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Abstract

Imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) and principal component 

analysis (PCA) were used to investigate two sets of pre- and post-chemotherapy human breast 

tumor tissue sections to characterize lipids associated with tumor metabolic flexibility and 

response to treatment. The micron spatial resolution imaging capability of ToF-SIMS provides a 

powerful approach to attain spatially-resolved molecular and cellular data from cancerous tissues 

not available with conventional imaging techniques. Three ca. 1 mm2 areas per tissue section were 

analyzed by stitching together 200 μm × 200 μm raster area scans. A method to isolate and analyze 

specific tissue regions of interest by utilizing PCA of ToF-SIMS images is presented, which 

allowed separation of cellularized areas from stromal areas. These PCA-generated regions of 

interest were then used as masks to reconstruct representative spectra from specifically stromal or 

cellular regions. The advantage of this unsupervised selection method is a reduction in scatter in 

the spectral PCA results when compared to analyzing all tissue areas or analyzing areas 

highlighted by a pathologist. Utilizing this method, stromal and cellular regions of breast tissue 

biopsies taken pre- versus post-chemotherapy demonstrate chemical separation using negatively-

charged ion species. In this sample set, the cellular regions were predominantly all cancer cells. 

Fatty acids (i.e. palmitic, oleic, and stearic), monoacylglycerols, diacylglycerols and vitamin E 

profiles were distinctively different between the pre- and post-therapy tissues. These results 

validate a new unsupervised method to isolate and interpret biochemically distinct regions in 

cancer tissues using imaging ToF-SIMS data. In addition, the method developed here can provide 

a framework to compare a variety of tissue samples using imaging ToF-SIMS, especially where 

there is section-to-section variability that makes it difficult to use a serial hematoxylin and eosin 

(H&E) stained section to direct the SIMS analysis.

Introduction

Mass spectrometry imaging (MSI) is quickly emerging as a key research tool in biological 

research areas such as neuroscience, drug delivery, and cancer.1–4 The combination of MS 

chemical and molecular specificity with imaging capabilities has provided a new perspective 

for biological sample analysis including localization and interactions of drugs in cells and 

tissues,5–9 proteomics,10, 11 and lipidomics.12–14 Specifically, the MS imaging technique 

time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a label-free method with 
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micron resolution imaging capabilities making it well suited for imaging of cells,15, 16 and 

key tissue regions.17, 18 Utilizing the micron lateral resolution of SIMS can be crucial in the 

process of separating regions of interest within tumor microenvironments for cancer 

research. These microenvironments can regulate anticancer activities but can also promote 

cancer progression and provide biological protection which limits therapeutic efficacy and 

delivery.19 By combining micron resolution imaging with molecular information, it is 

possible to observe and begin to interpret potential immune response related metabolic 

events that may associate with cancer progression or regression within the tumor.

Breast cancer biopsies can vary cellular density as well as percent of cancer cell and stroma 

(connective tissue composed of fat and fibrous tissue) content. Pathological assessment is 

typically performed with histological staining to determine the location, type and grade of 

tumors, but does not always predict patient outcome or response to chemotherapeutics. 20–25 

Stromal heterogeneity and tumor-stroma interactions provide prognostic indicators for 

invasive growth and metastasis.26–29 Previous studies indicate that stromal-cancer cell 

metabolite interchange aids tumor growth and progression.30, 31 It is hypothesized that the 

stromal biochemical state may dictate sensitivity to chemotherapy.32 However, it is difficult 

to acquire metabolic data specifically from cellular and stromal regions, as these regions can 

be difficult to isolate for metabolic profiling due to the complexity of their spatial 

distribution. Separating out chemical information specifically from the stromal or cellular 

region can be useful to compare chemistries from different tissue areas that contain varying 

amounts of these specific regions.

In this study, a combination of ToF-SIMS and multivariate imaging analysis techniques are 

used as an analytical tool to identify chemical variation of specific cellular and stromal 

regions from breast cancer specimens and to compare the chemical variation between pre- 

and post- chemotherapy. We describe different analysis methods to isolate and interpret 

metabolic features of cancer cell regions within tissues including pathologist-driven 

selection of regions of interest (ROIs) using hematoxylin and eosin (H&E) stained tissue 

sections as well as the use of an unsupervised imaging MVA method to separate out stromal 

regions in the SIMS images. Herein unsupervised refers both to the fact that principal 

component analysis (PCA) is an unsupervised MVA method (meaning no input other than 

peak intensities are used), and to the fact that by using PCA to select ROIs we demonstrate 

that one can isolate cellular and stromal areas within breast tissue sections and reduce scatter 

within the resulting scores without introducing human bias through hand-selected regions. 

This method further provides improvement to isolate and analyze complex regions that 

consist of either cellular/tumor or stromal regions that cannot be selected by hand or the 

threshold of just one mass spectrometric image. The MVA method of PLS-DA has been 

successfully used to with InfraRed (IR) imaging data to discern different regions in breast 

cancer tissue and identify tumor and non-tumor areas within a set of samples.33 However the 

method of using PCA to select ROIs for comparing different regions has not yet been 

applied to ToF-SIMS imaging data. ToF-SIMS has been used previously to study diseased 

tissues and cells with a major focus on lipids,18, 34–36 which are known to contribute to and 

also regulate a range of metabolic and biochemical processes within cells. Furthermore, 

alteration in lipid metabolism is a hallmark of carcinogenesis.37 The imaging data in this 

study is specifically used to assess how lipid molecules relate to the differences found 
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between tissue samples. One major distinction, however, is that here we compare similar 

regions (e.g. cellular regions) of four different tissue samples to investigate chemical 

differences between untreated tumors and those that have been exposed to chemotherapy 

treatments.33 In addition, the method developed here can provide a framework to compare 

multiple tissue samples using imaging ToF-SIMS when there is difficulty using a region of 

interest marked on a serial (consecutive) section to direct the SIMS analysis due to section-

to-section variability. This novel approach utilizes the high lateral resolution capability of 

imaging ToF-SIMS to compare highly specific regions (e.g. just tumor cells) from one tissue 

to another and use spectral PCA to highlight chemical differences between those tissue 

specimens.

Methods

Tissue Sample Preparation

Paired pre- and post- chemotherapy biopsy specimens were obtained from patients 

consented according to institutional review board protocols. Both patients received standard 

pre-operative chemotherapy with doxorubicin at 60 mg/m2 IV and cyclophosphamide 600 

mg/m2 IV on day 1 every 14 days for 4 cycles and paclitaxel 80 mg/m2 IV weekly x 12 

weeks. The patient with ‘Basal Like’ breast cancer received the paclitaxel first while the 

patient with Luminal A breast cancer received the Doxorubicin and cyclophosphamide 

combination first, but the order of therapy is known to not substantially affect treatment 

efficacy. Specimens were immediately embedded in Tissue-Tek® (Fisher Scientific) 

optimum cutting temperature (OCT) compound, cryopreserved using liquid nitrogen and 

stored in a −80 °C freezer. Frozen tissue blocks were sectioned in a cryostat-microtome held 

at −23°C at the Fred Hutchinson Cancer Research Center (FHCRC). Each of the four tissue 

samples was serially sectioned three times and each section was ~5 μm in thickness. The 

first and third sections were stained for optical imaging using hematoxylin and eosin (H&E), 

while the second section was analyzed by ToF-SIMS. The second slice of tissue was placed 

directly on a 2 cm2 silicon wafer that was previously cleaned with two successive 

sonications in dichloromethane, acetone, and methanol.38 The samples were then placed in a 

petri dish, sealed with Parafilm® (VWR International), and transported to the University of 

Washington for immediate ToF-SIMS analysis. Each tissue was sectioned on a different day 

and the time from tissue cutting to analysis was less than 90 minutes for any sample.

Gene Expression Subtype Identification

Six to nine tissue sections were macrodissected to select regions containing the highest 

proportion of invasive tumor cells to reduce contamination from non-tumor cells. RNA was 

isolated using the AllPrep DNA/RNA Mini Kit (Qiagen Inc., Valencia, CA) and gene/

transcript expression was assessed using the WG-DASL® (HumanHT-12 v4) Assay 

(Illumina, Inc., San Diego, CA). Data processing and analysis were done in the R 

environment (v3.0.3). The raw expression data were pre-processed and median normalized 

using the Bioconductor lumi package,39 and gene expression intrinsic subtypes (Luminal A 

and Basal-like) were determined using the 50-gene panel described by Parker at al.40 with 

the software Bioconductor genefu package.41
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ToF-SIMS

ToF-SIMS experiments were performed using an ION-TOF TOF.SIMS 5–100 (ION-TOF 

GmbH, Münster, Germany) equipped with a liquid metal ion gun (LMIG) for analysis and 

an electron flood gun for charge neutralization. The LMIG was used to generate a pulsed 25 

keV Bi3+ beam impacting the target at an angle of 45°. The Bi3+ beam was set in 

spectroscopy mode for high mass resolution (HMR) to acquire spectra in both polarities and 

fast imaging mode to acquire high spatial resolution (HSR) negative polarity images. The 

Bi3+ current was typically 0.13–0.15 pA for HMR and 0.05 pA for HSR. Target currents 

were measured before each data set using a Faraday cup. HSR mode images with micron 

spatial resolution were acquired and compared to features found in ToF-SIMS to H&E 

images. Large area images of the entire tissue biopsy were created by manually stitching 

individual optical images of 800 μm × 800 μm from the video camera within the ToF-SIMS 

before analysis of each tissue. These large optical stitched images were then aligned to H&E 

images using the tissue borders to aid in selecting areas where analysis patches were to be 

acquired. For all data collection, HMR positive ion data was acquired followed immediately 

by HMR negative ion data on the same area. X and Y sample stage coordinates were saved 

in the software to ensure data acquired was from the same region in both polarities. HSR 

images were obtained from each sample region after all HMR spectra were completed. In 

HMR mode, mass resolution (m/Δm) for the C2H3
+ ion was greater than 4500. Positive ion 

spectra were calibrated to CH3
+, C2H3

+, and C4H5
+. Negative ion spectra were calibrated to 

CH−, OH−, and C2H−.Spectra were acquired from 1 mm × 1mm or 1.6 mm × 0.6 mm 

“patches” comprising of 25 or 24 200 μm × 200 μm “tiles” on each tissue, an example of 

positions is shown in Figure 1. Each tile contains 256 ×256 pixels, giving the patches a total 

pixel count of 1280 × 1280. Selecting to analyze three large patches rather than the entire 

tissue biopsy sample was chosen due to the time intensiveness required to analyze the 

samples. Long analysis times can lead to degradation of lipid signals or lipid migration.38, 42 

Thus, analyzing three patches results in a timely analysis, providing the most relevant and 

reproducible data of the tissue’s native chemical composition. The Bi3+ dose was limited to 

≤5.0×1011 ions/cm2 for each tile in both positive and negative ion modes, resulting in a total 

Bi3+ dose ≤1.0× 1012 ions/cm2 per tile. SurfaceLab 6 software (ION-TOF GmbH, Münster, 

Germany) was used for all analyses.

Principal Component Analysis

Principal component analysis (PCA) was applied to ToF-SIMS images acquired from the 

tissues using all pixels in the data set (herein referred to as image data and displayed as 

images) and to summed spectral data from individual patches (herein referred to as spectral 

data and displayed as individual data points).

Data used in this study were pre-processed for PCA as follows: 1) ToF-SIMS image data 

were Poisson scaled and mean centered, and 2) summed spectral data from individual tile 

images were normalized to the sum of the intensities of all of the peaks in the peak list, 

square-root transformed, and mean centered. Regions of exposed silicon substrate and OCT 

(e.g. holes or tears from cutting tissue and embedding medium surrounding tissue) were 

excluded from all analyses by applying a threshold to the pixels with a Si+ signal, where m/z 

27.9 was used to detect silicon and m/z 332.2 (C14H29
+, a fragment of the benzalkonium 
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additive in OCT)38 is used to detect OCT areas. All PCA was performed using the 

NBToolbox SpectraGUI and ImageGUI (Daniel Graham Ph.D., NESAC/BIO, University of 

Washington), that operate within MATLAB (MathWorks, Natick, MA). Peaks were chosen 

whose maximum intensity was twice or more than that of the average background intensity. 

The spectra from all tissues were overlaid and then peaks were manually selected and 

integrated to full width half max. All peaks below m/z 920 were selected, excluding known 

salt, salt adduct, substrate and inorganic peaks. A total peak list of 846 and 807 peaks were 

chosen from the positive and negative ion modes, respectively. All peaks in the list were 

used for image PCA analysis while spectral PCA was limited to peaks with m/z above 200 

resulting in 391 and 329 peaks for the positive and negative ions peak lists, respectively.

PCA, using the ImageGUI, is first applied to image data formatted as .bif6 files from 

SurfaceLab 6. No peaks are excluded from this data except salts, substrate (Si and Si 

containing peaks), and embedding medium (OCT). Normalization was not applied to 

imported image patches; image data were pre-processed by Poisson scaling and mean 

centering before PCA.

The presence of large fatty acid droplets, observed as well defined high intensity areas of 

C16:1 (C16H29O2
−, palmitoleic acid, m/z 253.2),43, 44 C16:0 (C16H31O2

−, palmitic acid, m/z 

255.2),44, 45 C18:2 (C18H29O2
−, linoleic acid, m/z 279.2),44, 46 C18:1 (C18H33O2

−, oleic 

acid, m/z 281.2),44, 45 and C18:0 (C18H35O2
−, stearic acid, m/z 283.2),13, 44, 45, 47 were 

occasionally observed in different tissue sections. The strong signal from the fatty acid 

droplets would dominate PCA and the main variability between the samples would then be 

related to fatty acid droplets present in that particular tissue slice. Therefore, the fatty acid 

droplets were removed prior to PCA as manually selected ROIs of the tissue image data, 

using the polyline function within SurfaceLab 6, so sample comparison could be focused on 

specific tissue regions. Droplets were easily identified in images as localized areas with 

characteristic fatty acid peak intensities at least 5 times that of the fatty acids distributed 

within the remaining tissue section. It is important to note that breast tissue is a fatty tissue, 

therefore the prevalence of fatty acid droplets within tissue sections can vary. Analysis of 

other types of tissues (i.e. brain, heart, and liver) may or may not contain these 

droplets.44, 45, 48, 49 When analyzing chemical variances between patients or within one 

patient, including the fatty acid droplets present in breast tissue could cause 

misinterpretation data due to the variability of droplet presence (i.e. if there happened to be a 

droplet in that particular biopsy sample and/or section).

Scores images that corresponded to cellular and stromal areas from serial H&E images were 

selected to be used as masks. Using SurfaceLab 6, scores images were imported and spectra 

reconstructed by applying a 10% minimum, 90% maximum signal threshold to the pixels 

within the selected score image. The resulting data, in .bif6 format, were imported back into 

ImageGUI and the patch parsed into individual 200 μm × 200 μm tiles, shown in Figure 1, 

where each tile represents one data point in the spectral PCA plots. The parsed data was then 

imported in .xlsx format into SpectraGUI for spectral analysis, where each individual tile 

represents one data point in the PCA scores plots. Imported data were normalized to the sum 

of the intensities of all of the peaks in the peak list, square-root transformed, and mean 

centered prior to spectral PCA.
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Results and Discussion

Paired pre- and post- chemotherapy tissue samples from two patients were acquired for a 

total of four tissue samples. The hematoxylin and eosin (H&E) stained sections for the four 

tissue samples are shown in Figure 1A and B. The hematoxylin stain, blue color, indicates 

the cellular nuclei while eosin stains the stromal or connective tissue in a lighter pink color. 

Three stitched patches (as described in Figure 1) were taken per tissue for a total of 12 

stitched patches. Each of the breast cancer specimens were classified into gene expression 

intrinsic subtypes.40 The first pre/post-therapy specimen pair was classified as a Luminal A 

breast cancer, characterized by having genetic expression patterns similar to the luminal 

epithelial component of the normal breast.20, 50 Generally, the Luminal A cancers are 

estrogen receptor (ER) and progesterone receptor (PgR) positive, and human epidermal 

growth factor receptor 2 (HER2) negative with lower expression of proliferative genes. The 

second pre/post-therapy tissue pair was classified as a Basal-like breast cancer. The Basal-

like subtype typically lacks expression of ER, PgR, and shows low or no HER2 expression. 

Basal-like tumors are characterized by an expression pattern corresponding to that of the 

basal epithelial cells in the normal breast and body and highly express proliferation 

genes. 20, 50

In order to ascertain chemical differences between pre- and post- chemotherapy tissues, 

PCA was used to analyze ToF-SIMS spectral and image data. Three different methods are 

used to acquire information from different ROIs from different tissue slices. Specifically, (1) 

using the spectral data from all patches within the region imaged from a given tissue, (2) 

using regions indicated by pathologist on a H&E stained slice image and (3) using the 

spectral data from all patches after generating ROIs using imaging PCA. The negative 

polarity ion data showed the best correlation between the pre and post chemotherapy 

treatment samples and thus is used to compare the spectral PCA results generated from the 

three different ROI methods. The positive ion PCA results did not show separation that 

correlated with pre- and post-chemotherapy treatment regardless of the method used. The 

positive polarity data are presented and discussed using the last method only.

MVA of All Patches

As detailed in the methods section, each analysis patch was separated into individual tiles 

after removal of substrate, embedding medium, and large fatty acid deposits, followed by 

the application of PCA. The spectral PCA results from the negative ion polarity data with 

peaks above m/z 200 (key m/z values, deviations, and proposed biological molecule are 

shown in Supplementary Table 1) of the entire stitched patches (both pre and post for both 

tissue types) are shown in Figure 2. The lines above and below the data points indicate 95% 

confidence intervals. PC1 data (not shown) indicates slight separation between tissues from 

the two patients, rather than by pre- and post-therapy possibly identifying person-to-person 

chemical variation. In PC2, it is noticeable that the post-therapy tissues do indicate a trend 

with higher scores, which correspond to a high loading value of fatty acid C16:0 

(C16H31O2
−, palmitic acid, m/z 255.2), while the pre-therapy tissues trend with lower score 

values, corresponding to the strongest negative loading peak of Vitamin E (C29H49O2
−, m/z 

429.3)46 and fatty acid C18:1 (C18H33O2
−, oleic acid, m/z 281.2). Using the entire patch as a 
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region of interest, the scores exhibit a large spread between the 95% confidence intervals 

signifying a high amount of variability within each patch as well as for different patches 

within the tissue. It is possible that the large variability may be due to comparison of the 

entire tissue areas rather than comparison of specific tumor features within the analysis 

patch.

MVA Analysis of H&E driven ROI selections

Due to the heterogeneity and complexity of the sample, a second type of ROI selection was 

performed to focus on pathologist-recommended regions, e.g. high density of cancer cells, 

from the serial H&E slice. These regions are outlined in light blue in the H&E and black in 

the ToF-SIMS summed image of CN− and CNO− (Figure 3A and B), to provide a guide for 

a more accurate ToF-SIMS spectral comparison between cancer cell regions or “cancer cell 

nests” and stromal regions. Figure S1 shows the pathologist-selected areas on the H&E 

images for all four tissues.

It can be noted (in Figure 3) that the H&E image of the tissue that was examined by the 

pathologist is not identical to the ToF-SIMS image. This is not surprising since there is at 

least a 5 μm difference between these serial sections (including the section thickness and 

frost buildup on the tissue sample prior to the slicing of the next section). In an effort to 

develop a minimally time consuming process, a rough estimate of the pathologist-selected 

areas were used, meaning that only tiles that primarily corresponded with pathologist-

selected areas were selected for the analysis (Figure 3C). The results using PCA on this 

more selective region of interest are shown in Supplemental Figure 2. Comparing the 

method of a selective region to whole spot analysis (Figure 2), it can be seen that the 

percentage of variance of PC2 as well as the loadings peaks look similar for both types of 

ROI analyses. However, the scores separation between the pre- and post-therapy specimens 

from the Basal-like cancer are no longer observed while the pre and post specimens from the 

Luminal A cancer now show a clearer separation. While a hand drawn ROI to attempt to 

directly select the regions selected by the pathologist may have slightly improved these 

results, the section-to-section variability noted during the analysis likely plays the major role 

in incorrectly selecting the ROIs on the ToF-SIMS image(since the regions of interest on the 

pathology section may not match those on the ToF-SIMS section). For example, the image 

shown in Figure 3 has a large, obvious stromal feature (large pink region), while other tissue 

slices such as the Basal-like post chemotherapy tissue (Supplementary Figure 1) had very 

small, well separate regions that were difficult to correlate and identify on the ToF-SIMS 

image. This difference in separation could be due the following; (1) large stromal areas 

excluded by the pathologist in the Basal-like post-chemotherapy tissue, (2) small distributed 

cellular areas included by the pathologist within the Basal-like pre-chemotherapy tissue, (3) 

lowering the number of tiles used in PCA, and (4) larger cellular areas comprised of more 

tiles included by the pathologist within the Luminal A cancer tissues.

Variations in Serial Tissue Slices

Composition and localization of cellular areas within a tumor vary as you move serially 

through a tissue block. This variability increases the complexity of choosing the ToF-SIMS 

analysis region of a tissue section by comparing to a region from a serial section. Figure 4 
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illustrates an example of the heterogeneity between the three serial 5 μm sections. For 

accurate spot location on each section, images were aligned by overlay at the same 

magnification and approximate spot location boxed. In Figure 4A and D, the initial H&E 

section reviewed by the pathologist, a circular structure, noted by a black arrow, is present 

within the 1 mm × 1 mm analysis area. It can also be seen that in Figure 4A there is not a 

substantial amount of cell nuclei (blue stain) populating the region. Figure 4B and E shows 

the ToF-SIMS stitched microscope camera image and the summed CN− and CNO− HSR 

image acquired. Figure 4C is the serial section cut after the ToF-SIMS section. The higher 

intensity region in the center of the ion image (Figure 4E) is indicative of the stromal region 

whereas the lower intensity regions indicate cellular regions (with the exception of the area 

with no signal in the lower left area of the image which is due to fatty acid droplets). 

Comparing all the images in Figure 4 it can be seen that the ToF-SIMS image in 4E is more 

similar to the H&E image in 4F, but still has some differences highlighting the difficulties in 

using serial sections to choose analysis regions as certain structures vary in depth.

MVA Using Unsupervised Selection of Region Specific ROIs by PCA

H&E-stained serial tissue sections do not necessarily show the same areas of interest as the 

ToF-SIMS analysis section and, as shown in the previous two methods, the amount of 

cellular and stromal area in the analysis area may dominate the PCA separation. Therefore, a 

different method must be developed to focus on tissue areas of interest that can provide 

tissue to tissue slice comparisons. Additionally, there is interest in comparing specific 

regions from different tissue samples (for example comparing only cellular regions from two 

different patient biopsies). While the tissue shown in Figure 3 had a rather prominent 

stromal feature, making it relatively simple to separate out major stromal areas from the 

cellular areas, many of the tissue sections had less prominent stromal features making it 

more difficult to use a coarse method to precisely separate out the stromal and cellular areas. 

In order to more precisely separate the stromal and cellular areas of the tissue, PCA was 

applied to the image data of each patch with an m/z 0 –920 peak list. The low mass peaks, 

such as CN− and CNO−, were previously shown to be indicative of stromal regions (e.g. 

Figure 3B) and would aid in separation of these areas.

In Figure 5, principal component 2 image scores (A and C) and loadings (B and D) produced 

from image PCA demonstrate the separation between cellular (Figure 5A and B) and stromal 

regions (Figure 5C and D), which can be visually seen to correspond with the cellular and 

stromal structures visible in adjacent H&E-stained sections as seen in Figure 3A. Again, the 

tissue section with the most prominent stromal feature is chosen to demonstrate the utility of 

this method to separate out stromal features. In this particular sample, PC1 separates the 

presence of a fatty acid droplet and regions exhibiting vitamin E (shown in Figure 6C) from 

the remainder of the image, which is dominated by high loading peaks of CN− and CNO− 

and other low mass fragments (not shown). In tissue samples where fatty acid droplets are 

not present, the separation between cellular and stromal is found in PC1.

The PC2 loadings plot for this patch exhibit high negative loadings for CN−, CNO−, and the 

fatty acids C18:2 (C18H29O2
−, linoleic acid, m/z 279.2) and C18:1 (C18H33O2

−, oleic acid, 

m/z 281.2). These negative loading masses can be associated with the negative PC2 scores 
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image analogous to the stromal region of the tissue. The high negative loading of the fatty 

acid peaks could be due to the fatty acid droplet located at the left edge of the patch, visible 

as a high intensity region in the negative PC2 scores image. The composition of these fatty 

acid droplet regions, which appear as white (un-stained) ‘holes’ in the histology image, are 

easily identified with ToF-SIMS imaging. Consistent trends generated by image PCA 

observed from the loadings plot show CN−, CNO−, and PO3H− (m/z 79.9) loading in the 

direction of the stromal region scores.

The positive loading masses can be associated with the positive PC2 scores image, which is 

indicative of the cellular regions within the tissue sample. General trends observed while 

using image PCA indicated that cellular areas consistently had higher relative intensities of 

fragments related to vitamin E (C10H11O2
−, m/z 163.1 and C29H49O2

−) and phosphoinositol 

(C9H16PO9
−, m/z 299.05)51. Due to the section-to-section variability in the samples, several 

cellular domains were revealed in the imaging PCA analysis of the tissues that were not 

visible in the histology images.

The scores images that were representative of cellular and stromal areas were used to create 

an ROI threshold “mask”, to extract the imaging mass spectral information specifically from 

stromal and cellular regions. Figure 6 demonstrates the process used to create specific 

cellular and stromal ROIs using the image PCA scores as masks. First, the representative 

cellular and stromal scores images are scaled to equal the same number of pixels acquired in 

the ToF-SIMS image (Figures 6A and B). As previously discussed in the methods section, 

breast tissue is a fatty tissue and the presence of fatty acid droplets may vary section-to-

section and between patient specimens. When comparing the chemical variance between one 

patient or many, it is important that the data is not misinterpreted by the presence or absence 

of fatty acid droplets in a particular specimen. Before the mask is applied, fatty acid droplets 

must be removed from the scores image or the results from spectral PCA will be heavily 

influenced by their presence or absence when comparing sample chemistries. The droplet 

can be verified by viewing the raw data images. Fatty acid droplets generally separated from 

the tissue sample and are typically visible in PC1 scores (Figure 6C, white arrow). In order 

to remove the fatty acid droplets from these data sets, PC2 can be overlaid with PC1 and the 

fatty acid droplet area can be subtracted from the PC2 scores image. Once the droplet area 

has been removed new cellular or stromal images can be generated. These new images can 

then be applied as ROI masks as previously described. An example of completed masks are 

shown in teal in Figures 6D and E.

After spectra were reconstructed using either the cellular or stromal ROI masks, the ROI 

patch areas were subjected to the same process, parsing the patch into tiles for individual 

data points and followed by spectral PCA of the tiles as was done in the previous datasets. 

Figure 7 shows the resulting spectral PCA scores and corresponding loadings plots for PC2 

of the reconstructed tiles of the cellular regions identified by image PCA. The scores trends 

are similar to those seen in PC2 scores of the pathologist-selected areas (Supplemental 

Figure 2B) as well as the analysis of the entire patch (Figure 2). As with the previous 

analysis methods, the post-therapy tissues have positive scores values and the pre-therapy 

tissues have negative scores. However, when data specifically from the cellular regions of 

the images are compared, the spread of the data between the confidence intervals is reduced. 

Bluestein et al. Page 9

Analyst. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The loadings plots for PC2 in Figures 2B and Supplemental Figure 2B are also similar to the 

loadings plot seen in Figure 7B, where saturated fatty acids C16:0, C18:0 (C18H35O2
−, 

stearic acid, m/z 283.2) and fragments of possible sphingomyelin (C34H67NO6P−, 

C36H69NO6P−, C38H76N2O6P−, SM(34:1), m/z 616.5, 642.5, 687.6 respectively)44 have 

positive loadings, while vitamin E and the unsaturated fatty acid C18:1 load negatively, 

indicating different chemical profiles for cellular regions within pre/post-therapy tissues. 

Key differences, however, include little to no contribution from PI fragments or C14. The 

PC1 vs PC2 scores plot and corresponding loading plots (Figure 8) for the cellular specific 

ROIs shows both the separation between pre- and post-chemotherapy tissues on PC2 as well 

as some separation between the Basal-like subtype and Luminal A subtype tissues across 

PC1. There is large variability in the Luminal A pre-chemotherapy tumor tissue, where the 

confidence interval slightly overlaps both post-chemotherapy tissues. However, both the pre 

and post-chemotherapy Luminal tissues have largely negative scores on PC1, while the 

Basal-like tissues have largely positive scores. Phosphoinositol fragments (C6H1-PO8
−, m/z 

241.01, and C6H12PO9
−, m/z 259.02) and C18:0 trend with Luminal type tissues while 

C14:0 (C14H27O2
−, m/z 227.2), C16:0, and C18:1 fragments are correlated with the Basal-

like type tissues.

Supplementary Figure 3 shows the PCA scores and corresponding loadings plots of PC2 

comparing the stromal regions of the samples in the negative polarity. Phosphoinositol 

fragments, C18:1, and vitamin E trend to be associated with the pre-chemotherapy samples. 

Where C14:0, C16:0, C18:0, and sphingomyelin fragments are correlated with the post-

chemotherapy samples. The 95% confidence intervals have a wider spread for stromal 

region data than was seen for the cellular region data, however, a trend is still noticeable 

within the stroma data indicating that differences between pre- and post-chemotherapy 

samples can be found in the stromal as well cellular regions.

As was noted previously for ToF-SIMS investigation of breast cancer cells, the negative 

polarity ions provide the ability to observe distributional changes of fatty acids and intact 

lipids, while the positive data has been shown to provide the ability to observe changes in 

mono and diacylglycerides.47 While PCA analysis of the pre- and post-chemotherapy tissues 

using negative polarity ions similarly shows a trend in the scores related to fatty acids and 

lipids, the positive ion data results in more overlap of the scores 95% confidence intervals 

than found for the negative ion data. This is best shown in Supplementary Figure 4 where 

PC2 vs PC4 scores and corresponding loadings are shown for the positive ion data. There is 

near separation between the pre/post Basal-like samples in PC2, but separation between the 

Luminal A pre/post samples is not observed until PC4. In summary, there does not appear to 

be a trend in the loadings peaks for the pre- and post-therapy tissues using positive ions, 

indicating that any changes in the mono and diacylglyceride content as a result of 

chemotherapy are not consistent across tissue types.

Conclusions

Current cancer research has indicated, primarily through gene expression data, that specific 

microenvironments in breast tumors may provide signals and nutrients to promote cancer 

cell survival and/or chemoresistance.27, 28, 52 However, due to the heterogeneity of human 
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breast cancer tissues, it remains difficult to acquire supportive metabolic data to aid in 

understanding tumor growth and treatment efficacy. The regions of interest (ROIs) selected 

for such molecular characterization require micron-level lateral resolution. Here we show 

that imaging ToF-SIMS can be used to chemically identify distinct tissue regions in tumors 

with high lateral resolution. In this work, we have presented an unsupervised methodology 

for isolating and analyzing specific tissue regions providing a way to compare similar 

regions in multiple tissue slices. These results demonstrate that the combination of imaging 

ToF-SIMS and image principal component analysis (PCA) can be used as an unsupervised 

method to select distinct ROIs within tissues. Comparisons are made using the entire 

analysis regions as well as hand-selected ROIs. When different tissue samples are compared 

using imaging PCA-driven ROIs there is less spread in the PCA scores. An advantage of 

using the imaging PCA-directed method is that it allows for like regions to be compared in 

spectral PCA and thereby improves chemical separation when multiple tissue samples are 

compared. Here four different tissue sections from two different patients before and after 

chemotherapy were compared using the negative ion ToF-SIMS data and PCA-driven ROI 

selection. Trends are found for tissues breast cancer specimens that were taken before 

chemotherapy treatment (pre) and those taken from the same patient after treatment (post). 

From the spectral PCA results it is seen that the unsaturated fatty acids C16:0 and C18:0 and 

sphingomyelin correspond with the post-chemotherapy tissues. Deficiency of sphingomyelin 

is thought to be related to the disruption of apoptosis in highly invasive cancer cells53, 

therefore an increase in intensity in the post-treated samples compared to the pre-treated 

may correlate with treatment response of the patient. C16:0 has been shown to generate 

apoptotic signals, some related to sphingolipids.54 Conversely, overexpression of fatty acid 

synthase in breast cancer, which is responsible for the synthesis of C16:0, has been shown to 

contribute to drug resistance55.

Vitamin E and the unsaturated fatty acid C18:1 correspond with the pre-chemotherapy 

tissues in the PCA analysis. Vitamin E may provide strong antioxidant protection of cancer 

cells from lipid peroxidation, facilitating tumor growth when in the presence of reactive 

oxygen species (ROS).56 That the vitamin E signal corresponds to the pre-treated and not 

the post-treated tissues is consistent with several studies that have shown that chemotherapy 

and radiation therapy are associated with increased formation of reactive oxygen species and 

depletion of critical plasma and tissue antioxidants.57, 58 The C18:1 oleic acid is known to 

prevent cytotoxicity and decrease mitochondrial superoxide production induced by C16:0 

palmitate.59 This provides a possible explanation for the trends seen within the pre-

chemotherapy treated tissues for both C18:1 and vitamin E. While these findings require 

further experimental investigation to gain a concrete understanding in cancer biology, the 

results demonstrate the utility of PCA-driven ROI selection of ToF-SIMS data to compare 

metabolic trends of specific regions across multiple patients and tissue sections.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 2. 

Bluestein et al. Page 16

Analyst. Author manuscript; available in PMC 2016 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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