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Abstract

Spatial normalization—applying standardized coordinates as anatomical addresses within a 

reference space—was introduced to human neuroimaging research nearly 30 years ago. Over these 

three decades, an impressive series of methodological advances have adopted, extended, and 

popularized this standard. Collectively, this work has generated a methodologically coherent 

literature of unprecedented rigor, size, and scope. Large-scale online databases have compiled 

these observations and their associated meta-data, stimulating the development of meta-analytic 

methods to exploit this expanding corpus. Coordinate-based meta-analytic methods have emerged 

and evolved in rigor and utility. Early methods computed cross-study consensus, in a manner 

roughly comparable to traditional (nonimaging) meta-analysis. Recent advances now compute 

coactivation-based connectivity, connectivity-based functional parcellation, and complex network 

models powered from data sets representing tens of thousands of subjects. Meta-analyses of 

human neuroimaging data in large-scale databases now stand at the forefront of computational 

neurobiology.
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INTRODUCTION

Meta-analysis is most generally defined as the post hoc combination of numerical results 

from prior, independent studies. The original (and still most common) use of meta-analysis 

was to pool subsignificant effects from several small studies to determine which effects 

would achieve significance in larger samples (Pearson 1904). In particular, the method was 

developed to predict which adverse events were rare but real drug side effects and which 

were unrelated, random events. Neuroimaging meta-analysis, in contrast, pools statistically 

significant results to further improve predictive power, to build analytic tools and models, 

and to detect emergent properties of neural systems through large-scale data mining and 

computational modeling.

Coordinate-based meta-analysis (CBMA) methods collectively comprise a fairly recent, 

extremely powerful, rapidly evolving family of methods for mining and synthesizing the 

human neuroscience imaging literature. These methods rely on the widespread adoption by 

the neuroimaging research community of whole-brain analysis methods that reference a 

coordinate space, a unique and important accomplishment in its own right. In the earliest 

applications of CBMA, the primary objective was to report consensus locations and spatial 

probability distributions for specific functional areas and for widely used task-activation 

paradigms. The field has rapidly moved beyond this objective, now creating meta-analytic, 

synthetic images; performing experiments by contrasting these synthetic images in new 

ways; modeling the network properties of meta-analytic images; modeling interregional 

functional connectivity from very-large-scale meta-analyses; extracting highly plausible 

cortical parcellation schemes based on coactivation spatial probabilities; and, most recently, 

developing consensus-based functional attributions for regions and networks. In a very 

literal sense, meta-analyses are providing a steadily expanding, progressively enriched, 

potentially limitless consensus statement regarding the brain's structural and functional 

organization. That is, meta-analysis is creating the “collective mind.” A truly remarkable 

feature of these studies is the emergent properties they disclose. Studies that reported solely 

activation locations for a limited number of specific paradigms are being mined to model 

interregional connectivity and connectivity-based regional parcellation. The purpose of this 

review is to introduce the reader to this high-impact, rapidly evolving, highly exciting area 

of research.

COMMUNITY STANDARDS IN NEUROIMAGING

The neuroimaging community enjoys the enviable status of having developed analytic and 

reporting standards that not only provide excellent per-study sensitivity, but also enable a 

growing repertoire of spatial meta-analytic methods. The core analytic standards of the field 

are spatial normalization (coordinate-based anatomy) (see sidebar, Spatial Normalization), 

statistical parametric imaging, and local-maxima extraction.

Spatial Normalization

Spatial normalization is the most fundamental analytic standard underlying neuroimaging 

meta-analysis. The first human atlas that referenced a standardized, stereotaxic coordinate 

space was created by Jean Talairach, a French neurosurgeon and pioneer of quantitative 
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human brain mapping. Talairach published a series of stereotactic atlases, the first of which 

(Talairach et al. 1967) reported functional locations (from electrical cortical stimulation) and 

structural boundaries (from pneumoencephalography) in standardized coordinates. Talairach 

was also the first person to describe the human brain in terms of functional and structural 

“probability distributions” (Talairach et al. 1967). The most widely used template is the 

Talairach & Tournoux (1988) atlas, produced specifically for image-based registration. The 

origin of Talairach's x-y-z coordinate space is the anterior commissure through which three 

orthogonal planes are oriented. The principal axis is the line connecting the anterior and 

posterior commissures (AC–PC line: the y axis). The remaining two axes are the x (right–

left) and the z (superior–inferior).

The first algorithm for spatial normalization of tomographic brain images was a nine-

parameter affine transformation published by Fox et al. (1985), with the goal of “facilitating 

direct comparison of experimental results from different laboratories” (p. 149), i.e., in 

anticipation of CBMA. Shortly thereafter, Fox and colleagues introduced functional-image 

averaging, which applied spatial standardization to combine images across subjects, 

decreasing image noise and improving the signal-to-noise ratio (Fox et al. 1988, Fox & 

Mintun 1989). Since that time, methods have steadily improved, expanding to nonaffine 

transformations including deformation field methods, which compute a unique warping 

vector for each image voxel (Toga 1998). Averaging functional images in standardized 

space is now the norm in human neuroscience imaging; tens of thousands of studies have 

been reported according to this convention (Fox 1995b).

Statistical Parametric Maps

Statistical parametric maps (SPMs) or statistical parametric images (SPIs) are 3-D arrays of 

group-wise statistical parameters computed from primary (“raw”), per-subject neuroimaging 

data. The original and still most widely reported type of SPM is computed from functional 

imaging data. SPMs can be generated from various types of functional imaging data, 

including H2
15O positron emission tomography (PET) and functional magnetic resonance 

imaging (fMRI). PET, the original SPM data source, is now rarely used, having been 

replaced by fMRI.

To generate functional SPMs, functional images are acquired under contrasting behavioral 

conditions that induce different brain activity patterns. Raw images are converted point-by-

point (voxel-by-voxel) into images of statistical parameters that express the strength and 

consistency of the task-induced changes relative to an error term. Prior to the introduction of 

SPIs, analysis of functional images relied on regions of interest (ROIs), which sampled the 

data space in a predefined manner. Brain activations, however, can be quite discrete. Small 

errors in ROI placement can make large differences in the magnitude and statistical 

significance of observed effects. SPIs process the entire data matrix, allowing all task-

induced changes to be detected. Thus, SPIs increase both the power and the objectivity of 

functional image analysis. Statistical parametric imaging was introduced to human brain 

mapping by Fox and colleagues (Fox et al. 1988, Fox & Mintun 1989). Friston and 

colleagues (1991, 1995) extended this image-analysis strategy to include multi-condition 

contrasts and computation of a wide range of statistical parameters, coining the term 
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statistical parametric mapping. Correction for multiple comparisons (i.e., for the number of 

voxels tested) using Gaussian random field theory was a crucial additional advance. The 

SPM software packages, distributed by the Wellcome Trust Center for NeuroImaging 

(http://www.fil.ion.ucl.ac.uk), have been enormously influential and are among the most 

widely used worldwide.

Voxel-based morphometry (VBM) is the application of this same basic voxel-wise SPM 

strategy to high-resolution structural images to detect between-group anatomical differences 

(Ashburner & Friston 2000). Because the contrast computed (subtraction performed) is 

between-subjects, it does not have the advantage of within-subject task-control contrast (to 

eliminate background structure) permitted by functional SPM/SPI analyses. Without this 

within-subject control (used to eliminate background signal), VBM is intrinsically noisy and 

generally requires larger sample sizes to obtain significant effects and has a high false-

positive rate. These limitations, however, make VBM even more likely to derive benefit 

from meta-analysis.

Local Maxima

As detected by SPM/SPI analysis, task-induced changes in brain activity or between-group 

differences in brain anatomy most often take the form of foci that are strongest (biggest 

effect size and most significant) at the center and fall off in an approximately Gaussian 

manner. A concise means of describing the location of an activated volume was necessary 

for analysis and publication. Fox and colleagues (1986, 1987) proposed that an area of 

activation could be viewed as a local maximum, the centroid of which could be estimated 

using a 3-D center-of-mass (COM) algorithm. Although it was new to brain imaging, this 

strategy had been known to astronomers for centuries as “vernier acuity” and to vision 

scientists for decades as “hyperacuity” (Fox et al. 1986). As applied to PET images with a 

spatial resolution (full-width at half maximum) of 1.8 cm, the spatial precision of hyperacute 

response localization was shown to be submillimeter (Mintun et al. 1989). This somewhat 

startling spatial precision argued strongly that response coordinates are a very valuable 

parameter to report and, subsequently, to compile in databases and to meta-analyze.

Current convention is to publish the locations of activation sites as the x-y-z coordinates of 

the COM or (less accurately) the peak voxel of each local maximum (or minimum). 

Additional data provided typically include the peak value of the statistical parameter 

forming the cluster (e.g., peak z value), the p-value of the peak voxel, the extent of the 

cluster (mm3) when thresholded to some p or z level, and various anatomical (e.g., 

hemisphere, lobe, gyrus) or functional (e.g., primary motor cortex) descriptors. The most 

widely used anatomical descriptors are hierarchical, volumetric labels that reference the 

1988 Talairach atlas (Lancaster et al. 2000). An absolute requirement for inclusion of data in 

CBMA is that results are reported as COM (or peak voxel) addresses of local maxima 

detected in spatially standardized SPM/SPIs.

Data Volume

Papers following the above-described standards began appearing in the mid-1980s. Since 

then, the rate of publication has steadily risen. In 2005, we estimated the standards-
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compliant functional imaging literature to be no fewer than 4,000 articles (~16,000 

experiments) with ~500 new articles (2,000 experiments) published per year (Fox et al. 

2005a). As of 2007, Derrfuss & Mar (2009) estimated the conforming functional literature to 

be ~5,800 papers, with ~1,000 new conforming papers being published each year. The 

conforming literature now appears to be growing at a rate of more than 2,000 papers per 

year and likely exceeds 20,000 papers. With such a large volume of well-standardized data, 

the field of human neuroimaging provides uniquely fertile ground for meta-analysis.

Template Troubles

CBMA relies on the comparability of coordinates across studies. Satisfying this requirement 

does not mean that all studies must use the same brain template or the same normalization 

algorithm. Rather, it means that transforms capable of accurately converting between 

templates must be available, ideally validated prior to release of a new template. To correct 

some shortcomings of the Talairach & Tournoux (1988) atlas as a warping template, 

investigators at the Montreal Neurologic Institute (MNI) released a series of structural-MRI-

derived templates created as averages of multiple subjects, seeking to create a template 

representative of a group rather than of an individual (reviewed in Evans et al. 2012). 

Unfortunately, the process used to create the template altered the origin and orientation 

(relative to the AC–PC standard) and expanded the brain size beyond the normal range, 

deviations which were not corrected prior to release. Compounding the problem, the 

discrepancies were not reported when the templates were released. Consequently, 

coordinates from studies using MNI templates (in MNI Space) did not correspond to 

coordinates or anatomical labels referenced to the Talairach space, although users (and 

reviewers and editors) were largely unaware of this discrepancy. When those in the field 

became aware of the problem, unvalidated (and ineffective) corrective transforms were 

made available online and variably applied, worsening the field's collective state of 

coordinate confusion. For a field at the forefront of computational biology, these were 

extremely unfortunate missteps. Eventually, Lancaster et al. (2007) quantified and corrected 

the discrepancies. The impact of these discrepancies on meta-analysis was quantified by 

Laird et al. (2010), specifically endorsing the use of Lancaster's transforms to move from 

MNI Space to Talairach Space or vice versa. Despite these efforts, the negative impact of 

coordinate confusion on database curation and meta-analysis is not fully resolved.

DATABASE DEVELOPMENT

Neuroimaging databases can be classified by the level of processing the data sets have 

received and the number of subjects per data set. Primary data set repositories contain per-

subject images that typically have been processed to remove artifacts but not to compute 

statistical effects. At the other extreme are coordinate-data repositories, which share reduced 

data (tables of coordinates) extracted from SPMs computed from groups of subjects. An 

intermediate option is to provide group-wise SPMs as image volumes, i.e., without reduction 

to COM coordinates. The advantages and disadvantages of managing and utilizing each data 

type fall beyond the scope of this review, which is focused on meta-analyses of reported 

coordinates.
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Coordinate Data Databases

BrainMap® (Fox et al. 1994; Fox & Lancaster 1994, 2002) was the first online database of 

neuroimaging results. BrainMap was initially created as a personal compilation (a 

spreadsheet) of brain-activation results in standardized coordinates from published and pilot 

(unpublished) studies carried out by Fox and colleagues using H2
15O PET in the laboratory 

of Marcus Raichle and Michel Ter-Pogossian. Funded in 1988 by the J.S. McDonnell 

Foundation, BrainMap was unveiled in November 1992, at the first of seven BrainMap 

workshops (Gibbons 1992). From the outset, the BrainMap strategy aimed to provide 

coordinate-based results linked to experimental meta-data—emphasizing experimental 

designs and behavioral conditions—to enable coordinate-based meta-analysis (Fox & 

Lancaster 1994). One of the core conceptual developments was the BrainMap coding 

scheme, a taxonomy of experimental design that provides meta-data descriptors intended not 

simply for retrieval of like studies but also for data-driven inferences concerning the 

functional properties of specific brain regions and networks (Fox et al. 1994). The BrainMap 

taxonomy has continued to evolve as the field has matured, with various conceptual 

validations (Fox et al. 2005b). The BrainMap taxonomy has also helped inform comparable 

taxonomies for primary, raw data repositories (Turner & Laird 2011).

At BrainMap's inception, the developers’ intent was for it to be a community-curated 

database. It quickly became clear that community curation was antithetical to quality 

control. Thus, the model evolved to encourage submission of data sets coded in BrainMap 

terms using software available at http://www.BrainMap.org, but all papers would be 

reviewed and edited by the BrainMap development team. Community members most active 

in submitting papers for entry are those in the process of performing a meta-analysis, which 

is symbiotic because it results in a peer-reviewed publication citing the resource (Laird et al. 

2005b). At the time of this writing, BrainMap contained 11,103 functional-imaging 

experiments (88,000 coordinates) from 2,336 peer-reviewed publications and contained 

2,444 structural-imaging experiments (16,311 coordinates) from 796 publications.

Derrfuss & Mar (2009) argued that a comprehensive database of the neuroimaging literature 

was a highly desirable objective and opined that the best way to achieve this objective was 

in a commercial, subscription-based publication format. Although both points are likely 

correct, neither has been realized. As an alternative, Neurosynth was created as an online, 

open-source, uncurated resource that automatically extracts coordinates from neuroimaging 

articles for meta-analysis (Yarkoni et al. 2011). Rather than use manual coding (à lá 

BrainMap), Neurosynth uses text-mining and machine-learning techniques to provide 

frequency-based weightings for behavioral and cognitive terms appearing in the coordinate-

containing articles. These weightings are used to drive meta-analyses that can be performed 

directly from the Neurosynth web-interface, an offline computation in the BrainMap model. 

At time of writing, Neurosynth contained 5,809 studies (see Related Resources).

Primary Data Databases

Progress toward open sharing of primary (per-subject) experimental neuroimaging data (a 

community objective dating back to the late 1980s) has been slow, limited by the variability 

among sites in instrumentation and data-acquisition parameters, by the sheer size of the data 
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sets, by patient confidentiality issues, and by the desire of investigators to protect their 

invested effort (and grant money) by maintaining access control. Despite these barriers, 

large, primary data sets are becoming steadily more accessible. The International 

Consortium for Brain Mapping (ICBM) was a pioneer in this effort (Mazziotta et al. 1995); 

ICBM data are still being actively downloaded. The Alzheimer's Disease Neuroimaging 

Initiative (ADNI; Butcher 2007) is a similarly managed, disease-specific initiative. A 

common data-sharing model is to provide open access to online descriptions of available 

data, with comprehensive access being managed by an oversight committee.

COORDINATE-BASED META-ANALYSIS

As indicated above, the traditional use of meta-analysis was to achieve statistical 

significance across studies for effects that failed to achieve significance in individual 

studies. In neuroimaging, however, the primary use of meta-analysis has been to synthesize 

the published literature (of significant results) to compute consensus effects and, thereby, 

place constraints on the interpretation, design, and analysis of subsequent studies (Fox et al. 

1998). The first neuroimaging meta-analyses were reported in the context of primary data. 

That is, coordinates from extant reports were tabulated and plotted to constrain 

interpretations of new, primary data (Frith et al. 1991). Shortly thereafter, stand-alone 

neuroimaging meta-analyses began to appear (Tulving et al. 1994, Fox 1995a, Picard & 

Strick 1996), serving as quantitative reviews and for hypothesis generation. Although the 

first neuroimaging meta-analyses were statistically informal, this soon changed.

Functional Volumes Modeling

Anticipating the long-term impact of quantitative meta-analysis, Fox, Lancaster, and 

colleagues launched the BrainMap database in advance of (but hoping to stimulate) the 

invention of suitable meta-analytic algorithms. The first step in the evolution of quantitative 

CBMA tools was taken by Paus (1996), who computed and interpreted means and standard 

deviations of the x-y-z addresses in a review of studies of the frontal eye fields. This 

initiative was extended by correcting raw estimates of spatial location and variance for 

sample size to create scalable models of location probabilities [functional volumes models 

(FVM)] and to suggest uses of such models for data analysis (Fox et al. 1997, 1999, 2001). 

A specific limitation of FVM was that users needed to select responses that should be 

grouped, based on expert knowledge of the tasks performed and the region being studied. 

Although the models produced could be used by nonexperts, creating the models required 

considerable expertise.

Activation Likelihood Estimation

Activation likelihood estimation (ALE) (Turkeltaub et al. 2002) (Figure 1) and related 

algorithms (Chein et al. 2002, Wager et al. 2003) moved CBMA a quantum leap forward. 

ALE input data are activation-location coordinates from conceptually related studies (e.g., 

all Stroop tasks). ALE models the uncertainty in localization of activation foci using 

Gaussian probability density distributions. The voxel-wise union of these distributions yields 

the ALE value, a voxel-wise estimate of the likelihood of activation, given the input data. As 

with FVM, a great advantage of ALE is that the tables of coordinates routinely reported by 
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neuroimaging studies are its input data: Raw data are not required. Unlike FVM, however, 

ALE requires no user selection of comparable coordinates for modeling; rather, once a set of 

experiments (e.g., a group of experiments using a similar paradigm) is selected for meta-

analysis, the entire set of reported coordinates is used, thereby greatly increasing the 

reproducibility and objectivity of the analysis.

In the original implementation of ALE, the investigators acknowledged several limitations. 

For example, while applying the false discovery rate (FDR) method to compute voxel-wise 

significance, Turkeltaub used a fixed-effects analysis that did not correct for multiple 

comparisons; the size of the modeled Gaussian distribution was rationalized on the basis of 

the spatial resolution of the input images, rather than on a formal estimate of spatial 

uncertainty; a method for comparing two ALE maps was lacking; and there was no 

correction for the variable number of activations reported per experiment or the number of 

experiments per paper. Many of these limitations have subsequently been addressed by 

Turkeltaub and others. Laird et al. (2005a) provided an FDR correction for multiple 

comparisons and a method for ALE–ALE statistical contrasts. Eickhoff et al. (2009) 

introduced empirical estimates of between-subject and between-template spatial variability 

(a modification of the FVM spatial probability model) in place of user-selected Gaussian 

filtering. In addition, Eickhoff et al. (2009) modified the permutation test for above-chance 

clustering between experiments in an anatomically constrained space (gray-matter only), a 

transition from fixed-effects to random-effects inference. Turkeltaub et al. (2012) added 

corrections for the variable numbers of foci per experiment and experiments per paper to 

prevent undue weighting of ALE maps by individual experiments (e.g., with large numbers 

of foci) or individual papers (e.g., with multiple similar experiments). Eickhoff et al. (2012) 

provided an explicit solution for determining statistical significance rather than relying on 

FDR. Each of these improvements increased the statistical rigor and specificity of ALE.

Since its introduction, ALE has been applied to many aspects of normal brain function 

(Decety & Lamm 2007, Costafreda et al. 2008, Spreng et al. 2009). It has also been applied 

to functional and structural data in numerous disorders, including autism spectrum disorders 

(Duerden et al. 2012, Nickl-Jockschat et al. 2012), schizophrenia (Glahn et al. 2005, 2008; 

Ellison-Wright et al. 2008; Ellison-Wright & Bullmore 2009; Minzenberg et al. 2009; 

Ragland et al. 2009), epilepsy (Barron et al. 2012), Huntington's disease (Dogan et al. 2012, 

Lambrecq et al. 2013), obsessive-compulsive disorder (Menzies et al. 2008), depression 

(Fitzgerald et al. 2008), and developmental stuttering (Brown et al. 2005). The most 

interesting ALE applications do not merely merge previous results, but instead include 

highly previously ignored regions, resolve conflicting views, validate new paradigms, and 

generate new hypotheses for experimental testing. A more extensive list of ALE studies and 

algorithms is available at http://www.brainmap.org/pubs.

WITHIN-PARADIGM NETWORKS: CLIQUE ANALYSIS

Graph theory network modeling constructs—framing models as nodes connected by edges

—have proven extremely well adapted for primary neuroimaging data sets of various types 

(Lohmann & Bohn 2002, Bullmore & Sporns 2009; see also sidebar, Graph Theory and 

Neuroimaging). For meta-analytic data sets, they have proven no less apt. In an early foray 
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in this domain, Neumann applied replicator dynamics—a network discovery technique from 

theoretical biology based on principles of natural selection—to model the network properties 

of the Stroop task (Neumann et al. 2005). Noting that Neumann's method was limited to a 

single, dominant clique, Lancaster extended the algorithm to multiple subnets, adapting the 

Jaccard similarity measure for meta-analytic use, and quantitatively contrasted the two 

approaches (Lancaster et al. 2005). Note that for both these within-paradigm network-

modeling approaches and the more advanced methods that followed (discussed below), 

graph “edges” are emergent properties, computed as coactivation patterns across studies 

with no comparable parameter being reported by the included studies.

BETWEEN-PARADIGM NETWORKS: META-ANALYTIC CONNECTIVITY 

MODELING

Meta-analytic approaches to assessing interregional connectivity are conceptually similar to 

functional non-meta-analytic approaches (e.g., resting state fMRI; Biswal et al. 1995) 

because they use temporal covariations in regional activation to detect connectivity. 

Whereas in a typical fMRI study the unit of time is the second, in the meta-analytic 

approach the unit of time is the study. Regions in which activations co-occur across studies 

(i.e., regions that are mutually predictive) are functionally connected; regions that do not co-

occur are not connected. Higher probability of co-occurrence should reflect greater strength 

of functional connectivity.

Region to Region

The concept of a coactivation-based, meta-analytic connectivity mapping (MACM) was 

introduced by Koski & Paus (2000). To identify frontal lobe projections to the anterior 

cingulate gyrus, they manually collected and examined data from 107 studies, reporting 

differential connection patterns within different subregions of the anterior cingulate. 

Although they regarded their new approach as intrinsically plausible, Koski & Paus 

acknowledged that it lacked formal validation. In view of this shortcoming, they 

recommended replications using larger data sets, the development of statistically more 

sophisticated approaches, and validation of the approach against alternative connectivity 

measures, all of which eventually came to pass. Note that this application was region-to-

region because it limited its scope to connections between frontal lobe and anterior cingulate 

gyrus.

Region to Whole Brain

The first region-to-whole-brain coactivation meta-analysis was reported by Postuma & 

Dagher (2006). Having identified 126 peer-reviewed, whole-brain studies with activations in 

caudate or putamen, the authors computed the first whole-brain, meta-analytic functional 

connectivity images. In these images, observed coactivation patterns were “consistent with 

the concept of spatially segregated cortico-striatal connections as predicted by previous 

anatomical labeling studies in nonhuman primates” (p. 1513). As with Koski & Paus (2000), 

no validation other than plausibility was offered.
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The region-to-whole-brain analysis strategy was adopted and extended by Robinson et al. 

(2010). Using the Harvard/Oxford atlas to define the amygdala, the entire BrainMap 

database as the data source, and ALE to compute co-occurrence spatial probabilities, 

Robinson mapped the coactivation profile of the left and right amygdala. At that time, the 

BrainMap database contained 170 and 156 experiments for the left and right amygdala, 

respectively. To validate the approach she termed “meta-analytic connectivity modeling” 

(MACM), Robinson compared the amygdala MACM results with those obtained by various 

tract-tracing methods in rhesus monkeys, as reported in the CoCoMac database, finding 

startlingly good correspondence. Robinson et al. (2012) applied a similar strategy to the 

caudate nuclei, adding functional filtering using the BrainMap behavioral domain meta-data 

(Figure 2). Projection patterns were confirmed by diffusion tensor imaging (DTI) 

probabilistic tractography. Following Robinson's validation of MACM by comparing it with 

primate connectivity and DTI tractography, multiple other validations have been published, 

of which three are briefly presented here.

MACM-derived connectivity patterns were compared with those obtained using DTI 

tractography by Eickhoff and colleagues (2010). Investigators compared connectivity 

patterns for two subdivisions of the human parietal operculum previously established using 

postmortem cytoarchitectonics (OP1 and OP4; Eickhoff et al. 2010). For MACM, the 

opercular regions of interest jointly extracted 245 experiments from the BrainMap database. 

For DTI, 18 healthy volunteers were studied. Comparison between techniques showed close 

(but not perfect) correspondence (Figure 3). Also, DTI tractography will provide 

connectivity limited to first-order (direct) connections, whereas MACM—showing all co-

occurrences—would be expected to yield both direct and indirect connections. Furthermore, 

DTI will be intrinsically biased toward heavily myelinated connections, whereas MACM 

should preclude this bias.

For the nucleus accumbens, Cauda et al. (2011) compared MACM-derived connectivity with 

the resting-state fMRI connectivity. For the nucleus accumbens region of interest, BrainMap 

provided 57 experiments, a relatively small input data set. For resting-state fMRI, 17 healthy 

subjects were studied. Despite the limited amount of BrainMap data utilized, the MACM 

proved robust (Figure 3), as did the resting-state connectivity map. Overall, the two 

techniques converged, with resting-state connectivity showing somewhat greater sensitivity 

than did MACM. In this context, it is important to note that the sensitivity of MACM is 

strongly influenced by the size of the seed region and the volume of data in the BrainMap 

database. As the database becomes more densely populated, MACM will become more 

sensitive and allow progressively finer anatomical connectivity parcellations.

Narayana et al. (2012) compared MACM-derived connectivity with cortical-stimulation-

based connectivity, using concurrent transcranial magnetic stimulation (TMS) and H2
15O 

PET to map remote projections of the supplementary motor area (SMA). For the SMA seed 

region, BrainMap provided 266 experiments from 187 papers. As with prior validation, the 

two techniques converged nicely (Figure 3). It should be noted that Robinson, Eickhoff, 

Cauda, and Narayana all used BrainMap's behavioral domain and/or paradigm class meta-

data (discussed further below) to interpret the functional roles of both the seed regions and 

their connections.

Fox et al. Page 10

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Coactivation-Based Parcellation

Coactivation-based parcellation (CBP) is an extremely exciting extension of the region-to-

whole-brain meta-analytic connectivity-mapping approach. Connectivity-based parcellation 

of structural (DTI) data has provided close correspondence between structurally and 

functionally defined borders, using the boundary between SMA and pre-SMA as a 

demonstration case (Johannes-Berg et al. 2004). Eickhoff and colleagues (2011) applied 

connectivity-based parcellation to BrainMap data for the same brain regions (SMA and pre-

SMA) and obtained virtually identical borders (Eickhoff et al. 2011). Providing further 

validation, Bzdok et al. (2012) applied connectivity-based parcellation to the amygdala, 

demonstrating close correspondence to previously defined cytoarchitectonic borders 

(Amunts et al. 2005) (Figure 4). This technique has subsequently been applied to 

differentiate “what” and “where” pathways in parietal cortex (Rottschy et al. 2012) and to 

classify subregions of dorsolateral prefrontal cortex (DLPFC; Cieslik et al. 2013), the medial 

prefrontal cortex (Bzdok et al. 2013), the cingulate cortex (Torta et al. 2013), and Broca's 

area (Brodmann area 44; Clos et al. 2013). In each of these applications, concurrent resting-

state functional connectivity (using fMRI) corroborated the BrainMap-derived connectivity 

patterns.

INDEPENDENT COMPONENTS ANALYSIS

In the two preceding sections, we have reviewed methods that drew connectivity inferences 

between two seed regions (less complex) and between a seed region and the whole brain 

(more complex). In the next two sections we review methods that draw connectivity 

inferences by comparing coactivations between every brain voxel with every other voxel 

(all-to-all). The two most general classes of network-discovery methods addressed are 

independent components analysis (ICA) and graph theoretical modeling. Both approaches 

have been applied to the entire BrainMap database (or large subsets thereof ), i.e., across 

behaviorally inhomogeneous paradigms.

Toro et al. (2008) used the BrainMap database to generate a comprehensive atlas of the 

brain's functional connectivity. At the time, BrainMap included 3,402 experiments 

(conditional contrasts) reporting a total of 27,909 activated locations. For each experiment, a 

binary, per-study activation volume was generated. From these, the co-occurrence pattern 

likelihood was computed between all voxels using likelihood ratios. This generated 45,000 

unique coactivation maps (one for each 4 mm3 voxel in the brain). Reproducibility of the 

coactivation map was assessed by estimating the similarity between pairs of partial 

coactivation maps that used disjoint random subsamples of experiments for group sizes of 

500, 1,000, 1,500, 2,000, 2,500, and 3,000 experiments. The correlation between maps was 

significant and increased asymptotically with the number of experiments and was strong 

with even the 500-experiment group. Thus, the coactivation maps did not depend on a 

particular choice of experiments, and a robust structure in the meta-analytic functional 

connectivity can be recovered even with a moderate number of studies.

Intrigued by Toro's observations, Smith et al. (2009) took this strategy a step further and 

applied ICA to the entire BrainMap data volume. ICA has been widely used to demonstrate 

intrinsic connectivity networks in the resting brain using fMRI [i.e., resting-state networks 
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(RSNs)]. Although observed at rest, Fox & Raichle (2007) proposed that RSNs represent 

basic organizational units of the brain and that they are “functional networks” used during 

task performance. Smith et al. (2009) tested this hypothesis by comparing ICA 

decompositions of resting-state fMRI to those derived from the BrainMap data. At the time 

of this data extraction (Fox & Raichle 2007), BrainMap contained 7,432 experiments, 

representing imaging studies from 29,671 human subjects. In parallel, ICA was performed 

using resting-state fMRI data from 36 healthy volunteers. Decompositions were performed 

into both 20 and 70 components.

Of the 20 components generated separately from the two data sets, ten maps from each set 

were unambiguously paired between data sets, with a minimum correlation r = 0.25 (p 

<10−5, corrected for multiple comparisons and for spatial smoothness). These ten well-

matched pairs of networks are shown in Figure 5. With an ICA dimensionality of 70, the 

primary networks split into subnets in similar (but not identical) ways, continuing to show 

close correspondence between BrainMap and RSN components. This finding argues that the 

full repertoire of functional networks utilized by the brain in action (coded in BrainMap) is 

continuously and dynamically active even when at rest and, vice versa, that RSNs represent 

an intrinsic functional architecture of the brain that is drawn on to support task performance.

GRAPH THEORY MODELING APPROACHES

As noted above, graph theory network modeling constructs have proven to be well suited for 

modeling both primary and reduced neuroimaging data. In recent work, these graph 

theoretical constructs have been applied meta-analytically for voxel-wise, all-to-all (whole-

brain to whole-brain) network discovery (see sidebar, Graph Theory and Neuroimaging).

Bayesian Network Discovery

In 2005, Neumann et al. introduced the use of graph theory modeling techniques to within-

paradigm meta-analysis (above) using the Stroop paradigm. In 2008, Neumann et al. 

introduced the use of hierarchical Gaussian analysis to ALE output data (again using the 

Stroop paradigm). In 2010, Neumann et al. introduced the use of Bayesian network graphs 

to represent statistical dependencies using all-to-all voxel-wise analyses as a starting point. 

Bayesian network graphs are probabilistic models that represent a set of random variables 

and their probabilistic interdependencies. More formally, a Bayesian network is a directed 

acyclic graph (DAG) that comprises a set of nodes (vertices) and directed links (edges) 

connecting these nodes. Bayesian networks were chosen for three reasons. First, they belong 

to the class of directed graphical models, which permits investigation of directed 

interdependencies between the activation(s) of multiple brain regions. Second, the structure 

of Bayesian networks can be inferred from observed data. Thus, statistical interdependencies 

between the brain regions can be inferred from observations across multiple imaging 

experiments. Third, the theory for learning Bayesian networks from data is well established.

In application to neuroimaging meta-analysis, Neumann's approach used coactivation 

patterns of brain regions across imaging studies to learn the structure of the underlying 

DAGs. This was done first by computing an ALE map of a large subset (2,505 experiments) 

of the BrainMap data. This map was then restricted to the 49 most commonly occurring 
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regions and further restricted to the 13 most commonly co-occurring regions using three 

separate applications of the replicator dynamics process, each of which identified subsets of 

regions. The regions included part of the posterior medial frontal cortex primarily covering 

SMAs and pre-SMAs, the anterior cingulate cortex, posterior parts of the lateral prefrontal 

cortex bilaterally, the dorsal premotor cortex bilaterally, the left and right anterior insula, the 

left and right thalamus, the left and right anterior intraparietal sulcus, and the left 

cerebellum. For these regions, DAGs were computed for groupings provided by each run of 

replicator dynamics and for the collection of all regions. Although this approach began with 

the entire BrainMap corpus, the analytic strategy promoted serial, data-driven reductions in 

the scope of the analysis to specific brain regions. This is distinctly unlike ICA (above), 

which groups voxels into components without ever reducing the total volume under 

consideration from the whole brain.

Large-Scale Topological Modeling

Expanding the all-to-all graph theory approach to neuroimaging meta-analysis, Crossley et 

al. (2013) estimated the relative frequency at which each pair of regions in standard space 

was coactivated by multiple tasks reported in the primary literature. Nodes that frequently 

coactivated were connected by an edge. The resulting functional coactivation graph (Figure 
6) had complex topological properties such as modules, hubs, and a rich club. The 

community structure of the meta-analytic network could be linked to the tasks in the primary 

literature, demonstrating that the modules were functionally specialized (for perception, 

action, emotion, etc.), whereas the rich club was more diversely coactivated by tasks 

requiring both action and cognition. It was also notable that the modules defined by this 

graph theoretical analysis of the BrainMap database were almost exactly supersets of the 

independent components identified by ICA-based meta-analysis (Smith et al. 2009), which 

indicates that different methods of network meta-analysis can generate convergent rather 

than contradictory insights. This also demonstrates the important role that open-access 

databases can play in supporting comparative evaluation of alternative methodologies.

FUNCTIONAL ONTOLOGIES

For systems modeling, meta-analysis has the substantial advantage of being able to filter its 

findings with the behavioral meta-data associated with each experiment in the BrainMap 

database. Behavioral filtering has been widely used when selecting papers for inclusion in a 

meta-analysis (quantified and discussed in Fox et al. 2005b). A more recently developed use 

of behavioral meta-data is to characterize the behavioral properties of specific networks 

(Robinson et al. 2010, Cauda et al. 2011). Statistical methods to test for between-region 

differences in behavioral domain profiles have been developed (Lancaster et al. 2012) and 

are currently being extended to paradigm class data. Using this approach, given sufficient 

numbers of experiments and well-developed behavioral meta-data, unique behavioral 

characterization of individual brain regions may be a viable possibility. Characterization will 

be done, however, using complex behavioral profiles rather than using a one- or two-word 

term (“put,” “get,” “move,” “selection for action”) assigning a mental operation to each 

brain region, as Posner et al. (1988) had suggested. Our approach is more concordant with 

the views of Price & Friston (2005), who argued that the mapping between mental 
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operations and brain regions is a many-to-many mapping in which a single region can be 

involved in many cognitive processes and a single elementary process engages multiple 

regions. It is also concordant with Poldrack's (2006) argument that the cognitive “reverse 

inference” (i.e., that a specific mental operation is necessarily engaged if a particular brain 

region is activated) is intrinsically weak, owing in part to participation of individual regions 

in multiple cognitive operations. An extension of the behavioral domain profile approach is 

to extract profiles for multiple regions jointly, i.e., to characterize a functional network. This 

strategy was employed by Laird et al. (2009) in work that behaviorally categorized the 

default mode network (DMN), examining behavioral domain profiles of individual areas and 

of groups of areas (i.e., subnetworks).

Another strategy for meta-analytic structure-function inference was pioneered by Smith and 

colleagues (2009), in the context of applying ICA to the BrainMap database. Figure 7 (left 

side) is a heat map showing the respective contributions of BrainMap behavioral domains to 

individual components in the ICA shown in Figure 5. Close inspection reveals that some 

components have very high behavioral specificity, whereas other components have 

contributions from a wide range of behavioral domains. The ICA-based strategy of Smith 

and colleagues has been extended by Laird et al. (2011b) both by enriching the meta-data 

included in the analysis and by applying hierarchical clustering analysis to sort components 

into functionally related groupings (Figure 7). Even though this approach provides a much 

more refined association of components with behaviors, some components still show limited 

behavioral specificity. The most likely explanations for this lack of behavioral specificity in 

some networks are twofold: First, the behavioral specificity of some regions and networks 

(“hubs” in the terminology of topological modeling) is almost certainly low. Hub regions are 

engaged in a wide variety of tasks and will defy precise behavioral characterization. Second, 

a more evolved functional ontology is needed, as other studies have argued (Price & Friston 

2005, Poldrack 2006). Relative to the second cause, we suggest that the approaches 

illustrated here provide the tools for ontology development to proceed programmatically. 

Such development can be determined by targeting networks that show limited behavioral 

domain specificity and enriching the meta-data, e.g., by adding levels to the coding 

hierarchy. This work is ongoing (Fox et al. 2005b, Laird et al. 2011a). Ultimately, behavior 

categorizations that are reflected in the network properties of the brain will have superior 

intrinsic validity and utility as compared with those based solely on cognitive theory.

A closing point of some importance is that meta-analysis offers the most versatile, most 

powerful extant approach for discovering the behavioral significance of networks mapped 

using DTI tractography, cortical thickness covariances, or resting-state fMRI. DTI and 

cortical-thickness covariances, being anatomical techniques, contain no behavioral 

information. Resting-state fMRI, being performed at rest, is not under experimental control, 

leaving the behavior unspecified. Both DTI and resting-state fMRI provide very similar 

connectivity maps to MACM. Consequently, behavioral characterizations provided for 

MACM-defined pathways should be reasonably applied to pathways defined by the other 

techniques.
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META-ANALYSES AS TOOLS

The family of CBMA methods described above may appear to be conceptually discrete 

methods. In practice, however, they tend to be applied serially, with simpler forms of meta-

analysis providing input for more advanced forms. For example, clique analyses (described 

above) take an ALE volume as input and compute a paradigm-specific system model. 

Similarly, Neumann et al. (2010) used ALE to identify nodes as preparations for doing 

Bayesian network discovery. The MACM approach of Robinson et al. (2010) used ALE 

images as priors. Although these are examples of CBMAs providing priors for CBMAs, the 

strategy is more general. Karlsgodt et al. (2010), for example, used ALE to select ROIs for 

an analysis of brain-behavior pleiotropy (a one-to-many mapping) of visual working 

memory. Perhaps the most advanced and impactful use of CBMA to provide priors is in the 

domain of graphical modeling.

Many system-level modeling approaches commonly applied to functional neuroimaging data 

(e.g., structural equation modeling and dynamic causal modeling) are confirmatory methods 

that require strong a priori hypotheses about the regions involved (nodes) and their 

interdependencies (edges). Well-chosen priors improve model fit (Stephan et al. 2009). 

Given the ability of the several approaches described above to provide fairly complete, data-

driven models, their use as priors for graphical modeling seems quite promising. Perhaps the 

first application of this strategy was reported by Laird and colleagues (2008), who used an 

ALE meta-analysis of TMS/PET studies of the primary motor cortex to inform a structural 

equations model (SEM) analysis of a TMS/PET data set. The goodness-of-fit of the ALE-

based model to the data was quite striking, endorsing the value of this strategy. A 

subsequent application of the strategy used previously published ALE meta-analyses of 

stuttered and nonstuttered speech (Brown et al. 2005) as priors for fitting PET data during 

cued speech in persons with and without stuttering (Price et al. 2009). Again, the goodness-

of-fit of the ALE-based models to data sets was striking. Furthermore, this strategy allowed 

excellent between-group (stuttering versus nonstuttering) discrimination with group sizes as 

small as 15 (power > 0.8). This finding strongly suggests a role for this analysis and 

modeling approach to treatment trials using graphical models to characterize the brain 

mechanisms of action of treatments in patient groups.

ACKNOWLEDGMENTS

This work was supported by awards from the National Institutes of Health (MH74457, RR024387, MH084812, 
NS062254, AA019691, EB015314) and the Congressionally Directed Medical Research Program 
(W81XWH0820112). The sidebar on graph theory was contributed by Ed Bullmore and Nicolas Crossley. Portions 
of this review were adapted from Fox & Friston (2012).

LITERATURE CITED

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world 
human brain functional network with highly connected association cortical hubs. J. Neurosci. 2006; 
26:63–72. [PubMed: 16399673] 

Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human brain 
regions. Nat. Rev. Neurosci. 2013; 14:322–36. [PubMed: 23531697] 

Fox et al. Page 15

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, et al. Cytoarchitectonic mapping of the 
human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability 
maps. Anat. Embryol. 2005; 210:343–52. [PubMed: 16208455] 

Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000; 11(6):805–21. 
[PubMed: 10860804] 

Barron DS, Fox PM, Laird AR, Robinson JL, Fox PT. Thalamic medial dorsal nucleus atrophy in 
medial temporal lobe epilepsy: a VBM meta-analysis. NeuroImage Clin. 2012; 2:25–32. [PubMed: 
24179755] 

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting 
human brain using echo-planar MRI. Magn. Reson. Med. 1995; 34(4):537–41. [PubMed: 8524021] 

Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT. Stuttered and fluent speech production: an ALE 
meta-analysis of functional neuroimaging studies. Hum. Brain Mapp. 2005; 25:105–17. [PubMed: 
15846815] 

Bullmore ET, Bassett DA. Brain graphs: graphical models of the human brain connectome. Annu. 
Rev. Clin. Psychol. 2011; 7:113–40. [PubMed: 21128784] 

Bullmore ET, Sporns O. Complex brain networks: graph theoretical analysis of structural and 
functional systems. Nat. Rev. Neurosci. 2009; 10(3):186–98. [PubMed: 19190637] 

Butcher J. Alzheimer's researchers open the doors to data sharing. Lancet Neurol. 2007; 6:480–81. 
[PubMed: 17509479] 

Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB. An investigation of the structural, connectional, 
and functional subspecialization in the human amygdala. Hum. Brain Mapp. 2013; 34:3247–66. 
[PubMed: 22806915] 

Bzdok D, Langner R, Schilback L, Engemann DA, Laird AR, et al. Segregation of the human medial 
prefrontal cortex in social cognition. Front. Hum. Neurosci. 2013; 7:232. [PubMed: 23755001] 

Cauda F, Cavanna AE, D'agata F, Sacco K, Duca S, Geminiani GC. Functional connectivity and 
coactivation of the nucleus accumbens: a combined functional connectivity and structure-based 
meta-analysis. J. Cogn. Neurosci. 2011; 23:2864–77. [PubMed: 21265603] 

Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, et al. Is there “one” DLPFC in cognitive 
action control? Evidence for heterogeneity from co-activation-based parcellation. Cereb. Cortex. 
2013; 23:2677–89. [PubMed: 22918987] 

Chein JM, Fissell K, Jacobs S, Fiez JA. Functional heterogeneity within Broca's area during verbal 
working memory. Physiol. Behav. 2002; 77:635–39. [PubMed: 12527011] 

Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB. Tackling the multifunctional nature of Broca's 
region meta-analytically: co-activation-based parcellation of area 44. NeuroImage. 2013; 83:174–
88. [PubMed: 23791915] 

Costafreda SG, Brammer MJ, David AS, Fu CH. Predictors of amygdala activation during the 
processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res. Rev. 
2008; 58:57–70. [PubMed: 18076995] 

Crossley NA, Mechelli A, Vértes PE, Winton-Brown TT, Patel AX, et al. Cognitive relevance of the 
community structure of the human brain functional coactivation network. Proc. Natl. Acad. Sci. 
USA. 2013; 110:11583–88. [PubMed: 23798414] [Presented the first large-scale graph-analytic 
meta-analysis; derived similar networks for BrainMap and resting-state fMRI data sets.]

Decety J, Lamm C. The role of the right temporoparietal junction in social interaction: how low-level 
computational processes contribute to meta-cognition. Neuroscientist. 2007; 13:580–93. [PubMed: 
17911216] 

Derrfuss J, Mar RA. Lost in localization: the need for a universal coordinate database. NeuroImage. 
2009; 48:1–7. [PubMed: 19457374] 

Dogan I, Eickhoff SB, Schulz JB, Shah JN, Laird AR, et al. Consistent neurodegeneration and its 
association with clinical progression in Huntington's disease: a coordinate-based meta-analysis. 
Neurodegener. Dis. 2013; 12(1):23–35. [PubMed: 22922585] 

Duerden EG, Mak-Fan KM, Taylor MJ, Roberts SW. Regional differences in grey and white matter in 
children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-
analysis. Autism Res. 2012; 5:49–66. [PubMed: 22139976] 

Fox et al. Page 16

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis 
revisited. NeuroImage. 2012; 59:2349–61. [PubMed: 21963913] 

Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, et al. Co-activation patterns distinguish cortical 
modules, their connectivity and functional differentiation. NeuroImage. 2011; 57(3):938–49. 
[PubMed: 21609770] [Introduced coactivation-based parcellation as a meta-analytic method.]

Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, et al. Anatomical and functional connectivity of 
cytoarchitectonic areas within the human parietal operculum. J. Neurosci. 2010; 30:6409–21. 
[PubMed: 20445067] 

Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation 
likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on 
empirical estimates of spatial uncertainty. Hum. Brain Mapp. 2009; 30:2907–26. [PubMed: 
19172646] 

Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. 
Schizophr. Res. 2009; 108:3–10. [PubMed: 19128945] 

Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E. The anatomy of first-episode and 
chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am. J. Psychiatry. 
2008; 165:1015–23. [PubMed: 18381902] 

Evans AC, Janke AL, Collins DL, Bailet S. Brain templates and atlases. NeuroImage. 2012; 62(2):
911–22. [PubMed: 22248580] 

Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation 
in depression. Hum. Brain Mapp. 2008; 29:683–95. [PubMed: 17598168] 

Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic 
resonance imaging. Nat. Rev. Neurosci. 2007; 8(9):700–11. [PubMed: 17704812] 

Fox PT. Broca's area: motor encoding in somatic space. Behav. Brain Sci. 1995a; 18:344–45.

Fox PT. Spatial normalization origins: objectives, applications, and alternatives. Hum. Brain Mapp. 
1995b; 3:161–64.

Fox PT, Friston KJ. Distributed processing; distributed functions? NeuroImage. 2012; 61:407–26. 
[PubMed: 22245638] 

Fox PT, Huang AY, Parsons LM, Xiong J-H, Rainey L, Lancaster JL. Functional volumes modeling: 
scaling for group size in averaged images. Hum. Brain Mapp. 1999; 8:143–50. [PubMed: 
10524606] 

Fox PT, Huang A, Parsons LM, Xiong J-H, Zamarippa F, et al. Location-probability profiles for the 
mouth region of human primary motor–sensory cortex: model and validation. NeuroImage. 2001; 
13:196–209. [PubMed: 11133322] 

Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, et al. BrainMap taxonomy of experimental design: 
description and evaluation. Hum. Brain Mapp. 2005a; 25:185–98. [PubMed: 15846810] 
[Described and validated the meta-data taxonomy of the BrainMap database.]

Fox PT, Laird AR, Lancaster JL. Coordinate-based voxel-wise meta-analysis: dividends of spatial 
normalization. Report of a virtual workshop. Hum. Brain Mapp. 2005b; 5:1–5.

Fox PT, Lancaster JL. Neuroscience on the net. Science. 1994; 266:994–96. [PubMed: 7973682] 

Fox PT, Lancaster JL. Mapping context and content: the BrainMap model. Nat. Rev. Neurosci. 2002; 
3:319–21. [PubMed: 11967563] [Announced the concept, purpose, structure, and online status of 
the BrainMap database.]

Fox PT, Lancaster JL, Parsons LM, Xiong JH, Zamarripa F. Functional volumes modeling: theory and 
preliminary assessment. Hum. Brain Mapp. 1997; 5:306–11. [PubMed: 20408233] 

Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME. Retinotopic organization of human 
visual cortex mapped with positron-emission tomography. J. Neurosci. 1987; 7(3):913–22. 
[PubMed: 3494107] 

Fox, PT.; Mikiten, S.; Davis, G.; Lancaster, JL. BrainMap: a database of human functional brain 
mapping.. In: Thatcher, RW.; Hallet, M.; Zeffiro, T.; John, ER.; Huerta, M., editors. Functional 
Neuroimaging: Technical Foundations. Academic; San Diego: 1994. 

Fox PT, Mintun MA. Noninvasive functional brain mapping by change-distribution analysis of 
average PET images of H 15

2O tissue activity. J. Nucl. Med. 1989; 30:141–49. [PubMed: 
2786929] 

Fox et al. Page 17

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Van Essen DC. Mapping human visual 
cortex with position emission tomography. Nature. 1986; 323:806–9. [PubMed: 3534580] 

Fox PT, Mintun MA, Reiman EM, Raichle ME. Enhanced detection of focal brain responses using 
intersubject averaging and change-distribution analysis of subtracted PET images. J. Cereb. Blood 
Flow Metab. 1988; 8:642–53. [PubMed: 3262113] 

Fox PT, Parsons LM, Lancaster JL. Beyond the single study: function/location meta-analysis in 
cognitive neuroimaging. Curr. Opin. Neurobiol. 1998; 8:178–87. [PubMed: 9635200] 

Fox PT, Perlmutter JS, Raichle ME. A stereotactic method of anatomical localization for positron 
emission tomography. J. Comput. Assist. Tomogr. 1985; 9:141–53. [PubMed: 3881487] 
[Introduced the use of spatial normalization (standardized coordinates) to human brain mapping.]

Friston KJ, Ashburner J, Frith CD, Poline J-B, Heather JD, Frackowiak RSJ. Spatial registration and 
normalization of images. Hum. Brain Mapp. 1995; 3:165–89.

Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Comparing functional (PET) images: the 
assessment of significant change. J. Cereb. Blood Flow Metab. 1991; 11:690–99. [PubMed: 
2050758] 

Frith CD, Friston KJ, Liddle PF, Frackowiak RS. Willed action and the prefrontal cortex in man: a 
study with PET. Proc. R. Soc. B. 1991; 244:241–46.

Gibbons A. Databasing the brain. Science. 1992; 258:1872–73. [PubMed: 1470907] 

Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, et al. Meta-analysis of gray matter 
anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. 
Biol. Psychiatry. 2008; 64:774–81. [PubMed: 18486104] 

Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, et al. Beyond hypofrontality: a quantitative 
meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum. 
Brain Mapp. 2005; 25:60–69. [PubMed: 15846819] 

Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, et al. Mapping human whole-brain 
structural networks with diffusion MRI. PLoS ONE. 2007; 2:e597. [PubMed: 17611629] 

Johansen-Berg H, Behrens TEJ, Robson MD, Drobnjak I, Rushworth MFS, et al. Changes in 
connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. 
Natl. Acad. Sci. USA. 2004; 101(36):13335–40. [PubMed: 15340158] 

Karlsgodt KH, Kochunov P, Winkler AM, Laird AR, Almasy L, et al. A multimodal assessment of the 
genetic control over working memory. J. Neurosci. 2010; 30:8197–202. [PubMed: 20554870] 

Koski L, Paus T. Functional connectivity of the anterior cingulate cortex within the human frontal 
lobe: a brain-mapping meta-analysis. Exp. Brain Res. 2000; 133:55–65. [PubMed: 10933210] 
[Introduced the concept that meta-analysis of coactivations was an index of functional 
connectivity.]

Laird AR, Eickhoff SB, Fox PM, Uecker AM, Ray KL, et al. The BrainMap strategy for 
standardization, sharing and meta-analysis of neuroimaging data. BMC Res. Notes. 2011a; 4:349. 
[PubMed: 21906305] 

Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT. Investigating the functional 
heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J. 
Neurosci. 2009; 29:14496–505. [PubMed: 19923283] 

Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, et al. Behavioral interpretations of intrinsic 
connectivity networks. J. Cogn. Neurosci. 2011b; 23:4022–37. [PubMed: 21671731] 

Laird AR, Robinson JL, McMillan KM, Tordesillas-Gutiérrez D, Moran ST, et al. Comparison of the 
disparity between Talairach and MNI coordinates in functional neuroimaging data: validation of 
the Lancaster transform. NeuroImage. 2010; 51:677–83. [PubMed: 20197097] 

Laird AR, Robbins JM, Li K, Price LR, Cykowski MD, et al. Modeling motor connectivity using 
TMS/PET and structural equation modeling. NeuroImage. 2008; 41:424–36. [PubMed: 18387823] 

Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, et al. ALE meta-analysis: controlling the false 
discovery rate and performing statistical contrasts. Hum. Brain Mapp. 2005a; 25:155–64. 
[PubMed: 15846811] 

Laird AR, Lancaster JL, Fox PT. BrainMap: the social evolution of a human brain mapping database. 
Neuroinformatics. 2005b; 3:65–78. [PubMed: 15897617] 

Fox et al. Page 18

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lambrecq V, Langbour N, Guehl D, Biolac B, Burbaud P, Rotge JY. Evolution of gray matter loss in 
Huntington's disease: a meta-analysis. Eur. J. Neurol. 2013; 20:315–21. [PubMed: 22925174] 

Lancaster JL, Laird AR, Eickhoff SB, Martinez MJ, Fox MP, Fox PT. Automated regional behavioral 
analysis for human brain images. Front. Neuroinform. 2012; 6:23. [PubMed: 22973224] 

Lancaster JL, Laird AR, Fox M, Glahn DE, Fox PT. Automated analysis of meta-analysis networks. 
Hum. Brain Mapp. 2005; 25:174–84. [PubMed: 15846809] 

Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, et al. Bias between MNI and 
Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 2007; 
28:1194–205. [PubMed: 17266101] 

Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, et al. Automated Talairach atlas labels 
for functional brain mapping. Hum. Brain Mapp. 2000; 10(3):120–31. [PubMed: 10912591] 

Lohmann G, Bohn S. Using replicator dynamics for analyzing fMRI data of the human brain. IEEE 
Trans. Med. Imaging. 2002; 21(5):485–92. [PubMed: 12071619] 

Mazziotta JC, Toga TW, Evans A, Fox P, Lancaster J. A probabilistic atlas of the human brain: theory 
and rationale for its development. The International Consortium for Brain Mapping (ICBM). 
NeuroImage. 1995; 2(2A):89–101. [PubMed: 9343592] 

Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence 
from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the 
orbitofrontostriatal model revisited. Neurosci. Biobehav. Rev. 2008; 32:525–49. [PubMed: 
18061263] 

Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human 
brain functional networks. NeuroImage. 2009; 44:715–23. [PubMed: 19027073] 

Mintun MA, Fox PT, Raichle ME. A highly accurate method of localizing regions of neuronal 
activation in the human brain with positron emission tomography. J. Cereb. Blood Flow Metab. 
1989; 9(1):96–103. [PubMed: 2783425] 

Minzenberg MJ, Laird AR, Thelen SM, Carter CS, Glahn DC. Meta-analysis of 41 functional 
neuroimaging studies of executive function in schizophrenia. Arch. Gen. Psychiatry. 2009; 
66:811–22. [PubMed: 19652121] 

Narayana S, Laird AR, Tandon N, Franklin C, Lancaster JL, Fox PT. Electrophysiological and 
functional connectivity of the human supplementary motor area. NeuroImage. 2012; 62:250–65. 
[PubMed: 22569543] 

Neumann J, Fox PT, Turner R, Lohmann G. Learning partially directed functional networks from 
meta-analysis imaging data. NeuroImage. 2010; 49:1372–84. [PubMed: 19815079] 

Neumann J, Lohmann G, Derrfuss J, Yves von Cramon D. The meta-analysis of functional imaging 
data using replicator dynamics. Hum. Brain Mapp. 2005; 25:165–73. [PubMed: 15846812] 

Neumann J, Yves von Cramon D, Lohmann G. Model-based clustering of meta-analytic functional 
imaging data. Hum. Brain Mapp. 2008; 29:177–92. [PubMed: 17390315] 

Nickl-Jockschat T, Habel U, Michel TM, Manning J, Laird AR, et al. Brain structure anomalies in 
autism spectrum disorder (ASD)—a meta-analysis of VBM studies using anatomic likelihood 
estimation (ALE). Hum. Brain Mapp. 2012; 33:1470–89. [PubMed: 21692142] 

Paus T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia. 
1996; 34:475–83. [PubMed: 8736560] 

Pearson K. Report on certain enteric fever inoculation statistics. Br. Med. J. 1904; 3:1243–46.

Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional 
activation. Cereb. Cortex. 1996; 6:342–53. [PubMed: 8670662] 

Poldrack RA. Can cognitive processes be inferred from neuroimaging data? Trends Cogn. Sci. 2006; 
10:59–63. [PubMed: 16406760] 

Posner M, Petersen S, Fox PT, Raichle M. Localization of cognitive operations in the human brain. 
Science. 1988; 240:1627–31. [PubMed: 3289116] 

Postuma RB, Dagher A. Basal ganglia functional connectivity based on a meta-analysis of 126 
positron emission tomography and functional magnetic resonance imaging publications. Cereb. 
Cortex. 2006; 16:1508–21. [PubMed: 16373457] 

Fox et al. Page 19

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Price CJ, Friston KJ. Functional ontologies for cognition: the systematic definition of structure and 
function. Cogn. Neuropsychol. 2005; 22:262–75. [PubMed: 21038249] 

Price LR, Laird AR, Fox PT. Modeling dynamic functional neuroimaging data using structural 
equation modeling. Struct. Equ. Modeling. 2009; 16:147–62. [PubMed: 20502535] 

Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC. Prefrontal activation 
deficits during episodic memory in schizophrenia. Am. J. Psychiatry. 2009; 166:863–74. 
[PubMed: 19411370] 

Robinson JL, Laird AR, Glahn DC, Blangero J, Sanghera MK, et al. The functional connectivity of the 
human caudate: an application of meta-analytic connectivity modeling with behavioral filtering. 
NeuroImage. 2012; 60:117–29. [PubMed: 22197743] [Introduced meta-analytic connectivity 
modeling with behavioral filtering, i.e., sorting connected networks by their functional meta-data.]

Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT. Metaanalytic connectivity modeling: 
delineating the functional connectivity of the human amygdala. Hum. Brain Mapp. 2010; 31:173–
84. [PubMed: 19603407] 

Rottschy C, Caspers S, Roski C, Reetz K, Dogan I, et al. Differentiated parietal connectivity of frontal 
regions for “what” and “where” memory. Brain Struct. Funct. 2012; 218:1551–67. [PubMed: 
23143344] 

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, et al. Correspondence of the brain's functional 
architecture during activation and rest. Proc. Natl. Acad. Sci. USA. 2009; 106:13040–45. 
[PubMed: 19620724] [Presented the first ICA meta-analysis and demonstrated similarity of ICA 
networks for BrainMap and resting-state fMRI data sets.]

Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain networks. PLoS ONE. 
2007; 2:e1049. [PubMed: 17940613] 

Spreng RN, Mar RA, Kim AS. The common neural basis of autobiographical memory, prospection, 
navigation, theory of mind and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 
2009; 21:489–510. [PubMed: 18510452] 

Stephan KI, Tittgemeyer M, Knosche TR, Moran RJ, Friston KJ. Tractography based priors for 
dynamic causal models. NeuroImage. 2009; 47:1628–38. [PubMed: 19523523] 

Talairach, J.; Szikla, G.; Tournoux, P.; Prosalentis, A.; Bordas-Ferrier, M. Atlas d'Anatomie 
Stéréotaxique du Télencépahle. Masson; Paris: 1967. 

Talairach, J.; Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain. Thieme; New York: 
1988. 

Toga, AW. Brain Warping. Academic; San Diego: 1998. 

Toro R, Fox PT, Paus T. Functional coactivation map of the human brain. Cereb. Cortex. 2008; 
18:2553–59. [PubMed: 18296434] [Presented the first large-scale (whole-database) application 
of coactivation-based meta-analysis.]

Torta DM, Costa T, Duca S, Fox PT, Cauda F. Parcellation of the cingulate cortex at rest and during 
tasks: a meta-analytic clustering and experimental study. Front. Hum. Neurosci. 2013; 7:275. 
[PubMed: 23785324] 

Tulving E, Kapur S, Craik FI, Moscovitch M, Huole S. Hemispheric encoding/retrieval asymmetry in 
episodic memory: positron emission tomography findings. Proc. Natl. Acad. Sci. USA. 1994; 
91:2016–20. [PubMed: 8134342] 

Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of 
single-word reading: method and validation. NeuroImage. 2002; 16:765–80. [PubMed: 
12169260] [Introduced the activation likelihood estimation method of coordinate-based meta-
analysis.]

Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox PT. Minimizing within-experiment 
and within-group effects in activation likelihood estimation meta-analyses. Hum. Brain Mapp. 
2012; 33:1–13. [PubMed: 21305667] 

Turner JA, Laird AR. The cognitive paradigm ontology: design and application. Neuroinformatics. 
2011; 10:57–66. [PubMed: 21643732] 

Wager TD, Phan KL, Liberzon I, Taylor SF. Valence, gender, and lateralization of functional brain 
anatomy in emotion: a meta-analysis of findings in neuroimaging. NeuroImage. 2003; 19:513–
31. [PubMed: 12880784] 

Fox et al. Page 20

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of 
human functional neuroimaging data. Nat. Methods. 2011; 8(8):665–70. [PubMed: 21706013] 

Fox et al. Page 21

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SUMMARY POINTS

1. Spatial normalization (use of standardized coordinates) has produced a large 

(tens of thousands of peer-reviewed papers), well-standardized neuroimaging 

literature reporting hundreds of thousands of functional and structural 

experimental observations. BrainMap® and other online databases make these 

data readily available.

2. Sophisticated meta-analytic methods have been developed specifically for this 

data type or adapted to it from other neuroimaging applications.

3. The most basic meta-analytic method, ALE, demonstrates cross-study reliability 

of regional observations, filtering out nonreplicating findings within a group of 

similar experiments. This approach works equally well on functional (task-

activation) and structural (between-group anatomical differences) data.

4. Between-experiment coactivation patterns are a reliable index of functional and 

structural connectivity, with multiple cross-methodology validations in the 

literature.

5. Coactivation patterns differ between subfields of larger cortical and nuclear 

structures, allowing connectivity-based parcellation to be computed meta-

analytically.

6. Network modeling approaches originally developed for primary-image data sets 

(e.g., ICA, graph-analytic modeling) are proving to be well suited for analysis of 

large-scale, reduced-image (standardized coordinates) data sets, with 

coactivation being the driving observation. Similarity of observations between 

primary-data and reduced-data (meta-analytic) analyses is the rule and provides 

additional validation of this strategy.

7. Behavioral meta-data linked per-experiment to coordinate data in online 

databases provide a rich interpretive framework not otherwise available for 

network modeling.

8. Meta-analytically vetted regional effects and meta-analytically derived network 

models can be used as tools (a priori constraints) to analyze primary data sets, 

decreasing (or eliminating) the need for corrections for multiple comparisons 

and increasing the likelihood of finding significant effects.
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FUTURE ISSUES

1. Advanced meta-analytic network modeling methods (e.g., high-dimensionality 

ICA) would benefit from substantially larger data sets than are currently 

available.

2. More high-quality data are available in the literature than can be effectively 

curated. Greater efficiency of data entry is needed but without sacrificing quality 

control of data and meta-data.

3. As the scope and sophistication of neuroimaging experimental designs progress, 

the meta-data taxonomies used by BrainMap and other online databases will 

need to expand accordingly.

4. Greater care needs to be taken by software providers when releasing new 

templates and methods to ensure comparability of coordinates (same coordinate 

= same brain location) with prior literature.

5. Data-driven network analyses conjointly using coactivation patterns and 

behavioral meta-data need to be developed, advancing beyond using 

coactivations for network extraction and meta-data for network interpretation.

6. Use of meta-analysis-derived products (ROIs, spatial templates, network 

models) as priors for data analysis and modeling should be expanded.
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SPATIAL NORMALIZATION

Spatial normalization is the process of transforming a brain image from its natural size 

and shape (native space) into a standardized form that references a 3-D template image 

and coordinate space (template space). This allows brain images to be averaged across 

individuals and compared across groups.
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GRAPH THEORY AND NEUROIMAGING

Graph theory models connected systems as nodes (locations) and edges (their 

connections). Graph theory modeling constructs are increasingly being used to infer brain 

networks from neuroimages (Lohmann & Bohn 2002, Bullmore & Sporns 2009, 

Bullmore & Bassett 2011). Brain network models have been constructed from diffusion 

tensor image (DTI) tractography (Hagmann et al. 2007), from cortical thickness measures 

(Alexander-Bloch et al. 2013), and from resting-state neurophysiological fluctuations 

(Bullmore & Sporns 2009). Brain graphs have nonrandom topological properties such as 

small-worldness (Achard et al. 2006), modularity (Meunier et al. 2009), and hubs (Sporns 

et al. 2007). Graph theory has been generalized recently to meta-analysis of 

neuroimaging data (Neumann et al. 2010, Crossley et al. 2013). The convergence of 

meta-analysis and graph theory is an advance important for understanding human 

connectomics in health and disease.
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Meta-analysis: retrospective combination of previously reported results to better 

estimate the reliability of those results

Coordinate-based meta-analysis (CBMA): meta-analysis method(s) developed 

specifically for use with functional and structural neuroimaging data reported within a 

standardized coordinate space
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Coordinate space: any of a number of reference spaces defined by an anatomical 

template and used to analyze and report neuroimaging data, the two most widely used 

being Talairach Space and MNI Space

Stereotactic coordinates: three-dimension anatomical addresses (x, y, z) defined relative 

to a reference space and used to analyze and report functional and structural brain-image-

derived observations
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Voxel: a VO-lume pi-XEL, or data point within a 3-D image array. Statistical analyses of 

3-D image volumes can be performed at corresponding voxels across data sets, i.e., in a 

voxel-wise fashion

Statistical parametric map/image (SPM/SPI): transforming brain images from raw, 

individual (per-subject) data sets in native space to 3-D images of statistical parameters 

(Z score, T scores, F-values, R-values, p-values, etc.) in a standard coordinate space

Voxel-based morphometry (VBM): a voxel-wise analysis method for detecting 

between-group (e.g., patients versus controls) differences in brain anatomy within a 

standardized coordinate space
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Meta-data: standardized descriptors of data sets stored in electronic databases to retrieve 

data and filter studies for inclusion in a meta-analysis
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ALE: activation likelihood estimation (for functional meta-analyses) or anatomical 

likelihood estimation (for anatomical meta-analyses)

Fox et al. Page 30

Annu Rev Neurosci. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Activation likelihood estimation: a widely used family of algorithms for CBMA of 

functional and structural neuroimaging observations
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MACM: meta-analytic connectivity mapping
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ICA: independent components analysis
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Figure 1. 
ALE meta-analysis. Activation likelihood estimation (ALE) meta-analysis is illustrated. The 

top panels show spatial coordinates for single-word reading tasks reported by 11 PET 

studies (16 experiments; 117 subjects). The bottom panel shows a meta-analytic image 

computed using the ALE algorithm (left column) and an fMRI study performed using the 

same task (single-word reading). Images are reproduced with permission from Turkeltaub 

and colleagues (2002), the original ALE publication.
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Figure 2. 
Meta-analytic connectivity modeling (MACM) with behavioral domain filtering. The 

images illustrate the regional and behavioral specificity of connections of the caudate 

nucleus. Connectivity was computed as coactivation frequency with a seed region (caudate 

nucleus), sampling across the entire BrainMap database. Activation likelihood estimation 

(ALE) was used to compute statistical significance of co-occurrences. Behavioral filtering 

used the top tier of the BrainMap behavioral domain hierarchy. The projection patterns 

closely matched those established in the primate literature and were confirmed by diffusion 

tensor imaging (DTI) tractography. Images are reproduced from Robinson and colleagues 

(2012), the original report of behaviorally filtered MACM connectivity mapping, with 

permission.
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Figure 3. 
Meta-analytic connectivity mapping (MACM) validations. The images illustrate three 

independent validations of MACM-derived connectivity patterns as forming one two-panel 

row. In each row, the left panel compares the strength of an MACM-derived projection with 

that of an alternative connectivity-mapping method. The right panels show the MACMs 

derived applying three different seed regions to the BrainMap database. The top row used 

DTI tractography as the validation methodology, seeding two regions within the parietal 

operculum (OP1, OP4; Eickhoff et al. 2010). The middle row used resting-state fMRI as the 
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validation methodology, seeding nucleus accumbens (Cauda et al. 2011). The bottom row 

used concurrent transcranial magnetic stimulation (TMS)/PET as the validation 

methodology, seeding the supplementary motor area (SMA) (Narayana et al. 2012). Other 

abbreviations: aIPC, anterior inferior parietal cortex; aIPS, anterior intraparietal sulcus; 

aSPC, anterior superior parietal cortex; Broca, Broca's area; L-M1, left primary motor 

cortex; L-PCG/BA2/3, left postcentral gyrus, Brodmann areas 2 and 3; L-PMD, left dorsal 

premotor cortex; L-SPL/PreC, left superior parietal lobule/precuneus; M1, primary motor 

cortex; PCG, postcentral gyrus; pIPC, posterior inferior parietal cortex; PMC, premotor 

cortex; pSPC, posterior superior parietal cortex; R-M1, right primary motor cortex; R-PCG, 

right postcentral gyrus; R-PMD, right dorsal premotor cortex; R-STG (BA 4), right superior 

temporal gyrus, Brodmann area 41; VL/VA, ventrolateral nuclei/ventrolateral anterior 

nuclei; VPL/VPI, ventroposterior lateral and inferior nuclei. Images are reproduced with 

permission from each manuscript.
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Figure 4. 
Co-activation-based parcellation. Connectivity-based parcellation of the amygdala as 

derived using the BrainMap database (right) proved highly similar to that observed (in a 

separate postmortem sample) using cytoarchitecture (left). Laterobasal nuclei group (blue); 

centromedial nuclei group (red ); superficial nuclei group (green). Images were reproduced 

with permission from Bzdok et al. (2012).
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Figure 5. 
The comparability of independent components derived from meta-analysis and resting-state 

networks is illustrated. Each of the ten panels shows one well-matched pair of networks 

from two, 20-component independent components analyses (ICA). In each panel, the left-

side images are derived from a meta-analysis of the BrainMap database (~30,000 subjects); 

the right-side images are from a 36-subject resting-state fMRI database. Images are 

reproduced with permission from Smith and colleagues (2009).
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Figure 6. 
Topological analysis. The comparability of topological networks derived from meta-analysis 

of the BrainMap database (top row) and resting-state fMRI in 27 subjects (middle row) is 

illustrated. In anatomical space (a, upper two rows) the size of the nodes is proportional to 

their weighted degree (strength), and their color corresponds to module membership. The 

relationship between the coactivation metric (Jaccard index; b) and the connectivity metric 

for every pair of regions is graphed (b). The degree and distance distributions for both 

networks are plotted (c and d, respectively). Images are reproduced with permission from 

Crossley et al. (2013).
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Figure 7. 
BrainMap meta-data behavioral interpretations. Mapping of BrainMap meta-data onto ICA 

components is shown. Note that behavioral meta-data form discrete groupings, which 

functionally characterize the spatial groupings provided by ICA. (a) Twenty behavioral 

domain categorizations were correlated with the ten ICA-derived components shown in 

Figure 5. (b) The meta-data analysis has been extended to include 50 behavioral domain 

categories and 75 paradigm class categories. Hierarchical clustering was used to group the 

ICA into spatially and behaviorally related clusters for all 20 ICA components. Figures are 
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reproduced with permission from Smith et al. (2009) (panel a) and Laird et al. (2011b) 

(panel b).
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