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Abstract
Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to

lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by air-

borne spores. A weather-based dynamic simulation model for B. lactucae airborne spores

was developed to simulate the aerobiological characteristics of the pathogen. The model

was built using the STELLA platform by following the system dynamics methodology. The

model was developed using published equations describing disease subprocesses (e.g.,

sporulation) and assembled knowledge of the interactions among pathogen, host, and

weather. The model was evaluated with four years of independent data by comparing

model simulations with observations of hourly and daily airborne spore concentrations. The

results show an accurate simulation of the trend and shape of B. lactucae temporal dynam-

ics of airborne spore concentration. The model simulated hourly and daily peaks in airborne

spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne

conidia concentration was 0 when airborne conidia were not observed. Also, the relation-

ship between the simulated and the observed airborne spores was linear. In more than 94%

of the simulation runs, the proportion of the linear variation in the hourly-observed values

explained by the variation in the hourly-simulated values was greater than 0.7 in all years

except one. Most of the errors came from the deviation from the 1:1 line, and the proportion

of errors due to the model bias was low. This model is the only dynamic model developed to

mimic the dynamics of airborne inoculum and represents an initial step towards improved

lettuce downy mildew understanding, forecasting and management.

Introduction
Lettuce (Lactuca sativa L.) downy mildew, caused by the oomycete Bremia lactucae Regel, is a
major threat to lettuce production around the world [1–2]. The life cycle of B. lactucae, an obli-
gate biotrophic parasite, involves primary (sexual) and secondary (asexual) infection cycles.

PLOSONE | DOI:10.1371/journal.pone.0144573 March 8, 2016 1 / 17

OPEN ACCESS

Citation: Fall ML, Van der Heyden H, Carisse O
(2016) A Quantitative Dynamic Simulation of Bremia
lactucae Airborne Conidia Concentration above a
Lettuce Canopy. PLoS ONE 11(3): e0144573.
doi:10.1371/journal.pone.0144573

Editor: Rita Grosch, Leibniz-Institute of Vegetable
and Ornamental Crops, GERMANY

Received: August 31, 2015

Accepted: November 22, 2015

Published: March 8, 2016

Copyright: © 2016 Fall et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All data are within the
paper and its Supporting Information files.

Funding: Compagnie de recherche Phytodata inc.
provided support in the form of salaries for HVdH.
HVdH was involved in the decision to publish and
preparation of the manuscript. Compagnie de
recherche Phytodata inc. did not have any additional
role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
The specific roles of these authors are articulated in
the ‘author contributions’ section.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0144573&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


The sexual cycle results in soilborne oospores that are the likely source of primary inoculum
[3]. Oospores can potentially overwinter and become a source of primary inoculum during the
spring. However, there are no published data showing that B. lactucae oospores survive the
harsh Canadian winter. The asexual cycle generates conidia that are adapted to aerial dispersal
[4–5]. The conidia are produced when humidity is high and wind speed is low, and they are
released in response to concomitant decreasing humidity and increasing temperature [6]. Via-
ble conidia that land on leaves of susceptible lettuce plants germinate and colonize the leaves,
resulting in symptoms that are visible 7 to 14 d after the initiation of infection [7]. First infec-
tion is then followed by successive asexual cycles occurring throughout the lettuce production
season. Environmental factors such as temperature, relative humidity (RH), wind speed, solar
radiation, and leaf wetness duration have been identified as factors that determine the extent of
conidia production, dispersal, and survival as well as the infection processes [4, 6, 8, 9, 10].
Hence, conidia survival is greater at 23°C (12h) than at 31°C (2 to 5 h), regardless of RH (33%
and 76%), and conidia survival increases substantially at an RH of 90% or greater [5, 9]. Wind
speed plays a major role in the conidia dispersal process, and solar radiation determines the
survival of the airborne conidia [5, 7]. However, the most important factor for successful infec-
tion is the duration of morning and evening leaf wetness [11–15].

The control strategy for lettuce downy mildew is based mostly on chemical protection with
fungicide applied at fixed or weather-based intervals. A difficulty that most growers face is
identifying the best timing for fungicide applications to get the optimum level of control
against downy mildew. Therefore, in the province of Quebec, Canada, fungicides are applied
routinely to control downy mildew even though some of these applications may be unneces-
sary. In the pathosystem formed by lettuce and B. lactucae, two decision-support systems
(DSSs) were developed to guide decision-making concerning the timing of fungicide applica-
tions. The first DSS, which was developed in California, USA, and was later modified, is based
on leaf wetness ending late in the morning (10:00 hours) to predict when infection by B. lactu-
cae occurs [13]. The second DSS, BREMCAST, was developed in Quebec, Canada [12], use a
leaf wetness duration of 3 to 5 h after dawn (continuing until 10:00 hours) as an action thresh-
old for fungicide application. Therefore, in both of these DSSs, leaf wetness duration is used as
an indicator for occurrence of an infection event [12–13, 16]. These systems assume that sporu-
lation is nocturnal, that conidia are released at dawn, and that infections occur in the morning
[12–13]. However, the major limitation of these DSSs is their inability to assess the presence
and amount of conidia above lettuce fields, and consequently these systems can overestimate
or underestimated the risk of downy mildew infection [17]. In fact, to evaluate the availability
of B. lactucae airborne inoculum, these DSSs rely on signs of downy mildew in the field during
routine scouting [12].

The potential risk of lettuce downy mildew development and consequent yield losses are
related to the quantity of B. lactucae airborne conidia [15]. Fall et al. [15] observed a quantita-
tive relationship between the airborne conidia concentration (ACC) of B. lactucae and the
number of lesions per leaf. Hence, an ACC of 14 conidia/m3 can cause one lesion per leaf [15].
Therefore, incorporating B. lactucae airborne conidia concentration into DSSs may help to
develop more effective strategies for controlling lettuce downy mildew with better timing of
fungicide applications [15].

The amount of airborne conidia above lettuce fields is dictated by several factors, including
the sporulation intensity of sporulating lesions (source), the proportion of conidia that is
released, the proportion of conidia that escapes the canopy layer and becomes airborne, and
the proportion of surviving conidia that are deposited on susceptible lettuce leaves. Because
each of these factors has been mathematically described for B. lactucae or closely related species
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[12–13, 18–19], these mathematical relationships could be used to simulate the quantity of air-
borne conidia.

Despite the amount of scientific information available on the aerobiology of plant patho-
gens, few published studies have actually focused on the simulation of airborne inoculum, even
though it has been documented that inoculum is a key factor for the development of epidemics
of several plant diseases [20–22].

In this study, we developed a dynamic simulation model of B. lactucae airborne conidia in
an effort to improve the decision-making process for lettuce downy mildew management. The
specific objectives of this study were (1) to develop a structurally dynamic model to simulate B.
lactucae airborne conidia and (2) to assess the accuracy and sensitivity of the model against
measured airborne conidia data.

Materials andmethods

Ethics statement
The study did not involve endangered or protected species. All data are available in Tables, Fig-
ures and Supporting Information files.

Asexual disease cycle processes
Because of the absence of information and evidence about the overwintering of oospores under
Canadian weather conditions, the asexual life cycle of B. lactucae was used to build the model
framework. This cycle can be divided in four major stages: the sporulation and release stage,
the escape and dispersal stage, the survival and deposition stage, and the infection and germi-
nation stage. First, conidia that land on the leaves of susceptible lettuce plants germinate and
colonize the leaf cells. The resulting infected leaves produce conidia under conditions of high
humidity and low wind speed. These conidia are released in response to decreasing humidity
and increasing temperature (sporulation and release stage). Second, increases in wind speed
promote the escape of conidia from the canopy layer and the dissemination of these conidia
(escape and dispersal stage). Third, weather variables, including solar radiation, temperature,
and air RH, determine conidia survival, and as the wind speed decreases, the conidia are depos-
ited gradually on lettuce leaves (survival and deposition stage). Finally, new infections by
conidia require free water on leaf surfaces for germination (infection and germination stage)
[8, 15]. Fig 1 shows the different stages of the asexual life cycle of B. lactucae.

Modeling approach
System dynamics is a methodology for studying and managing complex systems that change
over time [23]. A model was built using the system dynamics methodology to simulate the
asexual life cycle of B. lactucae. The model was developed according to the principles of “flow
charts” in a dynamic simulation system (STELLA, v. 10.6.0).

STELLA is a flexible computer modeling package with an easy, intuitive interface that allows
users to construct dynamic models that can simulate biological systems. The main components
of STELLA are stocks, flows, connectors, and converters. Stocks are accumulations within the
system and can be different types, including reservoirs and conveyors. Flows are the movement
of the stocks throughout the system and allow resources to be transported around the model.
Connectors provide information links within the system, and converters contain the algebraic
relationships within a model [23]. The change in any stock at a given time is expressed as

Dynamic Simulationof B. lactucae Airborne Conidia

PLOS ONE | DOI:10.1371/journal.pone.0144573 March 8, 2016 3 / 17



follows:

StocksðtÞ ¼ Stocksðt � dtÞ þ ðn � Inflow � n � outflowÞdt ð1Þ
where t is time, dt is differential of t, and n is number of inflows or outflows

The simulation time unit is hour, and the variable inputs are estimated on an hourly basis.
To reduce potential integration error, a built-in simulation algorithm of the Euler integration
method and a simulation time step of 0.25 are used [23]. As a result, for each hour of simula-
tion, the STELLA program runs four times for the integration process. The time horizon of the
model is 24 h (1 d), and the model simulates the airborne conidia of B. lactucae from July to
September of each year, which is the critical period for lettuce downy mildew in Quebec,
Canada.

Model description
The model can be divided into six state variables (stocks) that are linked by flow charts and
connectors (Fig 2, Table 1). The first state variable is the potential for the sporulation of one
lesion (PSL). It is assumed that at least one lesion per m2 of crop is sporulating when the tem-
perature is between 5 and 25°C and the leaf wetness duration is greater than or equal to 2 h [15,
24]. It is also assumed that, for the lesion lifetime and for the time frame of July to September, a
sporulating lesion can produce a maximum of 20,000 conidia (unpublished data) and that the
mean lesion size is 0.004 m2 [25].

The second state variable is the number of released conidia (NRC). The change in NRC is
dictated by the conidia inflow (released conidia), the conidia outflow (escaped conidia), and
the conidia death rate, as follows:

NRCðtÞ ¼ NRCðt � dtÞ þ ðReleased� Escaped� Unescaped conidiaÞdt ð2Þ

The algebraic equations describing conidia inflow and conidia outflow for Eq 2 are defined
in Table 2.

Fig 1. Asexual stages of the life cycle of Bremia lactucae.

doi:10.1371/journal.pone.0144573.g001
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The third state variable is the number of escaped conidia (NEC). The change in NEC is dic-
tated by the conidia inflow (escaped conidia), the conidia outflow (surviving conidia), and the
conidia death rate, as follows:

NECðtÞ ¼ NECðt � dtÞ þ ðEscaped � Surviving � Conidia deathsÞdt ð3Þ

The algebraic equations describing conidia inflow and outflow for Eq 3 are defined in
Table 2.

The fourth state variable is the number of surviving conidia (NSC). The change in NSC is a
function of conidia survival and conidia deposition, as follows:

NSCðtÞ ¼ NSCðt � dtÞ þ ðSurviving � Deposited� Undeposited conidiaÞdt ð4Þ

The fifth state variable is the number of deposited conidia (NDC), described as follows:

NDCðtÞ ¼ NDCðt � dtÞ þ ðDepositedÞdt ð5Þ

where the variables are defined in Table 2.

Fig 2. Diagram of the model simulating Bremia lactucae airborne conidia.

doi:10.1371/journal.pone.0144573.g002
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The sixth state variable is the number of germinated conidia (NGC), described as follows:

NGCðtÞ ¼ NGCðt � dtÞ þ ðGerminated � IncubationÞdt ð6Þ

The germination process and the duration of incubation dictate the changes in the NGC.
The duration of incubation is defined as the time from spore deposition to lesion production
and is described in Table 2.

Running the model requires weather variables, including leaf wetness duration, RH, temper-
ature, wind speed, and solar radiation (Table 1). Each of the six state variables can be chosen as
model outputs.

Measurement of environmental variables
Leaf wetness duration was assessed every 15 minutes with electrical-impedance leaf-wetness
sensors (Model 237; Campbell Scientific, Edmonton, AB, Canada) placed at the height of the
lettuce leaves. In 1997 and 1998, air temperature (°C) was recorded with a data logger (Model
21X; Campbell Scientific) placed near the spore sampler, and RH (%) was monitored with a
probe (Model HMP35C; Campbell Scientific). In 2003 and 2004, air temperature and RH were
monitored using WatchDog data loggers (Spectrum Technologies, Aurora, IL, USA) placed
near the spore sampler. Weather variables were monitored every 30 min, and hourly averages
were used in the analyses. The temperature and RH probes were placed in a white shelter 1.5 m
above the ground. For all years, wind speed (10 m above the ground) and solar radiation data
were obtained from an Environment Canada weather station located approximately 200 m
from the plots [7, 15].

Table 1. Description of variables and parameters used in the model.

Abbreviation Description Unit

PSL Potential for the sporulation of one lesion per m2 Number (= 1)

NRC Number of released conidia per m2 Number (0 to 1)

NEC Number of escaped conidia per m2 Number (0 to 1)

NSC Number of survived conidia per m3 Number (0 to 1)

NDC Number of deposited conidia per m2 Number (0 to 1)

NGC Number of germinated conidia per m2 Number (0 to 1)

Sp Sporulation Number (0 to 1)

Escp rate Escape rate Number (0 to 1)

Surv rate Survival rate Number (0 to 1)

Germ Germination Number (0 to 1)

UEC Unescaped conidia Number (0 to 1)

UDC Undeposited conidia Number (0 to 1)

Asymp1 Asymptote for sporulation equation Number (0 to 1)

Asymp2 Asymptote for germination equation Number (0 to 1)

r1 Rate for sporulation equation 0.75

r2 Rate for germination equation Number (0 to 1)

Ws Wind speed m/s

SR Solar radiation MJ/m2

RH Relative humidity %

LWD Leaf wetness duration H

Tp Average temperature over leaf wetness duration °C

doi:10.1371/journal.pone.0144573.t001
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Model evaluation
The model was evaluated using four years (1997, 1998, 2003, and 2004) of hourly data on B.
lactucae ACC [7, 15]. The data were collected between 1 July and 20 September in each of
1998, 1997, 2003, and 2004. Each year, a plot of the lettuce cultivar Ithaca was established in
an organic soil at the Agriculture and Agri-Food Canada experimental farm in Ste-Clotilde,
QC, Canada (latitude 45°100 N, longitude 73°400 W). Lettuce plants produced in a green-
house by Les Serres Lefort (Ste-Clotilde, QC, Canada) were transplanted 0.3 m apart in the
rows, with 0.35 m between rows. A 7-d volumetric spore sampler (0.94 height, Standard ori-
fice 0.002 m x 0.014 m, Burkard Manufacturing Co., Rickmansworth, Hertfordshire, UK)
placed in the center of the plot was used to monitor ACC two weeks per month (alternating
sampling weeks, one on, one off) between July and September. The sampler was adjusted to
sample air at 0.01 m3/min. Impaction tapes were coated with a thin layer of silicone grease
before they were placed in the sampler. Tapes were removed at 7-days intervals, cut into
0.048 m long segments corresponding to 24 h periods. Conidia were counted on whole tran-
sects perpendicular to the tape length. These transects were fixed at 0.002 m intervals to
obtain hourly counts. Conidia counts were performed with a microscope at 250× magnifica-
tion (0.00075 m wide transect) and converted to conidia per cubic meter of air for each
hour of the day [7].

For each year, the hourly-simulated conidia concentrations were compared with the hourly-
observed conidia concentrations for a period of 24 h. The cumulative conidia concentration
within a 24-h period was considered the daily conidia concentration, and hence the daily-simu-
lated conidia concentrations were compared with the daily-observed conidia concentrations.
In order for accuracy to be compared, regression of observed data (on the y-axis) versus simu-
lated data (on the x-axis) was used instead of regression of simulated data (on the y-axis) versus
observed data (on the x-axis) [28–29]. Also, when the coefficient of determination was greater
than 0.7, Theil’s decomposition of error was performed [30]. Theil’s U statistic is decomposed
into three coefficients of inequality (Eq 7): mean differences between the observed and simu-
lated airborne conidia, Ubias; deviations from the 1:1 line, Uslope; and the unexplained variance,

Table 2. Algebraic equations describing the movement of the stocks throughout the model.

Variable Equation Data source

Sp Asymp1(1 + 25118.86 × exp(−r1 × LWD))−0.909 Tchervenivanova, 1995 [18]

Asymp1 0.996 – 0.000051 × Tp3 – 15.575/(Tp)2 Tchervenivanova, 1995 [18]

Germ Asymp2 × exp(−exp(r2 × (LWD − 2))) Scherm and van Bruggen, 1993 [16]

Asymp2 0.385 + 0.054 × Tp − 0.0024 × Tp2 Scherm and van Bruggen, 1993[16]

r2 −1.154 + 0.327 × Tp − 0.011 × Tp2 Scherm and van Bruggen, 1993 [16]

Escp rate 0.073 × Ws − 0.0087 Fall, unpublished data, 2013

Surv rate IF SR<1 THEN 0.8 ELSE 0.6 Bhaskara Reddy et al., 1996 [26]

Released PSL × Sp

Escaped NRC × Esca. rate

Surviving NEC × Surv. rate

Deposited NSC × 1/3 Kranz, 1974 [27]

Germinated NDC × Germ

Incubation 240 h Scherm and van Bruggen,1993, 1994 [8, 16]

doi:10.1371/journal.pone.0144573.t002
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Uerror. The coefficients are calculated as follows:

Ubias ¼
nð�O � �SÞ2
P ðO� SÞ2 ;Uslope ¼

ðb� 1Þ2 P ðS� �SÞ2
P ðO� SÞ2 ;Uerror ¼

P ð~O � OÞ2
P ðO� SÞ2 ð7Þ

where n is the number of simulations, O and S are the observed and simulated values of air-
borne conidia, respectively, �O and �S are the observed and simulated means, respectively, and b

is the slope in the equation ~O ¼ aþ bS, where ~O is calculated observed values based on simu-
lated values. The sum of the three coefficients is 1.

A numerical sensitivity analysis was carried to describe how much the model output values
(simulated number of airborne conidia concentrations) are affected by the changes in the
model input values (leaf wetness duration, sporulation rate [which is defined as a function of
temperature; see Table 2], wind speed, solar radiation, and RH). To evaluate how increasing
one unit at time, of each input, will affect the increase in the simulated conidia number, the
inputs variables were gradually increased and the corresponding airborne conidia concentra-
tions were measured in each simulation run.

Results
In the time window from July to September in 1997, 1998, 2003, and 2004, a total of 132 simu-
lation runs were performed. Simulation runs (one run correspond to one day) were done 32,
36, 33, and 31 times in 1997, 1998, 2003, and 2004 respectively. There was a linear relationship
between the hourly-observed number of conidia and the hourly-simulated number of conidia.
In 1997, 1998, 2003, and 2004, the proportion of the linear variation in the hourly-observed
values explained by the variation in the hourly-simulated values was greater than 0.7 (R2) in
32.5%, 94.7%, 96.8%, and 100% of the total number of simulated days, respectively (Table 3,
Figs 3 and 4). The hourly-simulated and observed conidia concentrations had a similar trend
and shape (Figs 3 and 4).

There was a linear relationship between the daily-observed number of conidia and the
daily-simulated number of conidia. In 1997, 1998, 2003, and 2004, the proportions of the linear
variation in the daily-observed values explained by the variation in the daily-simulated values
were 0.12, 0.88, 0.74, and 0.75, respectively (Table 4, Fig 5). The trends and the conidia peaks
in the daily-simulated and daily-observed conidia concentrations were similar in all years
except 1997, when some simulated peaks in conidia were not observed (Fig 6).

Most of the errors in the daily-simulated conidia came from the deviations from the 1:1
line. In 1998, 71% of the error was due to the deviation from the 1:1 line, whereas the propor-
tion of error associated with the bias was 3%. In 2003, 85% of the error was due to the deviation
from the 1:1 line, whereas the proportion of error associated with the bias was 14%. In 2004,
78% of the error was due to the deviation from the 1:1 line, whereas the proportion of error

Table 3. Coefficients of determination of the regression model of hourly-observed versus hourly-simulated airborne conidia concentrations of
Bremia lactucae in a lettuce field. n, number of simulations; R2, coefficient of determination.

Year n Coefficients of determination

R2 > 0.9 0.8 <R2 <0.9 0.7 < R2 < 0.8 0.6 < R2 < 0.7 R2 < 0.6

1997 32 10.4% 15.3% 6.8% 36.8% 30.6%

1998 36 7.5% 10.6% 76.6% 5.3% 0.0%

2003 33 15.2% 16.3% 65.3% 3.0% 0.0%

2004 31 5.0% 30.9% 64.1% 0.0% 0.0%

doi:10.1371/journal.pone.0144573.t003
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Fig 3. Examples of scatter plots of hourly-simulated versus hourly-observed airborne conidia concentrations ofBremia lactucae for the dynamic
model developed to monitor airborne inoculum of the lettuce downymildew pathogen. (A) Example of a case when 0.90 < R2 < 0.96, and (B) example
of case when 0.60 < R2 < 0.70. The dashed line indicates 1:1 agreement between simulated and observed airborne conidia. The solid line indicates the fitted

Dynamic Simulationof B. lactucae Airborne Conidia

PLOS ONE | DOI:10.1371/journal.pone.0144573 March 8, 2016 9 / 17



associated with the bias was 22% (Table 4). In 96%, 98%, 99%, and 99% of cases when no air-
borne conidia were measured, the daily-simulated airborne conidia concentrations were 0 in
1997, 1998, 2003, and 2004, respectively. Sensitivity analysis of the model showed that the
model was highly sensitive to the rate of sporulation (r1 in the Sp equation in Table 2), which is
the multiplication factor of spore production. Increasing the sporulation rate to one unit
increased the simulated conidia number to 1.6 units (Fig 7). Also, the model was not signifi-
cantly sensitive to other inputs variables that were tested (leaf wetness duration, wind speed,
solar radiation, and RH) in this study.

Discussion
Commercially acceptable control of lettuce downy mildew is achieved when only a few external
leaves are infected. Regardless of the type of lettuce (head, leaf, or romaine), the commercial-
ized parts must be free of disease. Because the development of lettuce downy mildew is strongly
related to the environmental conditions [15], the decision support systems (DSS) that have
been developed in the last 20 years rely on weather conditions to predict the best time for fun-
gicide applications. However, epidemics are also driven by the presence and quantity of inocu-
lum in the lettuce field [26]. Consequently, to improve the effectiveness of DSSs, it is crucial to
find a way to simulate or measure airborne inoculum above the lettuce canopy [12, 31]. The
results of recent studies [17, 31] suggested that inoculum could be monitored with a spore-
sampling network. A high disease risk as estimated by a DSS in combination with a significant
airborne spore concentration would trigger fungicide applications. However, there are advan-
tages and limitations associated with both monitoring and simulating airborne inoculum.
Spore sampling is generally representative of the real airborne inoculum concentration. How-
ever, because several samplers may be necessary to achieve an acceptable level of representa-
tiveness [17] the cost and time required to obtain the information are increased, especially
when the spore count is done by microscopy. In contrast, using a simulation model to estimate
airborne inoculum is less costly and easier to implement once the model has been developed.
However, the reliability of simulations is influenced considerably by the quality of the weather
data used. The ideal situation is probably to combine the monitoring and simulation of air-
borne inoculum.

In this study, a weather-based simulation model of B. lactucae ACC was developed and vali-
dated with independent data (data not used to develop the model). For this model, the asexual
life cycle of B. lactucae was divided into six state variables, and the changes from one state to
the next were described using mathematical equations derived from the scientific literature or
developed by assembling knowledge of the interactions between pathogen and host. The model
was evaluated with four years of data by comparing model simulations with field observations
of hourly and daily airborne conidia concentrations.

The model followed the trend and shape of hourly and daily-observed conidia concentra-
tions almost perfectly. In over 94% of the simulation runs, the proportion of the linear variation
in the hourly-observed values explained by the variation in the hourly-simulated values was
greater than 0.7 in all years except in 1997.

Over the four-year simulation period, the proportion of the linear variation in the daily-
observed values explained by the variation in the daily-simulated values was greater than 0.70

values from the regression of simulated versus observed airborne conidia. R2, coefficient of determination. The inset graph in each panel represents the
hourly-simulated and hourly-observed airborne conidia as a function of hour of day.

doi:10.1371/journal.pone.0144573.g003
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Fig 4. Examples of scatter plots of hourly-simulated versus hourly-observed airborne conidia concentrations ofBremia lactucae for the dynamic
model developed to monitor airborne inoculum of the lettuce downymildew pathogen. (A) Example of a case when 0.80 < R2 < 0.90, and (B) example
of a case when 0.70 < R2 < 0.80. The dashed line indicates 1:1 agreement between simulated and observed airborne conidia. The solid line indicates the
fitted values from the regression of simulated versus observed airborne conidia. R2, coefficient of determination. The inset graph in each panel represents the
hourly-simulated and hourly-observed airborne conidia as a function of hour of day.

doi:10.1371/journal.pone.0144573.g004
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in all years except in 1997. Also, most of the errors in the daily-simulated conidia came from
the deviations from the 1:1 line, and the proportion of error associated with the model bias was
low. Overall, the model was accurate in simulating the trend and the peaks in B. lactucae ACC,
even though the model overestimated the daily number of conidia on some days. This situation
is due probably to the model’s sensitivity to the sporulation rate. Indeed, sensitivity analysis
showed that the model was highly sensitive to variation in the sporulation rate, which was
defined as a function of temperature. Further field validations to calibrate the sporulation
model developed by Tchervenivanova (1995) seem to be necessary.

These results can be useful for decision making to improve lettuce downy mildew manage-
ment. Indeed, Fall et al. [15] found an exponential relationship between downy mildew inten-
sity and the airborne conidia concentration (ACC). An ACC of 14 conidia/m3 was required to
cause one lesion per leaf in the field [15]. Over 95% of the time, when no airborne conidia were
measured, the daily-simulated ACC was 0. Therefore, when the simulated number of airborne
conidia is 0, fungicides should not be applied, whereas simulated peaks in airborne conidia
should lead to fungicide applications. Indeed, the disease will develop only if the pathogen is
present in the area [20, 22]. In the pathosystem formed by potato and Phytophthora infestans,
an oomycete like B. lactucae, the first signs of disease were detected between 6 and 7 d after the
peak in airborne spores [17, 32]. Thus, instead of waiting for signs of downy mildew in the field
before running the BREMCAST DSS [12], the model developed in this study could be used. It
may be risky to wait until downy mildew is noticed in the field before running a BREMCAST
DSS. Thus, DSSs can be modified to incorporate simulated or measured airborne inoculum
above the lettuce canopy. However, it will be a complex process to modify these DSSs without
rebuilding the entire model because, these latter were not built using a dynamic system meth-
odology. Also, one challenge involved in implementing a spore sampling network is to know
whether the number of samplers is sufficient to obtain a representative airborne conidia con-
centration for the targeted area. In this context, it is probably better to combine monitoring
and simulation of airborne inoculum instead of increasing the number of samplers, which
comes at a cost.

Nevertheless, the model missed some observed conidia on certain days. Also, some simu-
lated peaks in conidia were not observed in 1997, and the simulations during that year were
not accurate on most of the days. However. the ACC is strongly related to the number of
sporulating lesions across the field, and hence it is difficult to estimate the exact ACC. The
uncertainties stemming from the highly variable potential number of lesions make it diffi-
cult to quantify the airborne inoculum at a large scale. At the moment, there are no methods

Table 4. Evaluation of the regression model of daily-observed versus daily-simulated airborne
conidia concentrations ofBremia lactucae in a lettuce field. n, number of simulations; R2, coefficient of
determination; Ubias, differences between the observed and simulated airborne conidia; Uslope, deviations
from the 1:1 line; Uerror, the unexplained variance.

Year n R2 Ubias Uslope Uerror

1997 32 0.12 - - -

1998 36 0.88 0.28 0.71 0.00

2003 33 0.74 0.14 0.85 0.00

2004 31 0.75 0.22 0.78 0.00

In 1997, as the coefficient of determination was not greater than 0.7, Theil’s decomposition of error was not

performed.

doi:10.1371/journal.pone.0144573.t004
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for quantifying the number of sporulating lesions in a given set of weather conditions. Once
such methods have been developed, it will be possible to circumscribe the model at a spe-
cific scale (small or large) and improve the accuracy of quantitative simulations of airborne
conidia.

Conclusion
To the authors’ knowledge, this is the first time in the published literature that a quantitative
dynamic simulation model of airborne conidia was developed. The model offers advantages for
accurately simulating the trend and the temporal progression of B. lactucae airborne conidia.
Indeed, from a strictly epidemiological point of view, the focus is on the rate of change rather
than the direct stage of the process. Decision support system related to polycyclic disease such
as lettuce downy mildew can be significantly improved by taking into account quantitative
aspects of the asexual cycle of the pathogen. The existing DSSs in the literature did not take
into consideration airborne conidia derived from the asexual life cycle of B. lactucae. The
results obtained with this model generally compare favorably with field-observed data for air-
borne conidia. To the authors’ knowledge, only the PLANT-Plus model developed by Dacom
for the management of Phytophthora infestans integrates a submodel for airborne spores.
Nonetheless, this submodel does not simulate the absolute number of spores; it just confirms
their presence [33]. Moreover, the model developed in the present study may be used as a
research tool for investigating the impact of agricultural practices (e.g., irrigation systems) or
weather conditions (e.g., temperature, wind speed, and RH) on airborne inoculum. The next

Fig 5. Regression analysis of daily-simulated versus daily-observed airborne conidia concentrations
ofBremia lactucae in 1998, 2003, and 2004 for the dynamicmodel developed to monitor airborne
inoculum of the lettuce downymildew pathogen. The solid lines indicate the fitted values from the
regressions of simulated versus observed airborne conidia. R2, coefficient of determination.

doi:10.1371/journal.pone.0144573.g005
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Fig 6. Daily-observed and daily-simulated airborne conidia ofBremia lactucae in 1997, 1998, 2003,
and 2004 as function of day of the year (where day 1 is 1 January) for the dynamicmodel developed to
monitor airborne inoculum of the lettuce downymildew pathogen.

doi:10.1371/journal.pone.0144573.g006
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step in the development of the model will be incorporating it into DSSs in order to more effi-
ciently predict episodes of lettuce downy mildew.
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