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Abstract

Several studies demonstrated that impairment in glutamatergic neurotransmission is linked to drug 

dependence and drug-seeking behavior. Increased extracellular glutamate concentration in 

mesocorticolimbic regions has been observed in animals developing nicotine dependence. 

Changes in glutamate release might be associated with stimulatory effect of nicotinic 

acetylcholine receptors (nAChRs) via nicotine exposure. We and others have shown increased 

extracellular glutamate concentration, which was associated with downregulation of the major 

glutamate transporter, glutamate transporter 1 (GLT-1), in brain reward regions of animals 

exposed to drug abuse, including nicotine and ethanol. Importantly, studies from our laboratory 

and others showed that upregulation of GLT-1 expression in the mesocorticolimbic brain regions 

may have potential therapeutic effects in drug dependence. In this review article, we discussed the 

effect of antagonizing presynaptic nAChRs in glutamate release, the upregulatory effect in GLT-1 

expression and the role of glutamate receptors antagonists in the treatment of nicotine dependence.
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1. Introduction

Nicotine dependence is one of the most preventable causes of death in the world (Jacobs et 

al., 1999, Doll et al., 2004). Consumption of tobacco, a product containing nicotine, leads to 

premature death in developing countries and in the USA (Cosin-Aguilar et al., 1995, 

Holford et al., 2014). It is well known that chronic nicotine consumption increases the 

mortality and morbidity rates in the world (Perry et al., 1984, Slotkin et al., 1997, Thun et 

al., 2000). Nicotine acts on nicotinic receptors, which are distributed at both pre- and post-

synaptic terminals in neurons of various brain regions (Albuquerque et al., 2009), and it 

regulates different signaling pathways, including reward system (Watkins et al., 2000). The 

role of nicotine in the brain’s reward neurocircuitry has been investigated extensively 

(Pontieri et al., 1996, Reid et al., 2000, Saellstroem Baum et al., 2006, Goriounova and 

Mansvelder, 2012). It has been shown that nicotine exposure is linked to dopamine and 

glutamate neurotransmission (Fu et al., 2000, Lambe et al., 2003, Saellstroem Baum et al., 

2006, Kleijn et al., 2011). Nicotine stimulates dopaminergic neurons in the ventral tegmental 

area (VTA) via activation of nicotinic acetylcholine receptors (nAChRs) (Tizabi et al., 2002, 

Li et al., 2014). It is important to note that dopaminergic neurotransmission plays an 

important role in drug dependence (Fu et al., 2000, Tizabi et al., 2002, Dani, 2003). 

However, several studies demonstrated that glutamatergic neurotransmission is also 

involved in drug dependence (Cornish and Kalivas, 2000, Giorgetti et al., 2001, Christian et 

al., 2013). It has been reported that neuroadaptation of the glutamatergic system occurs in 

drug dependence (McFarland et al., 2003).

Glutamatergic projections from the prefrontal cortex (PFC) into nucleus accumbens (NAc) 

and ventral tegmental area (VTA) are very critical in drug dependence (Parsegian and See, 

2014). In addition, dopaminergic inputs from NAc into VTA have been found to play an 

important role in drug dependence (Yun et al., 2004). Additionally, changes in glutamate 

release may affect dopamine release in the PFC and NAc (Markou, 2008) (Figure 1).

Both dopamine and glutamate release are increased by nicotine via stimulation of 

presynaptic nicotinic acetylcholine receptors (nAChRs) in dopaminergic and glutamatergic 

neurons in the mesocorticolimbic brain regions (Markou, 2008, Parikh et al., 2010) (Figure 

1). Varenicline, an nAChRs partial agonist, attenuated nicotine and ethanol interactions in 

the mesocorticolimbic dopaminergic system in rat models (Ericson et al., 2009, Bito-Onon 

et al., 2011). This compound was also found to have an analgesic effect in a mouse pain 

model (AlSharari et al., 2012). It has been shown that α4β2 nAChRs are present in two 

distinct stoichiometric arrangements, (α4) 2(β2) 3 nAChRs and (α4) 3 (β2) 3 nAChRs 

(Moroni et al., 2006). However, it has been found that exposure to nicotine can alter the 

stoichiometry of α4β2 nAChRs and consequently increase its expression (Nelson et al., 

2003, Vallejo et al., 2005). Furthermore, upregulation of α4β2 nAChRs has been suggested 

to be the mechanism of nicotine -stimulated glutamate release (Garduno et al., 2012). 

Additionally, several studies found that nicotine has been found to bind to α7 nAChRs and 

increased glutamate and calcium release (Gray et al., 1996, Wang et al., 2006). Thus, 

modulation of glutamate release following exposure to nicotine might be mediated through 

stimulation of nAChRs expressed in glutamatergic neurons. Moreover, it has been reported 

that nicotine applied on medial prefrontal pyramidal cells can lead to increased extracellular 
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glutamate concentration in rats (Lambe et al., 2003), which might be also a result of the 

downregulatory effect of nicotine on glutamate transporters.

Importantly, studies have demonstrated the important role of the major glutamate 

transporter, glutamate transporter 1 (GLT-1, its human homolog, excitatory amino acid 

transporter 2, EAAT2), in nicotine self-administration, nicotine dependence, nicotine 

withdrawal and nicotine-induced reinstatement of preference (Knackstedt et al., 2009, 

Alajaji et al., 2013). GLT-1 is known to regulate the majority of glutamate uptake (Danbolt, 

2001). Glutamate transmission is also regulated by another glial transporter, cystine/

glutamate exchanger (xCT). This transporter was also shown to play a critical role in 

nicotine dependence in rats and humans (Knackstedt et al., 2009). GLT-1 and xCT have 

suggested as targets for treatment of drug dependence, including nicotine and alcohol 

(Knackstedt et al., 2009, Alhaddad et al., 2014a). Therefore, it is important to find potential 

therapeutic compounds that upregulate GLT-1 and xCT, and consequently attenuate nicotine 

and drug dependence.

Additionally, several studies demonstrated the important role of glutamate receptors in 

attenuating nicotine dependence (Kenny et al., 2003b, Kenny et al., 2009). It is important to 

note that blocking glutamate receptors has been found to reduce nicotine self-administration 

(Kenny et al., 2003b, Sidique et al., 2012). Moreover, inhibiting glutamate receptors has 

been found to decrease nicotine-induced dopamine release in mesocorticolimbic area 

(Kenny et al., 2003b, Sidique et al., 2012).

It has been discussed extensively about the potential role of nicotine in glutamatergic 

system, particularly glutamate receptors (Li et al., 2014). In addition, effects of glutamate 

following exposure to nicotine on both dopaminergic system and medium spiny neuron 

(MSN) have been investigated recently (Pistillo et al., 2015). In this review article, we 

discussed the literature on the modulatory effect of nAChRs in glutamate release on nicotine 

dependence. Importantly, we further discussed the important role of GLT-1 and xCT, as 

well as the implications of glutamate receptors and their potential therapeutic role for the 

treatment of nicotine dependence.

2. Role of nicotinic acetylcholine receptors in the modulation of glutamate 

release

Several studies were conducted to demonstrate the role of presynaptic nAChRs in the release 

of glutamate following exposure to nicotine (Gray et al., 1996, Wang et al., 2006, Garduno 

et al., 2012). Glutamatergic terminals express presynaptic α7 nAChRs in the rat VTA and 

PFC (Jones and Wonnacott, 2004, Huang et al., 2014). As shown in Figure 1, glutamate 

release via stimulating presynaptic α7 nAChRs in glutamate terminals may have an indirect 

action in dopamine release by activating ionotropic glutamate receptors (iGLURs) in 

dopaminergic terminals (Desce et al., 1992, Fu et al., 2000, Kaiser and Wonnacott, 2000).

Studies have shown that chronic nicotine administration modulated glutamate concentration 

in the VTA (Changeux, 2010) and PFC (Shameem and Patel, 2012, Falasca et al., 2014). 

Additionally, it has been suggested that calcium influx is the main signal pathway for 
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releasing glutamate after acute and chronic nicotine administration at different 

concentrations (McGehee et al., 1995, Gray et al., 1996, Wang et al., 2006, Dougherty et al., 

2008). An influx of intracellular calcium in the PFC and hippocampus in presynaptic 

glutamate terminals, expressing α7 nAChRs, enhanced glutamate release after both acute 

and chronic exposure to nicotine (McGehee et al., 1995, Gray et al., 1996, Wang et al., 

2006, Dougherty et al., 2008). Furthermore, it has been reported that the association of 

glutamate release and calcium influx might be blocked by methyllycaconitine, α7 nicotinic 

receptor antagonist (Wang et al., 2006). Moreover, α-bungarotoxin irreversibly binds to α7 

nAChRs and inhibits nicotine-induced increased presynaptic calcium signaling in the central 

nervous system (McGehee et al., 1995). Additionally, pretreatment with α-bungarotoxin 

blocked choline-induced glutamate release in the PFC through inhibitory binding of choline 

to α7 -nAChRs (Konradsson-Geuken et al., 2009). Together, these findings suggest that 

presynaptic α7 nAChRs in glutamatergic terminals play an important role in the release of 

glutamate, and consequently release of dopamine following administration of nicotine.

Several studies demonstrated the role of α4β2 nAChRs in glutamate release after exposure 

to nicotine (Lambe et al., 2003, Parikh et al., 2010, Garduno et al., 2012). It has been 

demonstrated that acute nicotine administration activated glutamatergic synaptic 

transmission through stimulation of presynaptic α4β2 nAChRs in the dorsal raphe nucleus 

(Garduno et al., 2012). Moreover, chronic nicotine exposure has been found to upregulate 

α4β2 nAChRs in humans (Buisson and Bertrand, 2001). A lower dose of nicotine has been 

able to upregulate α4β2 nAChRs as compared to either α6β2 nAChRs or α3β2 nAChRs 

(Walsh et al., 2008). Moreover, amplitude of glutamate release induced by nicotine or α4β2 

nAChRs agonists has been revealed to be decreased in β2 nAChRs knockout animal model 

(Lambe et al., 2003, Parikh et al., 2010). A study was performed to determine the 

morphological effects of nicotine on dendritic spines of α4β2 nAChRs showed that nicotine-

induced lateral enlargement in the spine heads of α4β2 nAChRs can lead to glutamatergic 

synaptic plasticity, since glutamate receptors antagonists blocked the nicotine-induced spine 

remolding effect (Oda et al., 2014). It is important to note that α4β2 nAChRs antagonist also 

abolished this effect, which suggests the potential role of this receptor in glutamate release. 

The stoichiometry of α4β2 nAChRs was found to be altered after short and long term 

exposure to nicotine (Nelson et al., 2003, Vallejo et al., 2005, Srinivasan et al., 2011). It is 

well known that the increase in assembly of α4β2 nAChRs stoichiometry can be developed 

by acute and chronic nicotine administrations (Nelson et al., 2003, Kuryatov et al., 2005, 

Vallejo et al., 2005). This effect can lead to an increase in the expression of α4β2 nAChRs. 

Additionally, it has been shown that the stoichiometry of α4β2 nAChRs is an important 

mechanism of nicotine-induced upregulation of α4β2 nAChRs (Vallejo et al., 2005, 

Srinivasan et al., 2011). We suggest here that the upregulatory effects of nicotine on α4β2 

nAChRs may induce the release of glutamate in the mesocorticolimbic regions. Moreover, 

presynaptic nAChRs antagonist in the glutamatergic terminals could be effective in reducing 

both nicotine-induced glutamate and dopamine releases.

3. Role of glutamate transporters in nicotine dependence

Several studies found that exposure to drugs of abuse induced a marked increase in 

extracellular glutamate concentration in the mesocorticolimbic regions (Smith et al., 1995, 
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Del Arco et al., 1998, Reid et al., 2000, Williams and Steketee, 2004, Ward et al., 2009, 

Ding et al., 2012, Ding et al., 2013, Das et al., 2015). It has been reported that this effect can 

be associated with downregulation of glutamate transporters (Knackstedt et al., 2009, 

Changeux, 2010, Knackstedt et al., 2010, Alhaddad et al., 2014a, Alhaddad et al., 2014b). 

Several glutamate transporters regulate glutamate uptake in astrocytes (Su et al., 2003, 

Holtje et al., 2008). GLT-1 is responsible for the removal of the majority of extracellular 

glutamate concentration into astrocytes (Danbolt, 2001, Jensen et al., 2015). Additionally, 

xCT is co-expressed with GLT-1 in astrocytes regulating glutamate homeostasis [For review 

see (Reissner and Kalivas, 2010)]. Studies have demonstrated the potential implications of 

GLT-1 and xCT expression in central reward brain regions in cocaine-seeking behavior 

(Sari et al., 2009, Knackstedt et al., 2010). It has been revealed that GLT-1 and xCT are 

downregulated in NAc after cocaine exposure (Knackstedt et al., 2010). Similarly, GLT-1 

and xCT were found downregulated in the NAc, amygdala and hippocampus but not in PFC 

in P rats exposed to ethanol as compared to ethanol naïve group (Alhaddad et al., 2014b, 

Aal-Aaboda et al., 2015). Importantly, it has been shown that chronic nicotine exposure can 

lead to downregulation of GLT-1 (Knackstedt et al., 2009). Acute exposure to nicotine 

increased extracellular glutamate concentration in NAc (Reid et al., 2000, Saellstroem Baum 

et al., 2006). A study was performed to determine the neuropharmacological cause of high 

extracellular glutamate concentration induced by chronic nicotine administration (Reid et 

al., 2000). This study found that mecamylamine and L-trans-pyrolidine-2,4 dicarboxylic 

acid, a non-selective glutamate transporter blocker, inhibited nicotine-induced increases in 

extracellular glutamate concentration in the NAc. In addition, denervation of dopamine by 

local injection of 6-hydroxydopamine enhanced nicotine-induced glutamate release in NAc 

(Reid et al., 2000). Moreover, local perfusion of artificial cerebrospinal fluid-calcium free 

did not affect nicotine-increased glutamate release (Reid et al., 2000). Together, this study 

found that nicotine-induced glutamate release in the NAc may not be calcium or dopamine 

dependent-related mechanisms, which suggest that glutamate transporters may have a 

critical role in nicotine-induced glutamate release in mesocorticolimbic regions (Reid et al., 

2000).

Importantly, nicotine self-administration decreased GLT-1 and xCT expression in the NAc 

and VTA but not in PFC (Knackstedt et al., 2009) (Figure 2). Furthermore, reinstatement of 

nicotine-seeking behavior was found associated with increased extracellular glutamate 

concentration, decreased GLT-1 expression and increased behavioral reactions, suggesting 

the potential role of glutamate transporters in relapse-like nicotine seeking (Gipson et al., 

2013). Recent studies from our lab and others have demonstrated the important role of 

glutamate transporters. GLT-1 and xCT have been suggested as key players in ethanol 

intake (Aal-Aaboda et al., 2015, Alasmari et al., 2015). Thus, upregulation of these 

transporters by ceftriaxone, a β-lactam antibiotic known to upregulate GLT-1, was 

associated with attenuation of relapse to ethanol and cocaine seeking (Knackstedt et al., 

2010, Qrunfleh et al., 2013, Alhaddad et al., 2014a). Additionally, ceftriaxone reduced 

reinstatement of conditioned place preference induced by nicotine (Alajaji et al., 2013). It 

has been shown that ceftriaxone attenuated also tolerance developed by the analgesic effects 

of morphine and nicotine dependence (Rawls et al., 2010, Schroeder et al., 2011). These 

effects have been associated in part through upregulation of both GLT-1 and xCT 
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expression. In clinics, it has been shown that N-acetylcysteine, a prodrug of L-cysteine 

involving xCT activation, can attenuate dependence to nicotine (Knackstedt et al., 2009, 

Schmaal et al., 2011). Additionally, glutamate transporter 3 type (excitatory amino acid 

transporter 3, EAAT3) transports glutamate at post-synaptic neurons. It has been reported 

that EAAT3 was found to be regulated through neuronal activity, mediating other signaling 

pathways like phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC) (Nieoullon 

et al., 2006, Yoon et al., 2014). Moreover, P13K inhibitor, and PKC inhibitor have been 

found to decrease EAAT3 activity (Yoon et al., 2014). Importantly, it has been found that 

chronic exposure to nicotine- reduced EAAT3 activity, and this effect was found to be 

P13K- and PKC-dependent, since P13K- and PKC activators blocked the nicotine-induced 

decrease in EAAT3 activity (Yoon et al., 2014). Taken together, we suggest that GLT-1, 

xCT and EAAT3 may play an important role in nicotine dependence.

4. Role of glutamate receptors in nicotine dependence

It has been shown extensively that ionotropic glutamate receptors (iGLURs) and 

metabotropic glutamate receptors (mGluRs) have a critical role in nicotine and drug 

dependence (Moran et al., 2005, Terry et al., 2012, Gipson et al., 2013). It is important to 

note that iGLURs such as N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptors are found in dopamine neurons in the 

VTA (Wang and French, 1993, Gao and Wolf, 2007). Interestingly, NMDA receptor was 

found to be involved in nicotine-induced dopamine release in the NAc and VTA (Fu et al., 

2000, Wang et al., 2010, Salamone et al., 2014) (Figure 1). Competitive NMDA receptor 

antagonist, CGS 19755, administration in the VTA blocked nicotine-induced dopamine 

release in the NAc (Fu et al., 2000). Furthermore, it has been found that glutamate release in 

the VTA mediated with high doses of nicotine increased the release of dopamine in the NAc 

(Fu et al., 2000). Alternatively, glycine may potentiate glutamate-activated NMDA receptors 

and consequently stimulate [3H] dopamine release in the striatum (Desce et al., 1992). It has 

been shown that using conditioned place preference, nicotine dependence was attenuated in 

mice lacking NMDA receptors in the dopaminergic axon terminals in the VTA (Wang et al., 

2010). Furthermore, administration of NMDA receptor antagonists directly into the VTA 

inhibited nicotine-stimulated release of dopamine in the NAc (Schilstrom et al., 1998, Fu et 

al., 2000). Moreover, systemic administration of NMDA receptor antagonist also blocked 

nicotine-induced release of dopamine (Kosowski and Liljequist, 2004). It has been reported 

that 2-amino-5-phosphonopentanoic acid (AP-5), a competitive NMDA receptor antagonist, 

blocked nicotine-activated NMDA receptor and consequently reduced [3H] dopamine 

release in rat VTA (Jin and Fredholm, 1997, Kalivas, 2000).

Alternatively, chronic nicotine self-administration increased NMDA receptor NR2A and 

NR2B subunits’ expression in the PFC and increased AMPA receptor GluR2/GluR3 

subunits’ expression in the VTA (Wang et al., 2007). Moreover, the NMDA receptor NR2A 

subunit expression in the VTA, PFC and amygdala was found to be increased after nicotine 

self-administration in rat models (Liechti and Markou, 2008, Kenny et al., 2009). Studies 

showed that chronic nicotine self-administration upregulated NMDA receptor NR2B subunit 

as well as AMPA receptor GluR2 subunit in the PFC and in the amygdala as compared to 

control group (Kenny et al., 2009). NMDA-increased release of glutamate has been found in 
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cerebellar granule cells exposed to a subacute nicotine concentration (Lim et al., 2000). 

Furthermore, studies have shown that systemic administration or direct application of 

NMDA antagonists into the VTA reduced self-administration of nicotine in rats (Blokhina et 

al., 2005, Liechti and Markou, 2008, Kenny et al., 2009). Reinstatement to nicotine-seeking 

behavior can be inhibited by the NMDA receptor subunit antagonist, suggesting that 

glutamate neurotransmission has a crucial role in relapse to nicotine seeking (Gipson et al., 

2013). Interestingly, cotinine, a metabolite of nicotine, attenuated the effects of NMDA 

receptor antagonist, MK-801, in rats (Terry et al., 2012).

In regards to AMPA receptors, studies demonstrated that these receptor antagonists blocked 

nicotine-increased dopamine release (Sziraki et al., 2002, Kosowski et al., 2004). 

Topiramate, a non-selective AMPA/kainate receptor antagonist, decreased the release of 

monoamine that is induced by nicotine in the NAc (Schiffer et al., 2001). In addition, it has 

been reported that the head diameter of the dendritic spine of the NAc core and AMPA to 

NMDA receptors ratio currents were increased within two weeks after starting nicotine self-

administration in the NAc in rat model (Gipson et al., 2013). Moreover, microinjection of 

AMPA receptor antagonists directly into the VTA was reported to attenuate chronic nicotine 

and sucrose self-administration (Wang et al., 2008). However, conflicting data have been 

shown regarding the effects of AMPA receptor antagonists on nicotine self-administration 

(Wang et al., 2008, Kenny et al., 2009). Moreover, nicotine withdrawal effects have been 

shown to be increased precipitately in animal models injected with AMPA/kainate receptor 

antagonist (Kenny et al., 2003a). This suggests that AMPA/kainite receptors may play a role 

in nicotine dependence.

In addition to iGLURs, mGluRs have been also demonstrated to be involved in nicotine 

dependence (Bespalov et al., 2005, Dravolina et al., 2007, Liechti et al., 2007, Palmatier et 

al., 2008, Tronci et al., 2010, Tronci and Balfour, 2011, Akkus et al., 2013). Alternatively, it 

has been shown that mGluR5 antagonist, 6-methyl-2-(phenylethynyl)-pyridine (MPEP), 

decreased nicotine self-administration in rats and mice (Kenny et al., 2003b, Paterson et al., 

2003, Tronci and Balfour, 2011). In addition, mGluR5 antagonist prevented relapse to 

nicotine-seeking behavior in rats (Tessari et al., 2004). Moreover, MPEP reduced nicotine-

induced dopamine release into the NAc (Tronci and Balfour, 2011). Another study 

demonstrated that MPEP decreased nicotine seeking in rats (Palmatier et al., 2008). It is 

important to note that long-term use ex-smokers had higher mGluR5 binding as compared to 

recent use ex-smokers in thalamus and frontal cortex suggesting that mGluR5 is an 

important biomarker for nicotine dependence (Akkus et al., 2015). Furthermore, studies 

have demonstrated that mGluR5 or mGluR1 antagonists are able to reduce cue-induced 

reinstatement of nicotine self-administration in rats (Bespalov et al., 2005, Dravolina et al., 

2007). In addition, nicotine self-administration decreased mGlu2/3 receptors’ function in the 

mesocorticolimbic area (Liechti et al., 2007). It has been suggested that presynaptic 

inhibitory mGluR2/3 regulates extracellular glutamate concentration (Moran et al., 2005) 

(Figure 2). Thus, blocking mGluR2/3 inhibits the efficacy of N-acetylcystine to reduce 

reinstatement of cocaine self-administration in rats, suggesting that mGluR2/3 has a role in 

the decrease of extracellular glutamate concentration in drug dependence (Moran et al., 

2005). It has been reported that systemic or microinjection of mGluR2/3 agonist, LY379268, 

reduced nicotine-seeking behavior (Liechti et al., 2007). Moreover, stimulation of mGluR2 
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by positive receptor modulator reduced nicotine self-administration (Sidique et al., 2012). 

We suggest here that both iGLURs and mGluRs play a critical role in nicotine dependence. 

For example, iGLURs and mGluR1/5 antagonists attenuated nicotine seeking (Bespalov et 

al., 2005, Dravolina et al., 2007). However, mGluR2/3 functions as a negative regulatory 

role in glutamate neurotransmission, since mGluR2/3 agonists are able to attenuate nicotine-

self-administration behavior (Liechti et al., 2007, Sidique et al., 2012).

5. Conclusion

Nicotine may be able to affect excitatory and inhibitory neurotransmitters in 

mesocorticolimbic brain regions. Dopamine has been long standing as target for the 

treatment of nicotine dependence through the use of bupropion as an FDA- approved drug, 

which is a dopamine transporter blocker. In addition to dopamine as a target, nicotine has 

been studied to have modulatory effects on glutamatergic system through multiple 

mechanisms in the mesocorticolimbic area. Nicotine dependence may result on changes in 

glutamatergic transmission mediated by smoking or tobacco use. Thus, studies clearly 

demonstrated that chronic exposure to nicotine has been linked to increase the release of 

glutamate through stimulatory effect in presynaptic nAChRs located in glutamatergic axon 

terminals. Furthermore, upregulating GLT-1 expression, antagonizing certain glutamate 

receptors or antagonizing presynaptic nAChRs may have modulatory effects in glutamate 

transmission, and consequently lead to attenuation of nicotine dependence. These suggest 

that targeting glutamatergic neurotransmission through different key proteins may have 

potential therapeutic effect in the treatment of nicotine dependence.
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Abbreviations

GLT-1 Glutamate transporter 1

NAc nucleus accumbens

PFC prefrontal cortex

VTA ventral tegmental area

nAChRs nicotinic acetylcholine receptors

iGLURs ionotropic glutamate receptors

NMDA N-methyl-D-aspartate

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

MSN Medium spiny neuron

DA Dopamine

EAAT3 Glutamate transporter 3
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PI3K phosphatidylinositol-3-kinase

alphaPKC alpha protein kinase C

xCT cystine/glutamate exchanger

mGluRs metabotropic glutamate receptors
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Highlights

• Nicotine stimulates glutamate release and calcium influx

• NMDA and AMPA receptors antagonists decrease nicotine-induced dopamine 

release

• GLT-1 and xCT upregulators reduce nicotine self-administration

• iGLUR and mGluR1/5 antagonists and mGluR2/3 agonist attenuate nicotine 

seeking
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Figure 1. 
Schematic diagram shows the effect of nicotine on presynaptic α7-nAChRs in glutamatergic 

terminals in the PFC. Glutamate released from glutamateregic neurons, binds to iGLURs in 

both striatal medium spiny neuron (MSN) in the NAc and dopaminergic terminals in the 

VTA. Glutamate activates dopamine release through stimulation of iGLURs in 

dopaminergic neurons. Dopamine then binds to dopamine receptor 1 (DAR1) or dopamine 

receptor 2 (DAR2) in the MSN, inducing dopamine actions.

Nucleus accumbens (NAc); Ventral tegmental area (VTA); Prefrontal cortex (PFC); 

Nicotinic acetylcholine receptors (nAChRs); Ionotropic glutamate receptors (iGLURs); N-

methyl-D-aspartate (NMDA); α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA); Medium spiny neuron (MSN); Dopamine receptors (DARs).
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Figure 2. 
Schematic diagram shows the effect of nicotine on glutamatergic system. Nicotine binds to 

nAChRs located at the glutamatergic terminal and elevates extracellular glutamate 

concentration. Moreover, decreased GLT-1 and xCT expression were associated with 

chronic exposure to nicotine. Glutamate is converted to glutamine by glutamine synthase 

enzyme in glial cells. Extracellular glutamate binds to iGLURs (NMDA and AMPA 

receptors) located in postsynaptic neurons. Negative feedback mechanism can occur due to 

binding of extracellular glutamate to mGlu2/3 receptor in presynaptic neurons of 

glutamatergic terminals, and consequently decreases extracellular glutamate concentration.

Glutamate transporter 1 (GLT-1); cystine glutamate exchanger (xCT); Nicotinic 

acetylcholine receptors (nAChRs); N-methyl-D-aspartate (NMDA); α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA); glutamate (GLU); metabotropic glutamate 

receptors (mGluRs).
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