
DOI: 10.1167/tvst.5.2.3

Article

Automated Retinal Image Analysis for Evaluation of Focal
Hyperpigmentary Changes in Intermediate Age-Related
Macular Degeneration

Steffen Schmitz-Valckenberg1 $ , Arno P. Göbel1, Stefan C. Saur2, Julia S. Steinberg1,
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Purpose: To develop and evaluate a software tool for automated detection of focal
hyperpigmentary changes (FHC) in eyes with intermediate age-related macular
degeneration (AMD).

Methods: Color fundus (CFP) and autofluorescence (AF) photographs of 33 eyes with
FHC of 28 AMD patients (mean age 71 years) from the prospective longitudinal
natural history MODIAMD-study were included. Fully automated to semiautomated
registration of baseline to corresponding follow-up images was evaluated. Following
the manual circumscription of individual FHC (four different readings by two readers),
a machine-learning algorithm was evaluated for automatic FHC detection.

Results: The overall pixel distance error for the semiautomated (CFP follow-up to CFP
baseline: median 5.7; CFP to AF images from the same visit: median 6.5) was larger as
compared for the automated image registration (4.5 and 5.7; P , 0.001 and P ,
0.001). The total number of manually circumscribed objects and the corresponding
total size varied between 637 to 1163 and 520,848 pixels to 924,860 pixels,
respectively. Performance of the learning algorithms showed a sensitivity of 96% at a
specificity level of 98% using information from both CFP and AF images and defining
small areas of FHC (‘‘speckle appearance’’) as ‘‘neutral.’’

Conclusions: FHC as a high-risk feature for progression of AMD to late stages can be
automatically assessed at different time points with similar sensitivity and specificity
as compared to manual outlining. Upon further development of the research
prototype, this approach may be useful both in natural history and interventional
large-scale studies for a more refined classification and risk assessment of eyes with
intermediate AMD.

Translational Relevance: Automated FHC detection opens the door for a more
refined and detailed classification and risk assessment of eyes with intermediate AMD
in both natural history and future interventional studies.

Introduction

Age-related macular degeneration (AMD) is a
major cause of irreversible vision loss in subjects over
the age of 55 years.1 Several large-scale natural
history studies have reported that pigment abnormal-
ities as seen by clinical examination or fundus

photography represent a major risk factor for

development of late stage AMD (i.e., either vision-

threating geographic atrophy or choroidal neovascu-

larization).2–6

According to the classification brought forward

by the Age-Related Eye Disease Study (AREDS),

‘‘increased pigment’’ is defined as ‘‘clumps of gray or
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black pigment in or beneath the retina.’’7 Although
pigmentary changes are nonspecific and may occur
in many different retinal conditions (such as retinitis
pigmentosa or macular telangiectasia type 2)8–10, the
prognostic value of focal hyperpigmentary changes
(FHC) associated with medium or large drusen has
been recently underscored by the Beckman Initiative
for Macular research.11

For clinical research included in the reading
center setting, FHC detection is based on the
subjective assessment by trained personnel (i.e.,
‘‘reader’’).7,12 This approach is rather time-consum-
ing and requires special equipment (e.g., high-
definition monitors, calibration of both monitors,
and room light). In addition, personnel not only
need to be trained before grading, but also constant
monitoring of grading performance is required.
Furthermore, while current grading strategies in-
clude the assessment of the presence or the ques-
tionable presence of ‘‘increased pigment’’ and the
assessment of the size into predefined categories,
little is known about the topographic distribution of
FHC. Moreover, it remains unclear if—beyond the
mere presence of FHC—the extent, size, and
topographic distribution may have an additional
impact on the risk for disease progression to
advanced AMD.

Particularly with the increasing number of imag-
ing modalities in both clinical routine and research,
analysis of multimodal imaging data demands an
increasing amount of work and time.13 Automating
such tasks by supporting software tools may have a
great potential for an effective and efficient analysis
of the complex information obtained by retinal
imaging.14 Although human assessment may allow
for an accurate assessment in many situations,
automated strategies are less influenced by human
factors including bias, fatigue, and mindset. In
retinal image analysis, automated or semiautomated
approaches for detection of drusen, reticular drusen,
and areas of geographic atrophy have been previ-
ously demonstrated and validated.15–19 To the best
of our knowledge, automated identification and
quantification of FHC has not yet been accom-
plished.

The purpose of this study was to develop and
evaluate a software tool for automated detection and
quantification of FHC in a longitudinal set of retinal
imaging data from patients with intermediate AMD.
In order to compare segmented areas of interest in
different images (different acquisition dates and

different imaging modalities), a registration tool is a
prerequisite and has also been developed.

Methods

Patients

The imaging database of the MODIAMD (Molec-
ular Diagnostics of Age-related Macular Degenera-
tion) study (www.modiamd.de) was screened for eyes
with FHC at the baseline visit. For inclusion in the
current analysis, eyes had to be observed over a
minimum follow-up of 2 years without development
of late AMD. Based on color fundus photography
(CFP), FHC were defined as the deposition of
granules or clumps of gray or black pigment in or
beneath the retina.7,12

The MODIAMD study is a prospective, observa-
tional, noninterventional, monocenter longitudinal
natural history study in patients at high-risk for
developing late-stage AMD in the study eye as
previously reported.20,21 Participants were recruited
between November 2010 and September 2011 at the
Department of Ophthalmology, University of Bonn,
Germany. The study was funded by the German
Ministry of Education and Research (BMBF). It
followed the tenets of the Declaration of Helsinki and
was approved by the local ethics committee (Ethik-
Kommission der Universität Bonn Lfd-Nr: 175/10).
Informed consent was obtained from each patient
after explanation of the nature and possible conse-
quences of the study.

The inclusion and exclusion criteria have been
reported before.20 Briefly, subjects had to be over 50
years of age and to show retinal changes classified as
AREDS 3 or 4 (i.e., having at least one eye without
advanced AMD that would be considered to be at
high risk for developing late stages of the disease).7,22

Exclusion criteria comprised any ocular disease that
may confound the assessment of the retina other than
AMD (e.g., diabetic retinopathy, glaucoma, retinal
vessel occlusion, retinal dystrophies, and uveitis),
previous or concomitant therapy to treat AMD in
study eye (e.g., laser coagulation, retinal surgery,
radiation, photodynamic therapy, intravitreal injec-
tions; oral supplements of vitamins and minerals are
permitted).

In addition to the baseline visit, regular study visits
were conducted every 12 months (baseline [t0], 1-year-
follow-up [t1], and 2-year-follow-up [t2]). At each
study visit, a complete ophthalmic examination
including assessment of best-corrected visual acuity
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(BCVA) using Early Treatment Diabetic Retinopathy
Study (ETDRS) charts, a dilated fundus examination,
and acquisition of multimodal retinal imaging ac-
cording to standardized operating procedures were
carried out.

Imaging Protocol

The image protocol according to standardized
operating procedures has been described in detail
previously.20,21 Briefly, it included three-field CFP,
and autofluorescence photography (AF; bandpass
filter from 510 nm to 580 nm for excitation and a
bandpass filter from 650 nm to 735 nm as a barrier
filter) (Visucam 500, Carl Zeiss Meditec AG, Jena,
Germany). The size of field was set at 308 with an
image resolution of 144431444 pixels. Prior to image
acquisition, the pupils were dilated with 1% tropic-
amide eye drops.

Image Processing and Grading

Only eyes with no late stage AMD at all visits were
included (i.e., in patients with AREDS category 4, the
eye without advanced AMD was selected). In patients
with AREDS category 3, both eyes were included in
the current analysis provided that FHC were present
in both eyes. CFP and AF images of visits t0, t1, and
t2 (central field) were exported as png-files. Subse-
quently, all images were imported into a specifically
designed software demonstrator. Within this demon-
strator, image registration was conducted of CFP
images at different time points (CFP t1 to CFP t0 and
CFP t2 to CFP t0), as well as for the three pairs of
CFP and AF images (AF to CFP [t0], AF to CFP [t1],
and AF to CFP [t2]) using both a semiautomated
(‘‘semiautomated’’) and a fully automated (‘‘automat-
ed’’) strategy (Supplementary Fig. S1).

For reference, two independent readers (APG and
JSS) manually set 10 corresponding points in every
image (CFP t0, AF t0, CFP t1, AF t1, CFP t2, and
AF t2) according to anatomical landmarks (i.e., vessel
bifurcations). Readers were instructed to select at
least two anatomical landmarks in each quadrant to
ensure equal distribution of points. The semiauto-
mated registration was simulated by randomly select-
ing 4 out of the 10 corresponding points and
computing a transformation matrix A that registered
the source image onto the target image. In order to
assess the error of this semiautomated registration
strategy, the transformation matrix A was also
applied on the six remaining points of the source
image that were not chosen to compute the transfor-

mation matrix. The Euclidian distances in pixels
between each of these transformed six points and their
corresponding points in the target image were defined
as the error metric. The automated registration
algorithm resulted in a transformation matrix B
without any needed input (i.e., ‘‘fully automated’’).
For evaluation, the identical error metric with the
same six points as used for evaluation of the
semiautomated registration was computed. However,
transformation matrix B was applied instead of the
transformation matrix A. The described process was
repeated 20 times for both semiautomated and
automated registration to achieve altering selection
of point pairs. The accuracy of registration between
both approaches was evaluated by comparison of the
median pixel distance error.

The development of an automated algorithm for
FHC detection was performed using a machine
learning approach. Following this approach, a
statistical model was trained to classify a pixel either
as healthy or as FHC lesion. For training this
automated algorithm, both independent readers
manually circumscribed the location of each FHC
lesion using the mouse-driven arrow on each color
image in the macula. The images were shown in a
random sequence and twice (two test runs) with at
least two weeks of time-lag in between. FHC in AMD
were defined according to the AREDS classification
system as ‘‘clumps of gray or black pigment in or
beneath the retina’’ without known retinal disease
entities or other reasons for such abnormalities.7 If
the reader was more than 90% sure that a pigment
abnormality corresponded to a FHC, it was assigned
to one of the categories defined as follows:

A) Relevant (distinct): appropriate if the alteration is
well pronounced (Supplementary Fig. 2A)

B) Relevant (subtle): appropriate if the alteration is
less remarkable, but still large enough to delineate
(minimum size illustrated in Supplementary Fig.
2B)

C) Irrelevant (small): appropriate if the alteration is
less remarkable than the minimum size (as
compared to ‘‘relevant [subtle]’’) (Supplementary
Fig. 2C)

D) Irrelevant (small area): appropriate if there is an
area with large amounts of very small FHC
(‘‘speckled appearance’’), every single one less
remarkable than the minimum size (as compared
to ‘‘relevant [subtle]’’) (Supplementary Fig. 2D).
In this case, the whole area is annotated.

Three further categories were used for areas where
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the reader was not more than 90% sure that the
specific lesion is a FHC:

No, if the reader is more than 50% sure that it is not a
FHC (Supplementary Fig. 2F)
Questionable, if the reader suspects that it is a FHC,
but is only 50% to 90% sure (Supplementary Fig. 2G)
Not gradable, if the image quality is not sufficient to
deliver a judgment or a different pathology is
interrupting (Supplementary Fig. 2H)

All pigment abnormalities that were adjacent or
within a distance of ½ disc diameter away from the
optic nerve head were not included in the assessment
because of the difficulties to differentiate between
pigment abnormalities definitely related to AMD
etiology and rather AMD unspecific parapapillary
pigment alterations (Supplementary Fig. 2E).

Based on the manual annotation of four
different readings, a statistical model was trained
for automatic FHC detection. For training, the
algorithm assumed a positive finding for a pixel if
at least two out of four manual readings were
positive. Negative samples were randomly taken
from pixels that had never been manually annotated
as FHC (i.e., in none of the four test runs). The

model was trained on a randomly selected subset (1/
5) of the data and tested on the whole set of images.
Overall, two different approaches (case A and case
B) depending on the definition of FHC presence
were applied as follows.

Case A: Herein, the categories FHC-distinct, FHC-
subtle, and FHC-small were regarded as positive
samples; the categories FHC-small area, questionable,
and not gradable were regarded as neutral samples;
and unlabeled as well as with ‘‘no’’ labeled pixels were
regarded as negative samples.
Case B: Herein, the categories FHC-distinct, FHC-
subtle, FHC-small, and FHC-small area were regard-
ed as positive samples; the categories questionable
and not gradable were regarded as neutral samples;
and unlabeled as well as with ‘‘no’’ labeled pixels were
regarded as negative samples.

Statistical models were trained based on informa-
tion from CFP images only, as well as based on
additional information from AF images. The sensi-
tivity for FHC detection of the research prototype
was determined on a pixel level for different
specificity rates using manual annotation as reference.
Detections in areas considered as neutral were not
counted as false-positives.

Statistical Methods

Wilcoxon paired signed rank test was used to
assess pixel distance error distribution and P-values.
Receiver operating characteristic (ROC) curves were
used for evaluation of the two approaches. Statistical
analysis was carried out using MATLAB software
version 2015b (The Mathworks, Inc., Natick, MA).

Results

Thirty-three eyes of 28 patients (mean age, 71;
range, 51–85 years; 22 women) out of the MOD-
IAMD study database with FHC at baseline, a
minimum follow-up data of 2 years, and no signs of
any late AMD during these 2 years were included in
the current analysis.

Registration

Evaluating the accuracy of registration between
baseline and all follow-up visits for CFP and for AF
to CFP images of identical visits, the overall pixel
distance error for the semiautomated approach
(median 5.7 and median 6.5) was larger as compared
for the automated strategy (median 4.5 and median

Figure 1. Exemplary images of an eye for CFP registration as
obtained from three different time points (baseline [t0], year 1 [t1],
year 2 [t2], first column). Slight but obvious misalignment in the
unregistered images is visible, particularly when focusing on
retinal blood vessels (gray-scale difference of baseline and both t1
and t2 images, second column). Automated registration clearly
improved the alignment (third column).
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5.7) (P , 0.001 and P , 0.001) (Fig. 1). Further
separating different follow-up visits and readers, the
pixel distance error for the semiautomated image
registration was always and consistently larger as
compared to the automated strategy (for details see
Table 1). In addition, time for processing was longer
for the semiautomated approach. While the reader
needed approximately 45 seconds for the semiauto-
mated approach (no matter of the modality), the
automated registration in the employed prototype
required approximately 10 seconds (CFP or CFP) or
30 seconds (AF to CFP) for image registration,
respectively.

Detection of FHC

The total number and the total size of FHC lesions
(distinct, subtle, and small) that were circumscribed
by the manual annotation varied in the four test runs
between 637 to 1163 and 520,848 pixels to 924,860
pixels, respectively (Fig. 2). Further variability
assessment revealed that the intraindividual differ-
ences between two measurements of the same reader
were smaller as compared to the interindividual
variability. Reader 1 circumscribed smaller numbers
and smaller areas as compared to reader 2. Overall,
the results of the manual annotations showed that the
intra- and interreader variability was mostly driven by
the mere detection of the number and much less by
the size of individual lesions.

Based on the results of the manual annotation, a
machine-learning algorithm for FHC detection was
employed. As shown by the ROC curves in Figure 3
(left), the area under the curve was larger and the
overall performance was better when the category
‘‘FHC-small area’’ was defined as ‘‘neutral’’ (case A:
area size 0.987) as opposed to ‘‘positive’’ (case B:
area size 0.928). The additional information of
corresponding AF images improved the performance
of the algorithm for both case A and case B. For
example, the sensitivity at a specificity level of 98.0%
and 99.0% was 94.7% and 85.5% for case A when
using CFP images only and 96.0% and 88.9% when

using information of both CFP and AF images,
respectively. For case B, the sensitivity at a
specificity level of 98.0% and 99.0% was 62.6% and
44.4% (CFP only) and 66.6% and 48.0% (CFP and
AF images). In order to test the robustness of the
algorithm, the statistical models were trained with
five different subsets of the data and separately
analyzed, revealing similar ROC curve performance
to each other (Fig. 3, right). Examples of manually
annotated and automatically detected FHC regions
by the research prototype (case A) are illustrated in
Figure 4.

Figure 2. Results of the manual annotation of FHC by the two
readers (R1 and R2) that both performed the annotation in two
different readings (RG1 and RG2). The variability for both the
number (upper row) and the total size (lower row) of lesions are
shown.

Table 1. Accuracy of Registration Between Baseline (t0) and Follow-Up Visits (t1 – 1 Year; t2 – 2 Years) for CFP
and Between CFP and AF Photographs for Identical Time Points, Shown by the Pixel Distance Error (Median [95%
Confidence Interval]) for Semiautomated and Automated Registration

CFP [t1 ! t0] CFP [t2 ! t0]

Semiautomated Automated Semiautomated Automated

Reader 1 6.1 [1.1–14.9] 4.7 [0.9–11.0] 6.3 [1.2–17.3] 5.1 [1.0–13.0]
Reader 2 5.3 [0.9–16.7] 4.0 [0.9–12.7] 5.2 [0.9–19.5] 4.1 [0.6–15.2]
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Discussion

In this study, a prototype for fully automated
detection of FHC in eyes with intermediate AMD was
developed and evaluated. The software tool includes a
fully automated image registration algorithm allowing
the alignment of retinal images of both CFP and AF
modalities and of images obtained at different visits.
For FHC detection, the software tool was trained on
the base of manual reader annotations in four
different test runs. The subsequent evaluation dem-
onstrated similar sensitivity and specificity for FHC
detection by the automated software tool as com-
pared to manual grading.

FHC lesions are a hallmark for AMD and represent
a major risk factor for development of late AMD.2,23

Specifically, they have been associated with the
presence and regression of drusen, photoreceptor
thinning, and the development of atrophy.24–27 The
underlying pathological mechanisms are still unclear. It
has been suggested that the occurrence of FHC lesion is

attributable to (a) a migration of pigmented cells
(retinal pigment epithelium [RPE] cells or macrophages
after phagocytosis of melanin) into the neurosensory
retina, and/or (b) changes of the RPE itself (e.g.,
increased content of melanin or proliferation/accumu-
lation of RPE cells), and/or (c) immigration of
microglial cells from inner to outer retinal layers
secondary to photoreceptor damage.28–30 Recent stud-
ies—using high-resolution spectral-domain optical co-
herence tomography imaging—correlated FHC lesions
spatially to hyperreflective dots in inner retinal
layers.31–33

Various advantages may be considered with use of
an automated software tool for FHC detection as
compared to the manual recording. In addition to less
involvement of individual human factors such as bias,
fatigue, mindset, and intraindividual variability, no
individual training and constant monitoring of the
grading performance of personnel (that needs to be
recruited beforehand) along with establishment and
maintenance of special equipment are required. Of
note, manual grading of FHC is a time-consuming

Table 1. Extended.

t0 [AF ! CFP] t1 [AF ! CFP] t2 [AF ! CFP]

Semiautomated Automated Semiautomated Automated Semiautomated Automated

6.3 [1.2–26.0] 5.7 [0.8–16.7] 6.7 [1.3–20.1] 5.6 [1.3–19.6] 7.3 [1.5–23.2] 6.1 [1.1–23.5]
6.3 [1.2–22.8] 5.5 [1.2–16.9] 6.3 [1.2–17.3] 5.5 [0.9–14.0] 6.0 [1.1–20.0] 5.6 [0.7–18.7]

Figure 3. ROC for the automatic detection of FHC (manual annotation as reference). Multimodal classification (CFP þ AF) performed
better than taking only information from CFP images into account—shown for two cases A and B (left). Right: Although the statistical
model was learned from different subsets, the variance of the performance in the ROC curve was small.
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task associated with a considerable learning curve for
the graders. Particularly in light of big data sets, the
use of the automated software would allow for an
efficient identification of FHC. Furthermore, the
current software tool also uses information from AF
images to improve FHC detection. Further develop-
ment may include implementing information from
additional modalities such as optical coherence
tomography in order to further improve the algo-
rithm. In addition, the function of the research
prototype could be expanded for automated detection
of other AMD-related typical changes (e.g., crystal-
line deposits and drusen).

Several limitations need to be considered. In
general, a fully automated approach is prone to
artifacts and misreading of lesions. At the current
stage, it appears prudent that an automated reading is
verified by a grader, particularly with regards to the
exclusion of gross errors. Another potential hurdle for
the automated detection tool would possibly be the
differentiation between AMD-related pigmentary
changes and pigmentary changes due to other causes.
In the current study, retinal images from a prospective
clinical trial that had implemented standard opera-
tional procedures for image acquisition were included.
It might be conceivable that the automated software
tool would be more prone to artifacts and errors in

FHC detection when using retinal images with lower
quality and acquired within less standardized settings.

The results of the current study do not suggest that
the automated software tool is superior to an
exhaustive and thorough manual reading strategy.
Validation by human expert graders would always
remain an integral part of quality assurance at the
current stage of development and in future alterations
of the software tool.

In addition to the pure detection of FHC and
quantification of lesion sizes, the algorithm would
potentially allow for a more detailed analysis of
pigmentary changes including topographic distribu-
tion at the posterior pole and longitudinal changes.
Such analyses may also allow for a more refined
classification and risk assessment of eyes that are at
high-risk for development late AMD. For example,
previous studies have identified that areas of atrophy
develop and grow faster in parafoveal areas as
compared to more peripheral macular areas.34,35

Furthermore, the current software tool may be
combined with previously reported approaches for
detection of soft drusen in order to investigate the
evolution of AMD in more detail or even to assess the
response of innovative therapeutic strategies.15,17

Finally, it would be also conceivable that automated
software tools for FHC detection may be used in
routine patient care in the future, contributing for
example to the risk assessment of individual subjects
with early or intermediate signs of AMD.

The intra- and interindividual variabilities in FHC
detection by manual annotation in four different test
runs by two independent readers suggest that
identification and classification of FHC lesions is
only reproducible to a certain extent. This finding is in
accordance with the results of the AREDS study,
which reported that the agreement of detection of
increased pigment was much lower as compared for
other AMD lesions such as pigment epithelium
detachments and geographic atrophy.7 The occur-
rence of FHC typically varies in size and appearance
between eyes and also within the same eye. In
addition, lesion may evolve changing their size and
pattern. Furthermore, the ability to analyze pigment
migration within different retinal layers is limited by
en-face imaging. Finally, the resolution even of high-
resolution and good quality CFP is limited to a
certain extent (i.e., the ability to detect subtle FHC
lesions remains challenging). In the current study, we
tried to address these limitations by using different
categories of FHC lesion types and also evaluated
different cases for definition of FHC lesions for the
automated detection tool. Particularly, the detection

Figure 4. Representative example for detection of FHC at
baseline (t0), year 1 (t1), and year 2 (t2) follow-up visits (from left
to right). For each visit (from top to bottom), the raw image, the
manual annotations of the first readings by reader 1 (R1RG1) and
reader 2 (R2RG1), and the detection by the machine learning
algorithm are shown.
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and definition of small areas with large amounts of
very small FHC (‘‘speckled appearance’’) had a
substantial negative effect on the reliability between
different manual readings and the automated detec-
tion. The detection of these very small FHC
represents a general challenge in the context of
AMD eyes both in manual grading and automated
detection. The additional implementation of data
obtained by optical coherence tomography scans (as
suggested above) within a future development of the
current research prototype may particularly improve
the detection of such lesions.

In conclusion, we have developed and evaluated a
new software tool that allows for fast, accurate, and
robust detection of FHC lesions in AMD eyes that are
at high-risk for development of late AMD stages. The
tool incorporates information from both CFP and AF
images and can potentially assess changes over time.
While the tool has been developed and tested on a
limited data set of images that have been acquired
using standardized operational procedures, the next
step would be to verify the efficacy and efficiency in a
larger sample size. Automated FHC detection opens
the door for a more refined and detailed classification
and risk assessment of eyes with intermediate AMD in
both natural history and future interventional studies.
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