of proliferative activity. Using 

an ImageJ macro, each Ki67-positive tumour nucleus was labelled green by the pathologist, 

and each Ki67-negative tumour nucleus was labelled red. Other cell types (endothelium, 

fibroblasts and inflammatory cells) were not labelled. The proliferation rate was then 

calculated using previously described methods73. Statistical significance of the results was 

determined using a Kolmogorov–Smirnov two-sample test (significance level 0.05). The 

study was approved by the Institutional Review Board of the Johns Hopkins University 

School of Medicine. In all ten tumours, the proliferation rate at the leading edge of the 

tumour was greater than that at the centre by a factor of 1.25 to 6 (Extended Data Table 1). 

Comparing the density of proliferating cells to our model gives d≈0.5b (range: d = 0.17b…

0.8b), which is what we assume in the simulations of aggressive lesions.

Equal fitness of all cells in metastatic lesions

We assume that cells in a meta-static lesion are already very fit since they contain multiple 

drivers. Indeed, studies of primary tumours and their matched metastases usually fail to find 

driver mutations present in the metastases that were not present in the primary lesions2,74, 

although there are notable exceptions, see, for example, refs 75 and 76. Experimental 

evidence in microbes77 and (to a lesser extent) in eukaryotes78 suggests that fitness gains 

due to individual mutations are largest at the beginning of an evolutionary process and that 

the effects of later mutations are much smaller. It remains to be seen how well these results 

apply to late genetic alterations in cancer79 but if true, new drivers occurring in the lesion 

are unlikely to spread through the population before the lesion reaches a clinically relevant 

size.

Waclaw et al. Page 7

Nature. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dispersal

In our model, cells detach from the lesion and attach again at a different location in the 

tissue. This can be viewed either as cells migrating from one place to another one, or as a 

more generic mechanism that allows tumour cells to get better access to nutrients by 

dispersing within the tissue, hence providing a growth advantage over cells that did not 

disperse. Some mechanisms that do not involve active motion (that is, cells becoming 

motile) are discussed below.

Migration

Cancer cells are known to undergo epithelial-to-mesenchymal transition, the origin of which 

is thought to be epigenetic18. This involves a cell becoming motile and moving some 

distance. If the cell finds the right environment, it can switch back to the non-motile 

phenotype and start a new lesion. Motility can be enhanced by tissue fluidization due to 

replication and death80. Instead of modelling the entire cycle (epithelial–mesenchymal–

epithelial), we only model the final outcome (a cell has moved some distance).

Tumour buds

Many tumours exhibit focally invasive cell clusters, also known as tumour buds. Their 

proliferation rate is less than that of cells in the main tumour81. We propose that tumour 

buds contain cells that have not yet completed epithelial-to-mesenchymal transition and 

therefore they proliferate slower.

Single versus cluster migration

Ref. 82 found that circulating cancer cells can travel in clusters of 2–50 cells, and that such 

clusters can initiate metastatic foci. They report that approximately one-half of the 

metastatic foci they examined were initiated by single circulating cancer cells, and that 

circulating cancer cell clusters initiated the other half. The authors also note that the cells 

forming a cluster are probably neighbouring cancer cells from the primary tumour. This 

means that the genetic make-up of cells within a newly established lesion will be very 

similar, regardless of its origin (single cell versus a small cluster of cells). Therefore, the 

ability to travel in clusters should not affect the genetic heterogeneity or regrowth 

probability as compared to single-cell dispersal from our model.

Angiogenesis

We do not explicitly model angiogenesis for two reasons. First, most genetic alterations that 

can either change the growth rate or be detected experimentally must occur at early stages of 

tumour growth as explained before. Hence, the genetic make-up of the tumour is determined 

primarily by what happens before angiogenesis. Second, local dispersal from the model 

mimics tumour cells interspersing with the vascularized tissue and getting better access to 

nutrients, which is one of the outcomes of angiogenesis.

Biomechanics of tumours

Growth is affected by the mechanical properties of cells and the extracellular matrix. We do 

not explicitly include biomechanics (see, however, below), in contrast to more realistic 
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models83,84, as this would not allow us to simulate lesions larger than about 1 × 106 cells. 

Instead, we take experimentally determined values for birth and death rates, values that are 

affected by biomechanics, as the parameters of our model.

Isolated balls of cells

In our simulations, balls of cells are thought to be separated by normal, vascularized tissue 

which delivers nutrients to the tumour. The environment of each ball is the same, and there 

are no interactions between the balls other than mechanical repulsion. This represents a 

convenient mathematical contrivance and qualitatively recapitulates what is observed in 

stained sections of actual tumours (Fig. 1a). We investigated under which circumstances the 

balls of cancer cells would mechanically repel each other; see Extended Data Fig. 7 for a 

graphical summary of the results. We simulated a biomechanical, off-lattice model of 

normal tissue composed of ‘ducts’ lined with epithelial cells and separated by stroma 

(Supplementary Information, section 8). Mechanical interactions between cells were 

modelled using an approach similar to that described previously59,60,85, with model 

parameters taken from refs 59, 60, 85–88. We assumed cancer cells to be of epithelial origin, 

as are most cancers89. Cancer cells that invaded different areas of epithelium grew into balls 

that remained separated by thin slices of stroma (Supplementary Videos 8–11). This 

‘encapsulation’ of tumour microlesions was possible owing to the supportive nature of 

stroma that is able to mechanically resist expansion of balls of cancer cells. Encapsulation is 

essential if the balls are to repel each other. If the tissue is ‘fluidized’ by random replication 

and death, the balls quickly merge (Supplementary Video 12). Another important factor are 

differences in mechanical properties of tumour and normal cells90; it is known that 

differences in cellular adhesion and stiffness promote segregation of different types of 

cells91,92.

In reality, microlesions within the primary tumour are less symmetric and some of them are 

better described as ‘protrusions’ bulging out from the main tumour tissue, owing to 

biomechanical instabilities; see, for example, refs 93, 94. However, stroma may still provide 

enough spatial separation, and the capillary network of blood vessels—either due to tumour 

angiogenesis or preexisting in the invaded tissue—may provide enough nutrients to the 

lesions so that our assumption of independently growing balls of cells remains valid. 

Therefore, we believe that modelling the tumour as a collection of non- or weakly-

interacting microlesions is essentially correct. We also note that the existence of isolated 

balls is not necessary to explain our qualitative results: reduced heterogeneity and increased 

growth in the presence of migration. Supplementary Video 13 shows that even if the tissue 

is homogeneous and highly dynamical and there are no isolated balls of cells, migration 

leads to a considerable speedup of growth as compared to the case with no migration 

(Supplementary Video 14).

Tumour geometry and heterogeneity in the absence of driver mutations

Supplementary Videos 2 and 3 illustrate the process of growth of a tumour with maximally 

N = 107 cells, for M = 0 and M = 10−6, respectively, and for d = 0.5. Extended Data Fig. 2 

shows snapshots from a single simulation for M = 0, N∼103, and d = 0 (no death, Extended 

Data Fig. 2a) and d = 0.9 (Extended Data Fig. 2b). In the latter case, cells are separated by 
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empty sites (normal cells/extracellular matrix). Extended Data Fig. 2c shows that the tumour 

is almost spherically symmetric for M = 0. The symmetry is lost for small but non-zero M, 

and restored for larger M when the balls become smaller and their number increases. 

Extended Data Fig. 2c also shows that metastatic tumours contain many clonal sectors with 

passenger mutations. Extended Data Fig. 8a shows that the fraction G(r) of genetic 

alterations that are the same in two randomly sampled cells (Fig. 4) separated by distance r 

quickly decreases with r, indicating increased genetic heterogeneity owing to passenger 

mutations.

Targeted therapy of metastatic lesions

Models of cancer treatment21,95–100 often assume either no spatial structure or do not model 

the emergence of resistance. We assume that the cell that initiated the lesion was sensitive to 

treatment but its progeny may become resistant. Before the therapy commences, all cells 

have the same birth and death rates, but after the treatment resistant cells continue to 

proliferate with the same rate, whereas susceptible cells are assigned different rates as 

described above. Resistant cells can emerge before and during the therapy. The death rate of 

sensitive cells during treatment is greater than the birth rate, or the tumours would not be 

sensitive to the drug. For example, in Fig. 3 treatment increases the death rate and decreases 

the growth rate of susceptible cells, the growth rate of resistant cells after therapy is identical 

to that of the sensitive cells before treatment, d = 0.5b in the absence of treatment, M = 10−6, 

and treatment begins when the tumour has N = 107 cells.

Note that our model assumes the drug is uniformly distributed in the tumour96; it is known 

that drug gradients can speed up the onset of resistance101.

Supplementary Video 1 and Extended Data Fig. 4a show that, since the process of resistance 

acquisition is stochastic, some tumours regrow after an initial regression, and some do not. If 

only resistant cells can migrate, regrowth is faster (Extended Data Fig. 4b, c). Extended Data 

Fig. 4d–g shows regrowth probabilities Pregrowth for different treatment scenarios not 

mentioned in the main text, depending on whether the drug is cytostatic (btreatment = 0) or 

cytocidal (dtreatment = b), and whether d = 0 or d>0 before treatment. In Extended Data Fig. 

4d, cells replicate and die only on the surface, and the core is ‘quiescent’—cells are still 

alive there but cannot replicate unless outer layers are removed by treatment (Supplementary 

Videos 6 and 7). Pregrowth does not depend on the dispersal probability M at all, and is close 

to 100% for N = 108 cells, a size that is larger than for d>0 (Extended Data Fig. 4f). It can be 

shown that Pregrowth = 1–exp(−γrN). Extended Data Fig. 4e is for the cytostatic drug 

(btreatment = dtreatment = 0); this is also equivalent to the cytocidal drug if the tumour has a 

necrotic core (cells are dead but still occupy physical volume). In this case, Pregrowth 

increases with M because more resistant cells are on the surface for larger M (cells can 

replicate only on the surface in this scenario). Extended Data Fig. 4f, g shows models with 

cell death present even in the absence of treatment (d = 0.9b) but occurring only at the 

surface, unlike in Fig. 3 where cells also die inside the tumour. Death increases Pregrowth 

owing to a larger number of cellular division necessary to obtain the same size, and hence 

more opportunities to mutate.
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Relaxing the assumptions of the model

Figure 4 shows that even a small fitness advantage substantially reduces genetic diversity 

through the process of clonal expansion, see also Supplementary Videos 4 and 5. We now 

demonstrate that this also applies to modified versions of the model, proving its robustness.

Exact values of M and s has no qualitative effect

Extended Data Fig. 8b, e shows that the average number of shared genetic alterations is 

larger in the presence of drivers also in the case of non-zero dispersal (M>0), and its 

numerical value is almost the same as for M = 0 (Fig. 4). Extended Data Fig. 8c, f shows that 

as long as s>0 and regardless of its exact value, driver mutations reduce genetic diversity in 

the tumour compared to the case s = 0. Extended Data Fig. 5a–c shows how many driver 

mutations are expected to be present in a randomly chosen cell from a tumour that is T years 

old. Neither dispersal nor the way drivers affect growth (via birth or death rate) has a 

significant effect on the number of drivers per cell (Extended Data Fig. 5b, c). A small 

discrepancy visible in Extended Data Fig. 5b is caused by a slightly asymmetric way death 

and birth is treated in our model, see the Supplementary Information.

Model B

Cells replicate with constant rate if there is at least one empty neighbour. In the absence of 

drivers, genetic alterations are distributed evenly throughout the lesion (Extended Data Fig. 

6b) but they often occur independently and the number of frequent genetic alterations is low 

(Extended Data Fig. 6e). Drivers cause clonal expansion as in model A.

Model C

Cells replicate regardless of whether there are empty sites surrounding them or not. When a 

cell replicates, it pushes away other cells towards the surface (Supplementary Information). 

Extended Data Fig. 6c, e shows that this again leads to clonal expansion which decreases 

diversity.

Model D

Replication/death occurs only on the surface and the core of the tumour is static. Extended 

Data Fig. 6d shows that driver mutations cannot spread to the other side of the lesion and 

conical clonal sectors can be seen even for s>0. The number of frequent genetic alterations 

is the same for s = 0 and s = 1%, indicating that genetic heterogeneity is not lowered by 

clonal expansion. This demonstrates that cell turnover inside the tumour is very important 

for reducing heterogeneity. To obtain the same (low) heterogeneity as for models a–c, the 

probability of driver mutations must be much larger in model D (Extended Data Fig. 6f).

Drivers affecting M

We investigated three scenarios in which drivers affect (1) only the dispersal probability 

M→(1+q)M, in which q>0 is the ‘migration fitness advantage’ (no change in b, d), (2) both 

M and d, that is, (d, M)→ (d(1–s),(1+q)M) with s, q>0, (3) either M or d, with probability 

1/2. Extended Data Fig. 3c shows that growth is unaffected in cases (1, 3) compared to the 

neutral case. For (2) the tumour growth rate increases significantly when the tumour is larger 
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than N = 1 × 106 cells. This shows that migration increases the overall fitness advantage, in 

line with ref. 102, which shows that fixation probability is determined by the product of the 

exponential growth rate and diffusion constant (motility) of organisms.

Six-site (von Neumann) neighbourhood

We simulated a model in which each cell has only six neighbours (von Neumann 

neighbourhood) instead of 26 (Moore neighbourhood). Extended Data Fig. 9 compares 

models A and C for the two neighbourhoods and show that there is only a small quantitative 

difference in the growth curves for modelA (model C is unaffected), but that the shape of the 

ball of cells deviates more from the spherical one for the six-site neighbourhood, see also 

section 7 in the Supplementary Information.

Extended Data

Extended Data Figure 1. Details of the model
a, A sketch showing how dispersal is implemented: (1) A ball of cells of radius Ri, in which 

the centre is at Xi, is composed of tumour cells and normal cells (blue and empty squares in 

the zoomed-in rectangle (2)). A cell at position xi with respect to the centre of the ball 

attempts to replicate (3). If replication is successful, the cell migrates with probability M and 
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creates a new microlesion (4). The position Xj of this new ball of cells is determined as the 

endpoint of the vector that starts at Xi and has direction xi and length Ri. b, Overlap 

reduction between the balls of cells. When a growing ball begins to overlap with another 

ball (red), they are both moved apart along the line connecting their centres of mass (green 

line) by as much as necessary to reduce the overlap to zero. The process is repeated for all 

overlapping balls as many times as needed until there is no overlap. c, Summary of all 

parameters used in the model. If, for a given parameter, many different values have been 

used in different plots, a range of values used is shown. Birth and death rates can also 

depend on the number of driver mutations, see Methods. Asterisk, parameter estimated from 

other quantities available in the literature.

Extended Data Figure 2. Simulation snapshots
a, b, A few snapshots of tumour growth for no dispersal, and d = 0 (a) and d = 0.9b (b). To 

visualize clonal sectors, cells have been colour-coded by making the colour a heritable trait 

and changing each of its RGB components by a small random fraction whenever a cell 

mutates. The initial cell is grey. Empty space (white) are non-cancer cells mixed with 

extracellular matrix. Note that images are not to scale. c, Tumour shapes for N = 1 × 107, d = 

0.9b, and different dispersal probability M. Images not to scale; the tumour for M = 1 × 10−5 

is larger than the one for M = 0.
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Extended Data Figure 3. Tumour size as a function of time
a, Growth of a tumour without dispersal (M = 0), for d = 0.8b. For large times (T), the 

number of cells grows approximately as const × T3. The tumour reaches size N = 1 × 109 

cells (horizontal line) after about 100 months (8 years) of growth. b, The same data are 

plotted in the linear scale, with N replaced by ‘linear extension’ N1/3. c, Tumour size versus 

time when drivers affect the dispersal probability. In all cases, d = 0.9b, and (1, black) 

drivers increase the dispersal rate tenfold (q = 9) but have no effect on the net growth rate; 

(2, red) drivers increase both the net growth rate (s = 10%) and M; (3, green) drivers either 

(with probability 1/2) increase M tenfold (q = 9) or increase the net growth rate by s = 10%; 

(4, blue) drivers increase only the net growth rate by s = 10%; and (5, black dashed line) 

neutral case with M = 1 × 10−7, which is indistinguishable from (1). In all cases (1–3) the 

initial dispersal probability M = 1 × 10−7. Points represent average value over 40–100 

simulations per data point, error bars are s.e.m.
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Extended Data Figure 4. Simulation of targeted therapy
a–c, The total number of cells in the tumour (black) and the number or resistant cells (red) 

versus time, during growth (T < 0) and treatment (T > 0), for ∼100 independent simulations, 

for d = 0.5b for T<0. Therapy begins when N = 1 × 106 cells. After treatment, many tumours 

die out (N decreases to zero) but those with resistant cells will regrow sooner or later. a, M = 

0 for all cells at all times. b, M = 0 for all cells for T<0 and M = 10−4 for resistant cells for 

T>0. c, M = 0 for non-resistant and M = 10−5 for resistant cells at all times. In all three cases, 

Pregrowth is very similar: 36±5% (mean 6 s.e.m.) (a), 25±4% (b), and 27 ± 6% for (c). d–g, 

Regrowth probability for four treatment scenarios not discussed in the main text. Data points 

correspond to three dispersal probabilities: M = 0 (red), M = 1 × 10−5 (green), and M = 1 × 

10−4 (blue). The probability is plotted as a function of tumour size N just before the therapy 

commences. d, Before treatment, cells replicate only on the surface. Cells in the core are 

quiescent and do not replicate. Therapy kills cells on the surface and cells in the core resume 

proliferation when liberated by treatment. e, As in d, but drug is cytostatic and does not kill 

cells but inhibits their growth. The results for Pregrowth are identical if the drug is cytotoxic 

and the tumour has a necrotic core (cells die inside the tumour and cannot replicate even if 

the surface is removed). f, Before treatment, cells replicate and die on the surface. The core 

is quiescent. Therapy kills cells on the surface (cytotoxic drug). g, As in f, but therapy only 

inhibits growth (cytostatic drug). In all cases (d–g) error bars represent s.e.m. from 8–1,000 

simulations per point.
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Extended Data Figure 5. Accumulation of driver and passenger genetic alterations
a–c, The number of drivers per cell in the primary tumour plotted as a function of time (10–

100 simulations per point, error bars denote s.e.m.). a, M = 0 and three different driver 

selective advantages. For s = 1%, cells accumulate on average one driver mutation within 5 

years. The time can be significantly lower for very strong drivers (s >1%). b, The rate at 

which drivers accumulate depends mainly on their selective advantage and not on whether 

they affect death or birth rate. c, Dispersal does not affect the rate of driver accumulation. d, 
e, The number of passenger mutations (PMs) per cell versus the number of driver mutations 

per cell. More passenger mutations are present for smaller driver selective advantage (d), 

and this is independent of the dispersal probability M(e) in the regime of small M. Data 

points correspond to independent simulations.
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Extended Data Figure 6. Genetic diversity in a single lesion for different models
a–d, Representative simulation snapshots, with genetic alterations colour-coded asin Fig. 4. 

Top: s = 0, bottom: s = 1%. a, Model A from the main text in which cells replicate with rates 

proportional to the number of empty nearby sites. b, Model B, the replication rate is constant 

and non-zero if there is at least one empty site nearby, and zero otherwise. c, Model C, cells 

replicate at a constant rate and push away other cells to make space for their progeny. d, 

Model D, cells replicate/die only on the surface, the interior of the tumour (‘necrotic core’) 

is static. In all cases, N = 1 × 107, d = 0.99b. e, Number of genetic alterations present in at 

least 50% of cells for identical parameters as in a–d. In all cases except surface growth (d), 

drivers increase genetic homogeneity, as measured by the number of most frequent genetic 

alterations. Results averaged over 50–100 simulations, error bars denote s.e.m. f, Model D, 

with γd = 2 × 10−4 instead of 4 × 10−5, that is, drivers occur five times more often. In this 

case, driver mutations arise earlier than in d, and the tumour becomes more homogeneous.
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Extended Data Figure 7. The off-lattice model
a, Summary of all parameters used in the model. Asterisk, typical value, varies between 

different types of tissues; dagger symbol, equivalent to 24 h minimal doubling time; double 

dagger symbol, based on the assumption that macroscopic elastic properties of tissues such 

as liver, pancreases or mammary glands are primarily determined by the elastic properties of 

stroma. b, Simulation snapshot of a normal tissue before the invasion of cancer cells. c, Two 

balls of cancer cells in two nearby ducts repel each other as they grow as a consequence of 

mechanical forces exerted on each other. d, The balls coalesce if growth is able to break the 

separating extracellular matrix. e, If the balls are not encapsulated, they quickly merge. f, 
Isolated balls of cells are not required to speed up growth; migration (left) can cause the 

tumour to expand much faster even if individual microlesions merge together, as opposed to 

the case with no migration (right).
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Extended Data Figure 8. Genetic diversity quantified
a, Tumours are much more genetically heterogeneous in the absence of driver mutations (s = 

0) (see Fig. 4). The plot shows the fraction G(r) of genetic alterations (GAs) shared between 

the cells as function of their separation (distance r) in the tumour. The fraction quickly 

decreases with increasing r. The distance in the figure is normalized by the average distance 

<r> between any two cells in the tumour. For a spherical tumour, <r> is approximately 

equal to half of the tumour diameter. b, Fraction of shared genetic alterations for s = 1% and 

s = 0%, N = 1 × 107, and M = 1 × 10−7. In the presence of drivers, G(r) decays slower, 

indicating more homogeneous tumours. c, The exact value of the selective advantage of 

driver mutations is not important (all curves G(r) look the same, except for s = 0) as long as 

s>0. d–f, Number of genetic alterations present in at least 50% of cells for identical 

parameters as in a–c, correspondingly. Drivers substantially increase the level of genetic 

homogeneity. In all panels the results have been averaged over 30–100 simulations, with 

error bars as s.e.m.
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Extended Data Figure 9. Growth curves for the 26-nearest neighbours (26n, red curves) and the 
6-nearest neighbours (6n, green curves) models
a, Model A (as in the main text), no death. The tumour grows about twice as slow in the 6n 

model. Pictures show tumour snapshots for both models; there is no visible difference in the 

shape. b, Model A, death d = 0.8b. The additional blue curve is for the 6n model, with 

modified replication probability to account for missing neighbours as explained in the 

Supplementary Information. c, Model A, with death d = 0.95b, and drivers s = 5%. There is 

very little difference in the growth curves between the 6n and 26n models. A small 

asymmetry in the shape is caused by faster-growing cells with driver mutations. d, Model C 

(exponential growth). Growth is the same in both 6n and 26n models, but the shape is more 

aspheric for the 6n model. This is probably caused by shifting cells along the coordinate 

axes and not along the shortest path to the surface when making space for new cells. All 

plots show the mean (average over 50–100 simulations) and s.e.m.

Extended Data Table 1
Experimental results for the percentage of proliferating 
cells in the centre versus the edge of solid tumours

Edge Center Ratio center:edge

p-valueCase Tumor type Images KI % Total 
no. 
of 
cells

Images KI % Total 
no. 
of 
cells

1 Chromophobe RCC 8 3.46 1013 3 1.11 2561 0.32 0.05

2 Chromophobe RCC 5 3.07 508 3 1.05 938 0.34 0.28
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Edge Center Ratio center:edge

p-valueCase Tumor type Images KI % Total 
no. 
of 
cells

Images KI % Total 
no. 
of 
cells

3 Chromophobe RCC 5 2.63 524 3 0.44 697 0.17 0.03

4 Chromophobe RCC 7 1.58 581 2 0.53 958 0.34 0.17

5 HCC 7 17.14 892 2 9.74 1637 0.57 0.05

6 HCC 7 51.71 1079 4 32.84 2562 0.64 0.03

7 HCC 6 47.37 435 3 19.97 1397 0.42 0.09

8 HCC 7 19.02 895 4 13.78 1191 0.72 0.35

9 HCC 6 15.09 1074 3 11.98 1094 0.79 0.33

10 HCC 9 29.84 1305 2 20.87 2457 0.70 0.22

Summary

1-4 Chromophobe RCC 25 2.69 --- 11 0.81 --- 0.30 0.00002

5-10 HCC 42 30.0 --- 18 19.1 --- 0.64 0.007

A representative section of each tumour was labelled for the proliferation marker Ki67 (KI), and images of the tumour at 
the leading edge and the centre were acquired as described (Methods). Proliferation is markedly increased at the leading 
edge, and this is statistically significant (‘Summary’, Kolmogorov–Smirnov two-sample test, P < 0.05). The average ratio 
of the number of proliferating cells in the centre/at the edge is 0.50 (range 0.17–0.79). HCC, hepatocellular carcinoma; 
RCC, renal cell carcinoma

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Support from The John Templeton Foundation is gratefully acknowledged. B.W. was supported by the Leverhulme 
Trust Early-Career Fellowship, and the Royal Society of Edinburgh Personal Research Fellowship. I.B. was 
supported by Foundational Questions in Evolutionary Biology Grant RFP-12-17. M.E.P., R.H.H. and B.V. 
acknowledge support from The Virginia and D.K. Ludwig Fund for Cancer Research, The Lustgarten Foundation 
for Pancreatic Cancer Research, The Sol Goldman Center for Pancreatic Cancer Research, and NIH grants 
CA43460 and CA62924.

References

1. Vogelstein B, et al. Cancer genome landscapes. Science. 2013; 339:1546–1558. [PubMed: 
23539594] 

2. Yachida S, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. 
Nature. 2010; 467:1114–1117. [PubMed: 20981102] 

3. Sottoriva A, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary 
dynamics. Proc Natl Acad Sci USA. 2013; 110:4009–4014. [PubMed: 23412337] 

4. Navin N, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011; 472:90–94. 
[PubMed: 21399628] 

5. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion 
sequencing. N Engl J Med. 2012; 366:883–892. [PubMed: 22397650] 

6. Gatenby RA, Vincent TL. An evolutionary model of carcinogenesis. Cancer Res. 2003; 63:6212–
6220. [PubMed: 14559806] 

Waclaw et al. Page 21

Nature. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ. Mathematical modeling of cell 
population dynamics in the colonic crypt and in colorectal cancer. Proc Natl Acad Sci USA. 2007; 
104:4008–4013. [PubMed: 17360468] 

8. Bozic I, et al. Accumulation of driver and passenger mutations during tumor progression. Proc Natl 
Acad Sci USA. 2010; 107:18545–18550. [PubMed: 20876136] 

9. Beerenwinkel N, et al. Genetic progression and the waiting time to cancer. PLOS Comput Biol. 
2007; 3:e225. [PubMed: 17997597] 

10. Durrett R, Moseley S. Evolution of resistance and progression to disease during clonal expansion 
of cancer. Theor Popul Biol. 2010; 77:42–48. [PubMed: 19896491] 

11. González-Garcia I, Sole RV, Costa J. Metapopulation dynamics and spatial heterogeneity in 
cancer. Proc Natl Acad Sci USA. 2002; 99:13085–13089. [PubMed: 12351679] 

12. Thalhauser CJ, Lowengrub JS, Stupack D, Komarova NL. Selection in spatial stochastic models of 
cancer: migration as a key modulator of fitness. Biol Direct. 2010; 5:21. [PubMed: 20406439] 

13. Martens EA, Kostadinov R, Maley CC, Hallatschek O. Spatial structure increases the waiting time 
for cancer. New J Phys. 2011; 13:115014.

14. Anderson ARA, Weaver AM, Cummings PT, Quaranta V. Tumor morphology and phenotypic 
evolution driven by selective pressure from the microenvironment. Cell. 2006; 127:905–915. 
[PubMed: 17129778] 

15. Kim Y, Magdalena AS, Othmer HG. A hybrid model for tumor spheroid growth in vitro 
I:theoretical development and early results. Math Models Methods Appl Sci. 2007; 17:1773–1798.

16. McDougall SR, Anderson AR, Chaplain MA. Mathematical modeling of dynamic adaptive 
tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor 
Biol. 2006; 241:564–589. [PubMed: 16487543] 

17. Hawkins-Daarud A, Rockne RC, Anderson ARA, Swanson KR. Modeling tumor-associated edema 
in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front Oncol. 2013; 
3:66. [PubMed: 23577324] 

18. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP. Genome-scale epigenetic reprogramming 
during epithelial-to-mesenchymal transition. Nature Struct Mol Biol. 2011; 18:867–874. [PubMed: 
21725293] 

19. Komarova NL, Wodarz D. Drug resistance in cancer: principles of emergence and prevention. Proc 
Natl Acad Sci USA. 2005; 102:9714–9719. [PubMed: 15980154] 

20. Bozic I, Allen B, Nowak MA. Dynamics of targeted cancer therapy. Trends Mol Med. 2012; 
18:311–316. [PubMed: 22595628] 

21. Bozic I, Nowak MA. Timing and heterogeneity of mutations associated with drug resistance in 
metastatic cancers. Proc Natl Acad Sci USA. 2014; 111:15964–15968. [PubMed: 25349424] 

22. Turke AB, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. 
Cancer Cell. 2010; 17:77–88. [PubMed: 20129249] 

23. Komarova NL. Spatial interactions and cooperation can change the speed of evolution of complex 
phenotypes. Proc Natl Acad Sci USA. 2014; 111:10789–10795. [PubMed: 25024187] 

24. Talmadge JE, Fidler IJ. AACR Centennial Series: the biology of cancer metastasis: historical 
perspective. Cancer Res. 2010; 70:5649–5669. [PubMed: 20610625] 

25. Alcolea MP, et al. Differentiation imbalance in single oesophageal progenitor cells causes clonal 
immortalization and field change. Nature Cell Biol. 2014; 16:615–622. [PubMed: 24814514] 

26. Weber K, et al. RGB marking facilitates multicolor clonal cell tracking. Nature Med. 2011; 
17:504–509. [PubMed: 21441917] 

27. Bordeleau F, Alcoser TA, Reinhart-King CA. Physical biology in cancer. 5. The rocky road of 
metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. 
Am J Physiol CellPhysiol. 2014; 306:C110–C120.

28. Lawson CD, Burridge K. The on-off relationship of Rho and Rac during integrin-mediated 
adhesion and cell migration. Small GTPases. 2014; 5:e27958. [PubMed: 24607953] 

29. Gall TMH, Frampton AE. Gene of the month: E-cadherin (CDH1). J Clin Pathol. 2013; 66:928–
932. [PubMed: 23940132] 

Waclaw et al. Page 22

Nature. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Winter JM, et al. Absence of E-cadherin expression distinguishes noncohesive from cohesive 
pancreatic cancer. Clin Cancer Res. 2008; 14:412–418. [PubMed: 18223216] 

31. Rodriguez-Brenes IA, Komarova NL, Wodarz D. Tumor growth dynamics: insights into somatic 
evolutionary processes. Trends Ecol Evol. 2013; 28:597–604. [PubMed: 23816268] 

32. Anderson ARA. A hybrid mathematical model of solid tumour invasion: the importance of cell 
adhesion. Math Med Biol. 2005; 22:163–186. [PubMed: 15781426] 

33. Komarova NL. Spatial stochastic models for cancer initiation and progression. Bull Math Biol. 
2006; 68:1573–1599. [PubMed: 16832734] 

34. Lavrentovich MO, Nelson DR. Survival probabilities at spherical frontiers. Theor Popul Biol. 
2015; 102:26–39. [PubMed: 25778410] 

35. Komarova NL. Spatial stochastic models of cancer: fitness, migration, invasion. Math Biosci Eng. 
2013; 10:761–775. [PubMed: 23906148] 

36. Manem VSK, Kohandel M, Komarova NL, Sivaloganathan S. Spatial invasion dynamics on 
random and unstructured meshes: implications for heterogeneous tumor populations. J Theor Biol. 
2014; 349:66–73. [PubMed: 24462897] 

37. Durrett, R.; Foo, J.; Leder, K. Spatial Moran models, II: cancer initiation in spatially structured 
tissue. J Math Biol. 2015. http://dx.doi.org/10.1007/s00285-015-0912-1

38. Gerlee P, Nelander S. The impact of phenotypic switching on glioblastoma growth and invasion. 
PLOS Comput Biol. 2012; 8:e1002556. [PubMed: 22719241] 

39. González-García I, Solé RV, Costa J. Metapopulation dynamics and spatial heterogeneity in 
cancer. Proc Natl Acad Sci USA. 2002; 99:13085–13089. [PubMed: 12351679] 

40. Sehyo CC, et al. Model for in vivo progression of tumors based on co-evolving cell population and 
vasculature. Sci Rep. 2011; 1:31. [PubMed: 22355550] 

41. Torquato S. Toward an Ising model of cancer and beyond. Phys Biol. 2011; 8:015017. [PubMed: 
21301063] 

42. Reiter JG, Bozic I, Allen B, Chatterjee K, Nowak MA. The effect of one additional driver mutation 
on tumor progression. Evol Appl. 2013; 6:34–45. [PubMed: 23396615] 

43. Kansal AR, Torquato S, Harsh GR, Chiocca EA, Deisboeck TS. Simulated brain tumor growth 
dynamics using a three-dimensional cellular automaton. J Theor Biol. 2000; 203:367–382. 
[PubMed: 10736214] 

44. Kansal AR, Torquato S, Chiocca EA, Deisboeck TS. Emergence of a subpopulation in a 
computational model of tumor growth. J Theor Biol. 2000; 207:431–441. [PubMed: 11082311] 

45. Antal T, Krapivsky PL, Nowak MA. Spatial evolution of tumors with successive driver mutations. 
Phys Rev E. 2015; 92:022705.

46. Enderling H, Hlatky L, Hahnfeldt P. Migration rules: tumours are conglomerates of self-
metastases. Br J Cancer. 2009; 100:1917–1925. [PubMed: 19455139] 

47. Sottoriva A, et al. Cancer stem cell tumor model reveals invasive morphology and increased 
phenotypical heterogeneity. Cancer Res. 2010; 70:46–56. [PubMed: 20048071] 

48. Schaller G, Meyer-Hermann M. Multicellular tumor spheroid in an off-lattice voronoi-delaunay 
cell model. Phys Rev E. 2005; 71:051910.

49. Radszuweit M, Block M, Hengstler JG, Schöll E, Drasdo D. Comparing the growth kinetics of cell 
populations in two and three dimensions. Phys Rev E. 2009; 79:051907.

50. Moglia B, Guisoni N, Albano EV. Interfacial properties in a discrete model for tumor growth. Phys 
Rev E. 2013; 87:032713.

51. Foo J, Leder K, Ryser M. Multifocality and recurrence risk: a quantitative model of field 
cancerization. J Theor Biol. 2014; 355:170–184. [PubMed: 24735903] 

52. Poleszczuk J, Hahnfeldt P, Enderling H. Evolution and phenotypic selection of cancer stem cells. 
PLOS Comput Biol. 2015; 11:e1004025. [PubMed: 25742563] 

53. Durrett R, Schmidt D, Schweinsberg J. A waiting time problem arising from the study of multi-
stage carcinogenesis. Ann Appl Probab. 2009; 19:676–718.

54. Spencer SL, Berryman MJ, García JA, Abbott D. An ordinary differential equation model for the 
multistep transformation to cancer. J Theor Biol. 2004; 231:515–524. [PubMed: 15488528] 

Waclaw et al. Page 23

Nature. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1007/s00285-015-0912-1


55. Kim Y, Othmer HG. A hybrid model of tumor–stromal interactions in breast cancer. Bull Math 
Biol. 2013; 75:1304–1350. [PubMed: 23292359] 

56. Ramis-Conde I, Chaplain MAJ, Anderson ARA, Drasdo D. Multi-scale modelling of cancer cell 
intravasation: the role of cadherins in metastasis. Phys Biol. 2009; 6:016008. [PubMed: 19321920] 

57. Swanson KR, et al. Quantifying the role of angiogenesis in malignant progression of gliomas: in 
silico modeling integrates imaging and histology. Cancer Res. 2011; 71:7366–7375. [PubMed: 
21900399] 

58. Taloni A, et al. Mechanical properties of growing melanocytic nevi and the progression to 
melanoma. PLoS ONE. 2014; 9:e94229. [PubMed: 24709938] 

59. Drasdo D, Höhme S. A single-cell-based model of tumor growth in vitro: monolayers and 
spheroids. Phys Biol. 2005; 2:133. [PubMed: 16224119] 

60. Drasdo D, Hoehme S, Block M. On the role of physics in the growth and pattern formation of 
multi-cellular systems: what can we learn from individual-cell based models? J Stat Phys. 2007; 
128:287–345.

61. Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer JP. A multiscale model for avascular tumor 
growth. Biophys J. 2005; 89:3884–3894. [PubMed: 16199495] 

62. Eden, M. A Two-Dimensional Growth Process. Family, F.; Vicsek, T., editors. World Scientific; 
1961. p. 265-283.

63. Hartl, DL.; Clark, AG. Principles of Population Genetics. Sinauer Associates; 1997. 

64. Kreft JU, Booth G, Wimpenny JWT. BacSim, a simulator for individual-based modelling of 
bacterial colony growth. Microbiology. 1998; 144:3275–3287. [PubMed: 9884219] 

65. Lardon LA, et al. iDynoMiCS: Next-generation individual-based modelling of biofilms. Environ 
Microbiol. 2011; 13:2416–2434. [PubMed: 21410622] 

66. Jones S, et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl 
Acad Sci USA. 2008; 105:4283–4288. [PubMed: 18337506] 

67. Wang TL, et al. Prevalence of somatic alterations in the colorectal cancer cell genome. Proc Natl 
Acad Sci USA. 2002; 99:3076–3080. [PubMed: 11867767] 

68. Diaz LA Jr, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in 
colorectal cancers. Nature. 2012; 486:537–540. [PubMed: 22722843] 

69. Honda H, Morita T, Tanabe A. Establishment of epidermal cell columns in mammalian skin: 
computer simulation. J Theor Biol. 1979; 81:745–759. [PubMed: 537395] 

70. Ali A, Somfai E, Grosskinsky S. Reproduction-time statistics and segregation patterns in growing 
populations. Phys Rev E. 2012; 85:021923.

71. Korolev, KS.; Xavier, JB.; Nelson, DR.; Foster, KR. Data from: a quantitative test of population 
genetics using spatio-genetic patterns in bacterial colonies. Dryad Digital Repository. 2011. http://
dx.doi.org/10.5061/dryad.3147q

72. Gong P, Wang Y, Liu G, Zhang J, Wang Z. New insight into Ki67 expression at the invasive front 
in breast cancer. PLoS ONE. 2013; 8:e54912. [PubMed: 23382998] 

73. Ellison TA, et al. A single institution's 26-year experience with nonfunctional pancreatic 
neuroendocrine tumors: a validation of current staging systems and a new prognostic nomogram. 
Ann Surg. 2014; 259:204–212. [PubMed: 23673766] 

74. Jones S, et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl 
Acad Sci USA. 2008; 105:4283–4288. [PubMed: 18337506] 

75. Lindstrom LS, et al. Clinically used breast cancer markers such as estrogen receptor, progesterone 
receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor 
progression. J Clin Oncol. 2012; 30:2601–2608. [PubMed: 22711854] 

76. Voss MH, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and 
extended benefit from mTOR inhibitor therapy. Clin Cancer Res. 2014; 20:1955–1964. [PubMed: 
24622468] 

77. Wiser MJ, Ribeck N, Lenski RE. Long-term dynamics of adaptation in asexual populations. 
Science. 2013; 342:1364–1367. [PubMed: 24231808] 

Waclaw et al. Page 24

Nature. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.5061/dryad.3147q
http://dx.doi.org/10.5061/dryad.3147q


78. White TC. Increased mRNA Levels of ERG16, CDR, and MDR1 correlate with increases in azole 
resistance in Candida albicans isolates from a patient infected with human immunodeficiency 
virus. Antimicrob Agents Chemother. 1997; 41:1482–1487. [PubMed: 9210670] 

79. McGranahan N, et al. Clonal status of actionable driver events and the timing of mutational 
processes in cancer evolution. Sci Transl Med. 2015; 7:283.

80. Ranft J, et al. Fluidization of tissues by cell division and apoptosis. Proc Natl Acad Sci USA. 2010; 
107:20863–20868. [PubMed: 21078958] 

81. LeBleu VS, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in 
cancer cells to promote metastasis. Nature Cell Biol. 2014; 16:992–1003. [PubMed: 25241037] 

82. Aceto N, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer 
metastasis. Cell. 2014; 158:1110–1122. [PubMed: 25171411] 

83. Sciumé G, et al. A multiphase model for three-dimensional tumor growth. New J Phys. 2013; 
15:015005.

84. Charras G, Sahai E. Physical influences of the extracellular environment on cell migration. Nature 
Rev Mol Cell Biol. 2014; 15:813–824. [PubMed: 25355506] 

85. Jiao Y, Torquato S. Diversity of dynamics and morphologies of invasive solid tumors. AIP 
Advances. 2012; 2:011003.

86. Galle J, Loeffler M, Drasdo D. Modeling the effect of deregulated proliferation and apoptosis on 
the growth dynamics of epithelial cell populations in vitro. Biophys J. 2005; 88:62–75. [PubMed: 
15475585] 

87. Chen EJ, Novakofski J, Jenkins WK, O'Brien WD Jr. Young's modulus measurements of soft 
tissues with application to elasticity imaging Ultrasonics, ferroelectrics, and frequency control. 
IEEE Transactions. 1996; 43:191–194.

88. Samani A, Bishop J, Luginbuhl C, Plewes DB. Measuring the elastic modulus of ex vivo small 
tissue samples. Phys Med Biol. 2003; 48:2183. [PubMed: 12894978] 

89. Weinberg, RA. The Biology of Cancer. Garland Science; 2007. 

90. Lekka M, et al. Elasticity of normal and cancerous human bladder cells studied by scanning force 
microscopy. Eur Biophys J. 1999; 28:312–316. [PubMed: 10394623] 

91. Gonzalez-Rodriguez D, Guevorkian K, Douezan S, Brochard-Wyart F. Soft matter models of 
developing tissues and tumors. Science. 2012; 338:910–917. [PubMed: 23161991] 

92. Stirbat TV, et al. Fine tuning of tissues' viscosity and surface tension through contractility suggests 
a new role for α-catenin. PLoS ONE. 2013; 8:e52554. [PubMed: 23390488] 

93. Drasdo D. Buckling instabilities of one-layered growing tissues. Phys Rev Lett. 2000; 84:4244–
4247. [PubMed: 10990656] 

94. Basan M, Joanny JF, Prost J, Risler T. Undulation instability of epithelial tissues. Phys Rev Lett. 
2011; 106:158101. [PubMed: 21568616] 

95. Bozic I, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. Elife. 
2013; 2:e00747. [PubMed: 23805382] 

96. Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in 
solid tumors. Proc Natl Acad Sci USA. 2013; 110:18632–18637. [PubMed: 24167277] 

97. Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol. 2014; 
355:10–20. [PubMed: 24681298] 

98. Goldie JH, Coldman AJ. The genetic origin of drug resistance in neoplasms: implications for 
systemic therapy. Cancer Res. 1984; 44:3643–3653. [PubMed: 6744284] 

99. Coldman AJ, Goldie JH. A stochastic model for the origin and treatment of tumors containing 
drug-resistant cells. Bull Math Biol. 1986; 48:279–292. [PubMed: 3828558] 

100. Coldman AJ, Goldie JH. A model for the resistance of tumor cells to cancer chemotherapeutic 
agents. Math Biosci. 1983; 65:291–307.

101. Greulich P, Waclaw B, Allen RJ. Mutational pathway determines whether drug gradients 
accelerate evolution of drug-resistant cells. Phys Rev Lett. 2012; 109:088101. [PubMed: 
23002776] 

102. Korolev KS, et al. Selective sweeps in growing microbial colonies. Phys Biol. 2012; 9:026008. 
[PubMed: 22476106] 

Waclaw et al. Page 25

Nature. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Structure of solid neoplasms
a, Hepatocellular carcinoma composed of balls of cells (circled in green) separated by non-

neoplastic tissue (asterisk). b, Adjacent section of the bottom tumour in a immunolabelled 

with the proliferation marker Ki67. The edge of the tumour is delineated in red; the centre is 

marked with a green circle. Proliferation is decreased in the centre when compared to the 

edge of the neoplasm. c, d, Higher magnification of the centre (c) and the edge (d) with each 

proliferating neoplastic cell marked by a green dot. The blue nuclei without green dots are 

non-proliferating. The red circle in c demonstrates an example of cells (inflammatory cells) 

that were not included in the count of neoplastic cells. The neoplastic tissue in d is above the 

red line; non-neoplastic (normal liver) is below the red line. Comparison of c with d shows 

that proliferation of neoplastic cells is decreased in the centre as compared to the edge of the 

lesion (quantified in Extended Data Table 1).

Waclaw et al. Page 26

Nature. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Short-range dispersal affects size, shape and growth rate of tumours
a, b, A spherical lesion in the absence of dispersal (M = 0) (a) and a conglomerate of lesions 

(b), each initiated by a cell that has migrated from a previous lesion, for low but non-zero 

migration (M = 10−6). Colours reflect the degree of genetic similarity; cells with similar 

colours have similar genetic alterations. The death rate is d = 0.8b, which corresponds to a 

net growth rate of 0.2b = 0.14 days−1, and N = 107 cells. c, Dispersal (M = 0) causes the 

tumour to grow faster in time. Each point = 100 samples, error bars (too small to be visible) 

are s.e.m. Continuous lines (extrapolation) are 6,000 × 100.43T (green), 1,000 × 100.7T (blue).
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Figure 3. Treatment success rates depend on the net growth rate of tumours
a, Time snapshots before and during therapy (M = 10−6). Resistant subpopulations that 

cause the tumour to regrow after treatment can be seen at T = 1 month. b, c, Probability of 

tumour regrowth (Pregrowth) as a function of time after treatment initiation, for different 

dispersal probabilities (M) and net growth rates of the resistant cells. A higher net growth 

rate (b) leads to a high regrowth probability, so that 50% of tumours regrow 6 months after 

treatment is initiated when M = 10−5. c, Tumours with lower net growth rates require >20 

months to achieve the same probability of regrowth. Number of samples = 1 to 800 per point 

(282 on average). Error bars are s.e.m. See Methods for details.
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Figure 4. Genetic diversity is strongly reduced by the emergence of driver mutations
a –f, For all, M = 0 and the initial net growth rate = 0.007 days−1 (d = 0.99b). The three most 

abundant genetic alterations (GAs) have been colour-coded using red (R), green (G) and 

blue (B) (c). Each section is 80 cells thick. Combinations of the three basic colours 

correspond to cells having two or three of these genetic alterations. a, No drivers—

separated, conical sectors emerge in different parts of the lesion, each corresponding to a 

different clone. b, Drivers with selective advantage s = 1% lead to clonal expansions and 

many cells have all three genetic alterations (white area). d, Genetic diversity can be 

determined quantitatively by randomly sampling pairs of cells separated by distance r and 

counting the number of shared genetic alterations. e, The number of shared genetic 

alterations versus the normalized distance r/<r> decreases much more slowly for the case 

with (red) than without (blue) driver mutations. f, The total number of genetic alterations 

present in at least 50% of all cells is much larger for s = 1% than for s = 0%. Number of 

samples = 50 per data point. Error bars are s.e.m.
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