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Abstract: The gold standard for identifying stroke lesions is manual tracing, a method that is known
to be observer dependent and time consuming, thus impractical for big data studies. We propose
LINDA (Lesion Identification with Neighborhood Data Analysis), an automated segmentation algo-
rithm capable of learning the relationship between existing manual segmentations and a single T1-
weighted MRI. A dataset of 60 left hemispheric chronic stroke patients is used to build the method
and test it with k-fold and leave-one-out procedures. With respect to manual tracings, predicted lesion
maps showed a mean dice overlap of 0.696 6 0.16, Hausdorff distance of 17.9 6 9.8 mm, and average
displacement of 2.54 6 1.38 mm. The manual and predicted lesion volumes correlated at r 5 0.961. An
additional dataset of 45 patients was utilized to test LINDA with independent data, achieving high
accuracy rates and confirming its cross-institutional applicability. To investigate the cost of moving
from manual tracings to automated segmentation, we performed comparative lesion-to-symptom map-
ping (LSM) on five behavioral scores. Predicted and manual lesions produced similar neuro-cognitive
maps, albeit with some discussed discrepancies. Of note, region-wise LSM was more robust to the
prediction error than voxel-wise LSM. Our results show that, while several limitations exist, our
current results compete with or exceed the state-of-the-art, producing consistent predictions, very low
failure rates, and transferable knowledge between labs. This work also establishes a new viewpoint on
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evaluating automated methods not only with segmentation accuracy but also with brain–behavior
relationships. LINDA is made available online with trained models from over 100 patients. Hum Brain
Mapp 37:1405–1421, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Studies of brain and behavior in clinical populations
provide insight into functional organization and potential
for recovery after brain damage. Stroke is one of the most
frequent causes of brain lesion, with �610,000 new cases
each year in the US alone [Mozaffarian et al., 2015]. Nearly
80% of stroke cases are ischemic, while the remaining 20%
are hemorrhagic [Mozaffarian et al., 2015]. In either case,
the lesion is usually abrupt and focal, allowing for damage
to be demarcated on in vivo magnetic resonance or com-
puted tomography neuroimages. This may not be true for
other types of naturally occurring lesions, such as tumors,
where the tissue might be displaced and the true extent of
the damage might go beyond the signal abnormality
observed in in vivo images [Anderson et al., 1990; Karnath
and Steinbach, 2011].

The current procedures for lesion-based analyses have
two conflicting requirements. On one hand, lesions follow
the pattern of the vasculature, creating highly correlated
patterns of brain damage (that is, if a voxel is lesioned, the
neighboring voxel is likely to be lesioned as well). Conse-
quently, a large number of subjects is needed in order to
differentiate functional specialization in neighboring brain
areas [Kimberg et al., 2007]. On the other hand, the current
gold standard for lesion segmentation is manual tracing, a
procedure that requires time, knowledge, and effort, and
is inconsistent from rater to rater [Ashton et al., 2003; Fiez
et al., 2000]. To eliminate inter-rater variability, studies
often rely on the work of a single expert, who must per-
sonally trace or closely overlook the tracing process. While
this solution works for studies with small sample size, it
becomes increasingly impractical for studies with large
sample size. The bottleneck created by performing manual
tracings in studies that require large sample sizes is fur-
ther highlighted by the wide availability of MRI scanners
and the advent of big data science.

Computational algorithms propose to overcome this
problem. Because these methods only approximate manual
tracings, they must be tested for their reliability with
respect to expert labelers. Conceptually, automatic algo-
rithms fall primarily into two broad categories: (i) super-
vised methods that use machine learning to train the
algorithm with manually traced lesion examples, and (ii)
unsupervised methods that use mathematical models to
achieve the best accuracy with tunable parameters. The
number of images (or channels) required by the algorithm
is another factor to consider. Monochannel algorithms use

a single volume (i.e., T1, or T2, or FLAIR) to achieve the
segmentation, while multichannel algorithms use parallel
information from multiple volumes of the same subject
(T1, and T2, and FLAIR). Algorithms that use multiple
channels have access to more information, and typically
offer higher predictive accuracy [Maier et al., 2015]. Multi-
ple modalities, however, are not always available, and
they increase acquisition times, patient burden, acquisition
costs, and chances of motion related artifacts.

Independently of the category on which it falls, each
automatic algorithm is typically created and tested to pre-
dict a specific lesion type; i.e., stroke [Mitra et al., 2014;
Seghier et al., 2008; Shen et al., 2010; Stamatakis and Tyler,
2005], multiple sclerosis [Geremia et al., 2011; Jain et al.,
2015; Roura et al., 2015; Schmidt et al., 2012], white matter
hypointensities [Caligiuri et al., 2015], micro bleeds [Kuijf
et al., 2012], etc. The accuracy of the method outside of the
domain it was created for is typically scarce.

In stroke, lesion masks are often used to perform voxel-
based lesion-to-symptom mapping (VLSM), which reveals
topologic and functional organization of cognitive systems
[Bates et al., 2003; Committeri et al., 2007; Dronkers et al.,
2004; Schwartz et al., 2009]. VLSM allows researchers to
achieve greater statistical rigor by using population data to
evaluate and expand models of functional organization
beyond single-case studies. Lesions masks are also used in
predictive models that attempt to estimate the clinical
recovery of patients who suffer stroke [for a review on
prediction studies, see Gabrieli et al., 2015; Hope et al.,
2013; Seghier et al., 2016; Wang et al., 2013]. To obtain
lesion masks automatically from stroke patients, several
groups have proposed specific workflows [Mitra et al.,
2014; Seghier et al., 2008; Shen et al., 2010; Stamatakis and
Tyler, 2005]. While overlap and displacement measures
are used to investigate the accuracy of these methods, the
impact of automated lesion segmentation on neurobeha-
vioral analyses, such as VLSM, is unknown. For example,
predicted lesion maps may contain systematic error in cer-
tain areas of the brain, or may not follow the complex spa-
tial shape of lesions. Such errors may accumulate in a
population and lead to unreliable or misleading VLSM
results. If automated methods are to be of real practical
use, it is critical to investigate not only segmentation over-
lap measurements but also the impact on inferences such
as neurocognitive organization or prediction of clinical
course. Another pitfall of many proposed methods is that
they are tested on limited samples of real cases. This
increases the risk of the method to be less accurate when
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applied to independent datasets with more variability (i.e.,
see Wilke et al., 2011 for an example). These effects high-
light the need to test automated predictions on larger sam-
ple sizes.

In this study, we propose a supervised lesion segmenta-
tion algorithm named Lesion Identification with Neighbor-
hood Data Analysis (LINDA). This method performs
hierarchical improvements of lesion estimation from low
to high resolution, considering both the signal in the voxel
itself and the signal of neighboring voxels. The considera-
tion of neighborhood voxels enables the algorithm to learn
rules based on the surrounding context, an ability that is
required to perform conditional segmentation. For exam-
ple, recent guidelines for expert manual tracing suggest
that white matter hyperintensities should be labeled as
lesion only if they extend from the core ischemic zone
[Crinion et al., 2013]. Voxel-based classification methods
cannot learn this rule. Also, recent evidence has demon-
strated that the inclusion of regional neighborhood infor-
mation significantly improves the accuracy of automated
predictions [Ozenne et al., 2015]. LINDA uses a new com-
putational platform proven successful in the implementa-
tion of segmentation algorithms [i.e., tumor segmentation,
Tustison et al., 2015, winner of the BRATS 2013 challenge].
For a proper testing, LINDA was applied on a consistent
sample of 60 left hemispheric stroke brains and validated
with k-fold and leave-one-out procedures. To investigate
error accumulation with automated predictions and
impact on cognitive neuroscience hypothesis testing, we
also compared VLSM maps obtained from manual tracings
with those obtained with LINDA. Finally, we verified the
algorithm’s performance on data collected at another insti-
tution. Thus, a series of advantages are introduced com-
pared to previous work, such as, a large number of
patients (�100), investigation of prediction stability, inves-
tigation of cross-institutional applicability, and compara-
tive LSM analyses on manual vs. predicted lesion maps.

METHODS

Patients

The method was developed and tested on a set of 60
patients with chronic left hemispheric stroke (age:
57.2 6 11.5 yrs, post-stroke interval: 2.6 6 2 yrs, 26 female).
Patients were part of an ongoing project aimed at investi-
gating the mechanisms of language disruption following
brain lesions caused by stroke [Kimberg et al., 2007; Mir-
man et al., 2015a; Schwartz et al., 2009, 2011, 2012; Thotha-
thiri et al., 2012; Walker et al., 2011; Zhang et al., 2014]. All
patients were medically stable, without major psychiatric
or neurological disorders, premorbidly right-handed,
native English speakers, and preliminary tests showed
adequate vision and hearing abilities.

Lesion size was 68 mL 6 64 mL (range 5–288 mL) in
native space and 69 mL 6 61 mL (range 5–256 mL) in tem-

plate space. The average post-stroke interval at which the
scans were obtained was 32 6 32 months (range 3–154
months).

Controls

Neuroimaging data from 80 healthy controls was used
as reference for some of the features. The control group
was matched for age and gender with the stroke patients
(mean age: 59.2 6 13.5 years, 34 female), and their neuroi-
maging data were collected from the same scanner used
for patients.

Image Acquisition

Neuroimaging data were collected at the University of
Pennsylvania using a Siemens Trio 3T scanner. Both
patients and controls were scanned during a similar 10-
year period (range 2004–2014, group comparison for date
of acquisition W 5 2144.5, P 5 0.28). The T1-weighted vol-
ume was acquired with a 3D inversion recovery sequence,
consisting of 160 axial slices acquired with a TR 5 1,,620
ms, inversion time 5 950 ms, TE 5 3.87 ms, FOV 5 192 3

256 mm2, voxel size 5 0.98 3 0.98 3 1 mm. T1 volumes
were visually inspected for each subject, and no volume
with artifacts or motion was included in the study.

Manual Lesion Tracing

A single expert (HBC) either drew the lesions (approxi-
mately two-thirds) or reviewed the tracings completed by
individuals he had trained. MRIcron software (http://
www.mricro.com/mricron/) was used to trace each lesion
in axial orientation, on the same T1 volume later used for
automated segmentation. The multi-view mode was on at
all times, such that the shape of the lesion could be under-
stood from multiple orientations.

Complementary Stroke Dataset

A second dataset of 45 patients (age: 59.6 6 9.5 years,
post-stroke interval: 3.6 6 3.1 years, 17 female) was
included at later stages of the study to validate the method
with independent data. Patients were recruited for a clini-
cal trial of transcranial direct current stimulation for apha-
sia (ClinicalTrials.gov #NCT01709383) and cross sectional
multimodal MRI studies on post-stroke plasticity [Xing
et al., 2015]. Data were acquired on a Siemens TIM Trio 3T
scanner at Georgetown University with the following
parameters: TR 5 1900 ms; TE 5 2.56 ms; flip angle 5 98;
160 contiguous 1 mm sagittal slices; field of view 5 246 3

256 mm2; matrix size 5 250 3 250, slice thickness 5 1 mm,
voxel size 5 0.98 3 1.02 3 1.0 mm3. Lesions were
delineated manually on the T1-weighted images in native
space using MRIcron, and by a neurologist (P.E.T.).
The lesion size for this dataset was 90 mL 6 68 mL (range
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2–287 mL) in native space and 92 mL 6 71 mL (range
3–319 mL) in template space. All 45 patients were left
hemispheric stroke cases, medically stable, and without
major psychiatric/neurological disorders.

Software and Computational Platform

Computations were performed on a server cluster operated
under CentOS 6.6 with multiple Xeon E4-2450, 2.1GHz pro-
cessors. The LINDA prediction toolkit was built on Advanced
Normalization Tools [ANTs ver. 2.1.0; Avants et al., 2011] and
its R implementation [ANTsR ver. 0.3.1; Avants, 2015]. Addi-
tional packages used in R were: randomForest [Liaw and Wie-
ner, 2002], cocor [Diedenhofen and Musch, 2015], ggplot
[Wickham, 2009], RcppArmadillo [Eddelbuettel and Sander-
son, 2014], and caret [Kuhn, 2008]. The final prediction pipe-
line is available at http://dorianps.github.io/LINDA/. All
statistical comparisons within and between groups were per-
formed using Wilcoxon tests in R.

Accuracy and Comparison Metrics

The measures utilized to assess the accuracy of segmen-
tations are:

Dice similarity coefficient

This is a spatial overlap index between two areas, ranging
between 0 and 1. For example, a perfect overlap between
predicted and manual lesions would be equal to 1, while no
overlap at all would be equal to 0. The formula for its calcu-
lation divides the overlapping area by the sum area occupied
by both masks, multiplied by two: “[(A \ B)*2/(A [ B)]”.

Hausdorff distance

This is a metric measure of the maximal displacement
between two areas. It is calculated by computing all the
possible distances from each contour point in map A to
the nearest point in map B, and selecting the highest value
[Hausdorff, 1962]; thus, it is the maximum value in the list
of minimum distances between the estimated and the tar-
get segmentation.

Average displacement

This is a metric measure similar to Hausdorff, but rather
than measuring the maximal displacement, it computes
the average distance of the contours of manual and pre-
dicted lesion maps. Because displacement is measured as
nearest point from one contour to the other, the measure
is asymmetric with respect to which image is considered
reference. To obtain a measure that considers displacement
in both directions, we computed the displacement from
both sides and averaged the values.

Sensitivity (or true positive rate)

It measures the proportion of lesioned voxels that are
correctly identified as such.

Precision (or positive predictive value)

It measures the ratio between the number of correctly
identified lesioned voxels and the total number of voxels
predicted as lesioned.

Lesion volume

This is one of the most important predictors of cognitive
dysfunction [Hope et al., 2013]. It is obtained by counting
the lesioned voxels after bringing the lesion mask in tem-
plate space. The correlation between predicted and manual
lesion volumes was investigated, as well as any tendency
of the automated prediction to underestimate or overesti-
mate the lesion volume.

Other measures of accuracy measurement are available
in separate files as Supplementary Material.

Image Preprocessing

Because of changes in scanner hardware/software, older
scans showed more noise in the image than newer scans.
To achieve a comparable noise level in all scans, noise-
reduction was applied to our dataset of 60 patients using
an edge-preserving anisotropic algorithm (Perona–Malik
implemented in the “ImageMath“ function in ANTs). The
conductance (or strength) of the noise reduction algorithm
was linearly proportional to the year of the scan, from 0.8
for 2004 scans to 0.2 for 2009 and later scans. The number
of iterations was kept fixed at 10. After noise reduction,
all images were corrected for signal inhomogeneity with
the N4 algorithm [Tustison et al., 2010, 2014], and
the skull was removed with an automated algorithm
(‘antsBrainExtraction.sh’ in ANTs).

Extraction of Features from T1-weighted MRI

A series of 12 features was created from the T1-
weighted images available for each subject. Supplementary
Material: Table I shows the 12 features and the basic
scripting commands used in ANTsR to obtain them. Fea-
tures were selected based on ease of computation, inter-
pretability and complementarity. LINDA features capture
aspects of: geometry, subject specific anomalies (e.g.,
asymmetry), deviation from an atlas, and deviation from
controls. Geometric features include mathematical process-
ing variants of the patient’s T1 volume, such as, the gradi-
ent magnitude, laplacian and k-mean segmentations. The
subject specific anomaly was computed as an asymmetry
measure by flipping the T1 in the Y-axis and subtracting it
from the unflipped image. Two features were created to
measure the deviation from the atlas: the subtraction of
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the patient’s T1 from the template, and the map of correla-
tion values between the neighborhood of respective voxels
in the template and the patient’s T1. Deviation from con-
trols was computed by subtracting geometry and anomaly
features from the respective averages obtained in the 80
controls. Once created, all features were downsampled at
2 3 2 3 2 mm3 to reduce computation times during
testing.

Selection of Best Features

Using an Empirical Method

The 12 features described above might contain redun-
dant information that is not useful for lesion segmenta-
tion. To improve computational efficiency for future
applications, we selected the necessary features with a
forward inclusion procedure as follows. The 60-patient
sample was split into a training group of 48 patients and
a test group of 12 patients, both with similar lesion sizes
(created with “createDataPartition” function in R). The
two groups were kept fixed, and training-test loops were
run while incrementally adding features. The first time, a
single feature was used for predictions (see next para-
graph for detail), and the feature with the best dice over-
lap with manual segmentation was selected. The second
time, models were built with the first winning feature and
each of the remaining ones. Dice overlaps were obtained
again with manual segmentation, and compared with the
model with only one feature. The feature with the highest
t-score in paired t tests was added to the model. The pro-
cedure was repeated with a third feature, fourth feature,
etc., until no further improvement was possible and the
significance of paired t tests were all P> 0.1. This proce-
dure is similar to a forward stepwise regression, where
variables are added if they provide a significant gain in
prediction.

Building the Trained Model in a

Multi-resolution Framework

The multi-resolution voxel-neighborhood random forest
algorithm was utilized for lesion segmentation (“mrvnrf”
command in ANTsR). Figure 1 displays the full algorithm
with the “mrvnrf” workflow in the lower part. The algo-
rithm works in the following manner. During training, a
series of random forest (RF) models are trained at different
image resolutions, starting at low resolution and ending at
high resolution. At each level, a matrix containing data
from all subjects is used to train the RF model. Each row
of the matrix contains information about a single voxel of
a single subject, and includes values from neighboring
voxels on all features as columns. Thus the model is
trained to classify voxels based not only on the value of
the voxel itself but also on its neighbors. The status of the
voxel (e.g., 1 5 healthy, 2 5 lesion) is used as ground truth
outcome to train the RFs. Once training is performed at

the coarsest resolution level, it is immediately applied to
the same subjects in order to obtain a set of additional fea-
tures consisting of posterior probability maps (i.e., poste-
rior probability of healthy tissue, posterior probability of
lesion). These new features are passed to the next (usually
finer scale) resolution step together with the existing fea-
tures, and a new RF model is trained at this resolution.
Then, a new set of posterior probabilities are obtained and
passed at the successive resolution step. This procedure is
repeated hierarchically up to the highest resolution, and
RF models are produced at all resolutions (i.e., three RF
models for three resolution steps). Once the training is fin-
ished, the hierarchical prediction model can be applied to
segment new cases. To predict the lesion map in new
patients, the algorithm follows the same hierarchical steps,
but uses the trained RF models to create the posterior
probabilities at each resolution step and predict the
unknown outcome/label. At the highest resolution, poste-
rior probabilities are converted into a discrete segmenta-
tion map; i.e., each voxel is classified with the highest
posterior probability at that voxel (i.e., 60% healthy and
40% lesioned is classified as healthy).

In this study, we utilized three hierarchical steps with
downsampling factors of 3, 2, and 1. Given our 2mm data,
these steps correspond to image resolutions of 6, 4, and
2 mm (or volumes of 31 3 42 3 28, 47 3 63 3 43, and 94
3 125 3 85 voxels, respectively). The neighborhood radius
was ‘1’ for all hierarchical steps, consisting in a single
layer of 26 neighboring voxels surrounding the voxel of
interest. Note that low resolution steps have larger voxels,
and, consequently, the neighborhood information is wider
(forming a 1.8 cm patch at the coarsest level). The number
of trees in the random forest models was set to 2000,
although the results are not heavily dependent on this
value (assuming a reasonable minimum number of trees,
e.g., 500).

If we combined all voxels and their neighborhoods from
all features and all subjects, the memory and CPU require-
ments would be impossible to satisfy. Fortunately, RF
training does not need information from every single voxel
to learn the relationship between features and tissue classi-
fication. Therefore, we trained RFs with a subset of 200
randomly selected voxels from each tissue class (i.e., 200
lesioned voxels 1 200 healthy voxels). We chose 200 from
each label class in order to help balance the training para-
digm. The mask from which voxels were selected was
taken from the template segmentation, after setting to
“lesioned” voxels in which at least 50% of the training
subjects had a lesion.

Feature Extraction and Prediction of a New Test

Image Using Register-Predict-Register Loop

All computations, feature creation, feature selection, and
lesion predictions were performed in template space.
Because both patients and controls were registered on the
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Figure 1.

Depiction of the LINDA workflow. The multi-resolution voxel neighborhood random forest algo-

rithm is displayed on the lower part. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

r Pustina et al. r

r 1410 r

http://wileyonlinelibrary.com


same template, we used a mixed template built from 208
elderly subjects (115 elderly controls and 93 patients with
various diseases, such as, Parkinson’s, fronto-temporal
dementia, mild cognitive impairment, and Alzheimer; tem-
plate available online with the LINDA toolkit). The tem-
plate was built with the ‘buildtemplateparallel.sh’ script in
ANTs. The registration of lesioned brains to template is a
delicate step that requires the elimination of the lesion
from computations to avoid unrealistic deformations
[Andersen et al., 2010; Ripolles et al., 2012]. Good template
registration is also necessary because some features are
computed as deviations from the template or from the
control population. Thus, a good registration is a precondi-
tion for good automated segmentation. However, the
lesion mask necessary to perform registration is not
known for new cases. To resolve this dependency, we
developed LINDA in two stages, a partially automated
stage and a fully automated stage. During the partial
stage, we investigated the prediction routine with registra-
tions that used manual lesion masks during template
registration. At this stage, we performed feature selection
(see section “Selection of best features using an empirical
method” above) and evaluated the stability of predictions
when the training group changed randomly. To investigate
prediction stability, we ran a six-fold validation for ten
times. The six-fold procedure consists in randomly split-
ting the patients in six groups (N 5 60/6 5 10) and predict-
ing each group (N 5 10) with a model trained on the
remaining subjects (N 5 50). This process was repeated 10
times with random grouping, and, consequently, each sub-
ject received 10 lesion predictions. The variance between
the 10 predictions was investigated as an indicator of per-
formance stability.

After investigating the prediction routine at the partially
automated stage, we finalized the automatic pipeline by
running “register-predict-register” loops. This process is
designed to gradually improve both the registration and
the prediction accuracy. The loops started by computing
an approximate lesion mask from the subtraction of the T1
image to its own reflection on the Y axis (flipped, affine
registered to itself, and subtracted). This mask roughly
exposed the lesion and allowed to initiate the cycles with
a first registration to template. Following the first registra-
tion, a lesion prediction was obtained in template space
and backprojected in subject space. The predicted lesion
mask constituted the cost function mask necessary to
obtain a second registration to template. After the second
registration, another lesion prediction was obtained in
template space and backprojected in subject space, and so
on. In total, three iterations were performed, the first two
with a fast nonlinear registration to template (5 min on a
single CPU core, option “SyN” for antsRegistration func-
tion in R), and the last with a robust cross-correlational
registration (�70 min computation, option “SyNCC” for
antsRegistration function in R). Following the third regis-
tration, one last lesion prediction was obtained in template
space, and was considered final.

The Number of Tissues to Segment

LINDA learns the difference between lesion and nonle-
sion through manual segmentation examples that have a
discrete value (i.e., 1 5 healthy brain, 2 5 lesion). However,
the number of tissues on which the model is trained may
impact the quality of segmentation. For example, a model
that is trained on more tissues (WM, GM, CSF, and lesion)
can explain more variance in the image, and might distin-
guish better the lesion. To investigate the validity of this
hypothesis, we compared results obtained two-class
(healthy and lesion) and four-class (CSF, GM, WM, lesion)
models. For two tissue classes, the algorithm was trained
with a composite image where the manual lesion (label 2,
damaged) was added to the brain mask (label 1, healthy).
For four tissue classes, the algorithm was trained with a
composite image where the manual lesion (label 4, dam-
aged) was added to the k-mean segmentation image,
which originally contained three tissue classes (CSF, GM,
WM). The accuracy of the prediction of the two variants
was measured with respect to manual tracing, and the
best achieving option was selected for future use.

Computational Considerations

All individual predictions were performed with a leave-
one-out procedure. The training of the model on 59 exam-
ples required �4 h on a single CPU core at 2.1 GHz, and
�25 Gb of memory. While we performed this step many
times for the purpose of this study, training is normally a
one-time process that produces the model for future use.
When applying LINDA to new cases, the amount of mem-
ory needed is �7 Gb, and the total time required is �3 h.
Within this arc, time is spent on skull stripping (�25 min),
three registrations (two of 5 min each, one of �70 min),
three predictions (�2 min each), and other steps such as
feature generation, image reflection, etc.

Lesion-to-Symptom Mapping Validation

Comparative analyses of lesion–behavior relationships
were performed between predicted and manual lesions. All
LSM analyses were performed in R. Five language measures
were tested: (i) “Comprehension” subscore from WAB [Ker-
tesz, 1982], (ii) “Repetition” subscore from the WAB, (iii)
accuracy of “Naming” of pictures in the Philadelphia Nam-
ing Test [PNT; Roach et al., 1996], (iv) “Auditory Discrimi-
nation” of phonemes [Martin et al., 2006], and (v) “Rhyme
Discrimination” for words played from tape [Freedman and
Martin, 2001]. Recent work has shown that post-stroke inter-
val is a major contributor in the variance of cognitive scores
[Hope et al., 2013]. For such, we regressed out the variance
explained by this variable and utilized residualized scores.
LSM analyses were performed both voxel-wise (VLSM) and
region-wise (RLSM). For VLSM, a standard procedure was
followed consisting in massive t-tests on voxels lesioned in
more than 10% of the subjects [Bates et al., 2003; Dell et al.,
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2013; Schwartz et al., 2012]. Approximately 30,000 voxels
satisfied this criterion for manual or predicted lesions. Sin-
gle tailed P values of t tests were corrected for multiple
comparisons with the false discovery rate method [FDR,
Benjamini and Hochberg, 1995; Genovese et al., 2002; Ror-
den and Karnath, 2004], and results were thresholded at
a 5 0.05. Finally, thresholded t-maps were smoothed with a
3.5-mm kernel. Continuous dice was used to compare man-
ual vs. predicted t-maps. Continuous dice is similar to
standard dice, but it considers also discrepancies in continu-
ous data; it is calculated as sum(23min(A|B))/sum(A1B)
where A and B are the t-maps. To understand the potential
displacement of the most relevant voxel in VLSM analyses,
we computed the peak-to-peak distance between manual
and predicted VLSM maps. Finally, the Pearson correlation
between t values of voxels included both in manual and in
predicted LSM was obtained (�26,000 voxels in common).

For RLSM analyses, the parcellation from the AAL atlas
[Tzourio-Mazoyer, et al., 2002] was overlaid on each sub-
ject’s lesion map, and the number of lesioned voxels was
counted for each AAL region. Regions in which fewer than
10% of the subjects had lesions were eliminated from the
analyses. After applying this criterion, 37 left hemispheric
regions were included in the analysis. RLSM analyses were
performed by running linear regressions between the cogni-
tive score and the regional lesion values. Results were
thresholded at a 5 0.05 after correcting with the FDR
method. To compare RLSM obtained with manual and pre-
dicted lesions, the array of 37 t scores obtained from manual
lesions was correlated with the array of 37 t scores obtained
from predicted lesions. Moreover, we investigated whether
the top significant regions obtained with predicted lesions
corresponded to those obtained with manual lesions. This
matching was performed by listing the top three most signif-
icant regions from both manual and predicted lesions, and
marking those regions that were listed on both sides.

RESULTS

Stepwise feature selection identified six features that
gradually improved the dice overlap of prediction with
manual segmentation (in order of selection): (1) deviance
of k-mean segmentation from control average, (2) gradient
magnitude, (3) deviance of T1 from controls, (4) k-mean
segmentation, (5) deviance of T1 asymmetry from controls,
and (6) raw T1 volume. No other feature improved the
prediction any further.

Partially Automated Stage

During this stage, lesion predictions were performed
with a two-tissue-class model (1 5 healthy, 2 5 lesion) and
stability measures were obtained from six-fold validation.
The comparison of the ten predictions obtained for each
subject showed an average dice between predictions
of 0.94 6 0.01 and average Hausdorff distance of 5.4

mm 6 2.8 mm. The average overlap of each individual’s
predictions with manual tracing was 0.72 6 0.30. The aver-
age standard deviation of the ten prediction dice overlaps
was 60.026 in average. These results show that models
created from different groups lead to similar predictions
on new subjects, producing stable and robust results inde-
pendently of the examples used for training.

After establishing prediction stability, a leave-one-out pro-
cedure was used at all times (i.e., train on 59 patients, predict
one). At the partially automated stage, the average dice over-
lap of leave-one-out prediction with manual tracing was
0.718 6 0.15 and Hausdorf distance was 19 6 11 mm.

Fully Automated Stage

At this stage, the pipeline was extended to include fully
automated registration and prediction. First, the number of
tissue classes used to train the model was investigated. The
overlap with manual segmentations was slightly higher for
four-tissue-class predictions (0.696 6 0.16) compared to 2-
tissue-class predictions (0.679 6 0.19), a difference that was
statistically significant (gain 0.018, W 5 406, P 5 0.007, paired
test). A similar improvement was observed with decreased
Hausdorff distance (19 mm vs. 20 mm, gain 21.15 mm,
W 5 406, P< 0.001) and decreased average displacement
(2.54 mm vs. 2.72 mm, gain 20.18mm, W 5 526, P 5 0.004).
The correlation of manual lesion volume with predicted lesion
volume was excellent with both options, but the four-tissue-
class showed a significant improvement (Pearson r: 0.961 and
0.952, respectively; Hotelling’s t[57] 5 22.89, P 5 0.005; com-
parison between correlations performed with package
“cocor” in R). Given the overall advantage of the four-tissue-
class predictions, this option was selected for future use.

To investigate the cost of shifting from partially auto-
mated to fully automated predictions, we compared respec-
tive measures obtained with four-tissue-class predictions. A
small but significant drop in accuracy was observed when
predictions shifted to fully automated. Dice overlap
decreased by 0.022 (from 0.718 to 0.696, W 5 1424, P< 0.001)
and average displacement increased by 0.22 mm (from
2.32 mm to 2.54 mm, W 5 1357, P 5 0.001). No change was
observed in Hausdorff distance (both 19 mm, W 5 813,
P 5 0.92). The predicted lesion volumes correlated similarly
with manual lesion volumes whether obtained with fully
automated or partially automated procedures (0.961 and
0.954, respectively; Hotelling’s t[57] 5 1.5, P 5 0.12). How-
ever, lesion volumes obtained from partially automated pre-
dictions slightly underestimated the lesion volume
(W 5 1231, P 5 0.02), while lesion volumes obtained from
fully automated predictions showed no difference with
manually traced lesion volume (W 5 976, P 5 0.66).

Figure 2 shows a spaghetti plot of the final results
obtained with four-tissue-class predictions. Lesion size
positively correlated with dice overlap (r 5 0.55, P< 0.001)
but not with Hausdorff distance or average displacement
(r 5 20.17 and r 5 20.19, respectively, P> 0.1). As
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mentioned, dice overlap with manual tracing was
0.696 6 0.16 for these predictions, while sensitivity (true
positive rate) and precision (positive predictive value)
were 0.721 6 0.19 and 0.732 6 0.16, respectively. An array
of other segmentation measures can be found in Supple-
mentary Material, including Jaccard Coefficient, Area
Under ROC curve, Cohen Kappa, Rand index, Adjusted
Rand Index, Interclass Correlation, Mahanabolis Distance,
Global Consistency Error, Sensitivity, Specificity, Precision,
Accuracy, and Fallout (false positive rate).

Given that 12 of the 60 patients were utilized as refer-
ence during feature selection, we report here also the
results from the restricted group of 48 patients that were
not used as reference. They showed a dice overlap of
0.683 6 0.17, Hausdorf distance of 19 6 11 mm, and sensi-
tivity of 0.711 6 0.20. Wilcoxon t tests between the 48
patients and the 12 patients showed no significant differ-
ence in any of the above measures (all P> 0.1).

Investigating the Least Successful Predictions

In general, all cases received a successful automated seg-
mentation (i.e., a lesion mask was predicted which par-

tially overlapped with the manual mask). However, the
distribution of dice overlaps was left skewed, with a hand-
ful of cases in the low end of the scale (Fig. 2). The four
worst predictions were cases 43, 53, 23, 55 (see Supporting
Information: Individual Predictions). Interestingly three of
these cases showed a pattern that indicated an inconsistent
application of rules in manual tracings. For example,
unlike manual tracings, the prediction for cases 53 and 23
extended beyond the stroke core zone in adjacent areas
with low T1 signal. The reversed pattern was observed for
case 55, whose prediction did not extend in areas with low
T1 signal while manual tracing extended in these areas.
This indicates that some part of the prediction error might
be related to the variability in manual tracings [Ashton
et al., 2003; Crinion et al., 2013; Fiez et al., 2000].

Application of Alternative Method

on the Same Dataset

To further evaluate the accuracy of LINDA with respect
to existing methods we obtained lesion predictions from
our dataset of 60 patients with the “Automatic Lesion
Identification” method [ALI; Seghier et al., 2008]. This

Figure 2.

Spaghetti plot showing the lesion size, dice overlap, Hausdorff distance, and average displace-

ment, for all 60 subjects. Lower panels show the distribution of the data for each of these varia-

bles. Scales for Hausdorf and average displacement are inverted such that the upper part of the

graph is consistently showing better values for all measures. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 3.

VLSM maps for the five behavioral scores, obtained with manual (top

rows) and predicted (bottom rows) lesion masks. “Peak location”

indicates the label of the voxel with highest t score obtained from the

AAL atlas. “Peak distance” indicates the distance of peak voxels

between the two VLSM analyses, manual and predicted. Voxel

correlation shows the correlation of t-scores (Pearson’s r) of the

26,320 voxels that were included both in manual and in predicted

lesion analyses (no threshold was applied). Dice indicates the contin-

uous dice overlap between the two maps, after thresholding at

a 5 0.05 (FDR corrected, see text for continuous dice calculation).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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method uses an outlier detection approach to identify
“abnormal” voxels with respect to a set of healthy con-
trols. We used the most recent version of this toolbox (ALI
v.3.0 for SPM12), which has the same default parameters
of earlier versions. Our set of 80 controls was segmented
with the same toolbox and constituted the reference for
outlier detection. Within our patient population, ALI pro-
duced 56 successful predictions—that is, with some degree
of overlap with manual tracings—and four failed predic-
tions (7%). Among the successful predictions, dice overlap
was 0.44 6 0.21, sensitivity was 0.38 6 0.22, precision was
0.69 6 0.27, and Hausdorf distance was 44 6 27 mm.

Lesion to Symptom Mapping:

VLSM and RLSM Analyses

Figure 3 displays the comparison between predicted and
manual VLSMs. In general, the correspondence was good
and continuous dice overlap was above 0.6. Substantial dif-
ference was observed for “Comprehension,” where the peak
values were 64-mm apart. The closest peak-to-peak distance
was observed for “Auditory Discrimination” (5 mm).

Table I shows the results of RLSM analysis for the five
cognitive variables. The average correlation of the 37
regional t-scores was 0.77 (60.11, range: 0.70–0.92). Con-
cordant top t-scores were found for all five analyses
between predicted and manual RLSM, with at least two
regions matching in every RLSM test. For “Naming,” all
three regions matched between manual and predicted
lesions.

Validation of LINDA on the

Complementary Dataset

To investigate whether the method can be used on
other datasets obtained at a different scanner and man-

ually traced by other experts, we applied LINDA on the
complementary dataset from Georgetown University. The
processing pipeline was the same as above, utilizing a
leave-one-out procedure to obtain predictions. Note, the
same 80 controls scanned at our institution were utilized
for reference for control deviation features, and, thus,
patients and controls were scanned on different scanners.
Results showed that the accuracy rates were relatively
similar to those obtained from our dataset. However,
one of the 45 cases failed to receive a prediction (case 5
in Supporting Information: Individual Predictions from
Complementary Dataset). The 44 cases with an available
prediction had dice overlap with manual segmentation
of 0.696 6 0.16, Hausdorff distance of 24 6 10 mm, aver-
age displacement of 3.25 6 3.00 mm, sensitivity of
0.656 6 0.16, and precision of 0.770 6 0.19. The correlation
between predicted lesion volume and manual lesion vol-
ume was r 5 0.957. These values are similar but slightly
worse than those obtained with our main dataset, a drop
that might be related to the reduced training sample and
the utilization of data from different scanners, as well as
the fact that the reference template is biased towards
PENN data.

Cross Institutional Prediction

A fundamental quality of LINDA is that a segmentation
model can be trained with data from a certain lab and the
model can be transferred for use in other labs. To investi-
gate how well a “foreign” model can match manual trac-
ings in a new institution, we trained a model with the 60
patients in our main dataset and applied it to the 44
patients of the complementary dataset (the failed case
was excluded). This is a complete cross-institutional trans-
fer, where a model trained on rules followed by a certain
expert is tested on manual tracings provided by other
experts, on data that are acquired on different scanners.
Thus, a drop in accuracy is expected particularly because
of differences in the procedures for drawing lesion trac-
ings between experts at different institutions. To our sur-
prise, the dice overlap with manual tracings decreased
only by 0.028 6 0.048, reaching an average overlap of
0.668 6 0.15. The two predictions obtained from two dif-
ferent models (i.e., same institution vs. different institu-
tion) showed an average dice overlap of 0.857 6 0.092.
These results indicate that LINDA captures some univer-
sal rules of segmentation that experts use at different
institutions, and that trained models can be safely trans-
ferred between labs without risking substantial failures
related to the heterogeneity between training and predict-
ing data.

DISCUSSION

In this study we introduce LINDA, a lesion segmenta-
tion algorithm capable of identifying chronic stroke lesions

TABLE I. Regional lesion-to-symptom mapping

VLSM test
Regional

correlations
Common top

3 t-scores

Comprehension 0.59 1. Inf. frontal, triangular
2. Precentral gyrus

Repetition 0.93 1. Supramarginal gyrus
2. Superior temp. gyrus

Naming 0.75 1. Supramarginal gyrus
2. Rolandic operculum
3. Superior temp. gyrus

Auditory Discrim. 0.84 1. Superior temp. gyrus
2. Supramarginal gyrus

Rhyme Discrim. 0.72 1. Inf. frontal, triangular
2. Superior temp. pole

Values indicate Pearson correlation of the 37 regional t scores
obtained with manual and predicted lesions. Common top 3 t

scores show regions that are listed both in manual and in pre-
dicted RLSM analyses.
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from a single T1-weighted MRI image. The method is
trained on existing manual tracings and tested on two sep-
arate datasets of 60 and 45 subjects with left hemispheric
chronic stroke. In addition, within the 60-subject cohort,
we compared lesion-to-symptom mapping results of man-
ual vs. predicted lesions to investigate whether automated
predictions are feasible for neurobehavioral analyses.

LINDA relies on a set of virtual features derived from
the T1-weighted volume that fall into four categories: geo-
metric, atlas-based deviation, control-based deviation, and
subject specific anomalies (including self-asymmetry). Our
feature selection procedure showed that nearly all catego-
ries were important for accurate lesion segmentation. Inter-
estingly, deviances of processed images (i.e., deviance of k-
mean segmentation from controls) were more relevant than
the T1 image itself, as the latter entered the algorithm at a
later stage during feature selection. Of note, atlas-based fea-
tures did not enter the winning algorithm. One of the main
reasons for this could be that the template used to derive
atlas-based deviation was created using a mixed population
of healthy and diseased brains. It is possible that other tem-
plates could be more useful for feature calculation and
could help improve performance. In general, the strategy of
obtaining additional features from a single T1 image dem-
onstrated to be successful when considering the high accu-
racy and the low degree of failure obtained with LINDA.

Beside the virtual features, LINDA integrates concepts
that are shown to be successful in other contexts. First, the
inclusion of neighborhood information can significantly
improve accuracy, more so when the information is not
strictly local but incorporates regional longer range data
[Ozenne et al., 2015]. LINDA uses both long range infor-
mation at low resolutions and short range information at
high resolutions. The presence of contextual information is
important when considering the conditional rules outlined
for expert manual tracing [i.e., white matter hyperintensity
should be considered lesion if it’s proximal to the ischemic
core; Crinion et al., 2013], and the low spatial variability of
stroke lesions [i.e., if a voxel is lesioned, chances are the
next voxel is lesioned as well, Kimberg et al., 2007].
Second, LINDA uses random forests, a mathematical
approach that can find non-linear relationships between
signals, and is robust to noise and outliers [Breiman 2001].
Algorithms that use RFs have been among the top per-
formers in recent segmentation challenges (see http://
mrbrains13.isi.uu.nl/results.php). Third, LINDA uses one
of the top performing non-linear registration algorithms
[i.e., SyN; Klein et al., 2009; Ripolles et al., 2012]. To further
improve registration accuracy, registrations are performed
with cost-masking function, a choice that is overlooked in
some automated algorithms, but which is important for
avoiding significant shrinking of the lesion [Andersen et al.,
2010; Ripolles et al., 2012]. The importance of accurate
registrations is appreciated if one considers that enlarged
ventricles can easily be mistaken as lesion by automated
algorithms [Seghier et al., 2008; Stamatakis and Tyler, 2005;

Wilke et al., 2011]. Our pilot data showed that periventricu-
lar errors decrease if enlarged ventricles are correctly regis-
tered to the template. Finally, LINDA introduces the
concept of cyclic register-predict-register, which resolved
the registration dilemma for lesioned brains; i.e., to predict
a lesion mask a registration is needed which requires a
lesion mask.

LINDA relies on the same computational platform used
by a recent tumor segmentation algorithm [Tustison et al.,
2015]. It also uses a similar machine learning process
based on random forests. However, LINDA uses different
strategies to regularize the predicted segmentation, such
as, a multi-resolution pyramid and voxel neighborhood,
while Tustison et al. [2015] use Markov Random Field seg-
mentation cycles. In addition, LINDA uses a single MRI
modality while Tustison et al. [2015] use several MRI
modalities. Also, LINDA uses a new iterative register-
predict-register algorithm designed to resolve the depend-
ency between steps; i.e., to predict a lesion mask a regis-
tration is needed which requires a lesion mask.

In considering the comparison of LINDA with other
methods of lesion segmentation, it should be noted that
not all studies report the same measures utilized here.
Also, some measures are sample-dependent, and, there-
fore, may lead to erroneous conclusions. Overlap meas-
ures, for example, such as Dice or Jaccard overlap, are
notably dependent on lesion size (e.g., correlation of
r 5 0.55 in our study). While overlap depends on lesion
size, lesion sizes are not always reported [Seghier et al.,
2008; Shen et al., 2010]. Whenever reported, lesion sizes
show large variability from study to study (i.e., 20 mL in
Mitra et al. [2014], 42 mL in Ozenne et al. [2015], and
68 mL in our study). Metric displacement measures are
independent of lesion size, but these are rarely reported
and might be occasionally misleading. For example, Haus-
dorff distance is susceptible to occasional outlier depar-
tures from the target (the pan handle effect), while
average displacement is rarely reported.

Despite this, we consider here similarities and discrep-
ancies of LINDA with other methods of lesion segmenta-
tion in stroke. A method which relies on a similar machine
learning process has been proposed by Mitra et al. [2014].
This method utilizes random forest training using voxel
neighborhood information from multiple MRI sequences
(T1, T2, FLAIR, etc.). While similar in some aspects to
LINDA, this method achieved smaller dice overlap accu-
racy (i.e., 0.60 vs. 0.70), less accurate estimation of lesion
volume (correlation with manual tracing: 0.76 vs. 0.96),
and slightly larger average displacement (3.06 mm vs.
2.54 mm). Thus, LINDA shows an advantage on several
dimensions. This result is counterintuitive in that one
would expect multiple MRI sequences to outperform a
single MRI sequence for lesion segmentation. Differences
in technical choices of each method might explain this
effect. For example, the neighborhood information used in
LINDA consists in a layer of adjacent voxels, whereas
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Mitra et al. use random blocks around the voxel (see Gere-
mia et al. [2011] for details); LINDA is not constrained on
which features to use while Mitra et al.’s method relies on
FLAIR for first lesion screening; LINDA uses multi-
resolution images while Mitra et al. uses only high resolu-
tion images; LINDA uses deformable registration while
Mitra et al. uses a rigid registration which, as noted above,
may increase the error.

Another approach for finding lesions is the one pro-
posed by Seghier et al. [2008; ALI]. ALI aims at identifying
“unusual” voxels within segmented tissues (GM, WM, and
CSF). A substantial difference with LINDA is that ALI
uses single voxel properties without neighborhood infor-
mation. While the overlap accuracy of ALI has been
reported to be 0.64 [Seghier et al., 2008; or 0.49 in Wilke
et al., 2011], the application of ALI on our data yielded a
dice overlap of 0.44 and 7% failed predictions. Thus, with
respect to ALI, LINDA produced lower failure rates (<1%)
and more accurate results (dice 0.70). It is possible that
ALI may perform much better if its application was
guided directly by the algorithm author and if a full
parameter search were performed to optimize ALI on this
data. We did not seek to provide a deep understanding of
the performance differences between LINDA and ALI as
that would involve much greater involvement from the
author of ALI and is beyond the scope of the current
work.

Another algorithm has been proposed by Shen et al.
[2008, 2010], which uses a concept of voxel-wise deviance
from normality. Simulations showed that the accuracy of
this method depends on the degree of signal abnormality;
i.e., dark lesions with clear contours on T1 are segmented
more accurately (sensitivity: �0.79) than gray lesions with
fuzzy contours (sensitivity: �0.35). In contrast, LINDA
achieves high sensitivity rates from all real brain lesions
(i.e., 0.72) and can learn easily to extend the lesion predic-
tion in areas of subtle intensity change (see examples in
Supporting Information).

Beside the segmentation methods for chronic stroke,
some groups have focused on lesion segmentation at the
subacute level [1 week to 3 months post-stroke; Maier
et al., 2015; Ozenne et al., 2015]. A direct comparison of
these methods with LINDA is not possible given the dif-
ferences in lesion appearance at this phase [Rekik et al.,
2012] and the frequent use other low resolution MRI
sequences (i.e., FLAIR, DWI).

Several authors have proposed semi-automated methods
for lesion segmentation, which facilitates the manual work
rather than replacing it. The semi-automated method pro-
posed by Wilke, et al. [2011] achieved a similar accuracy as
ALI, albeit the semi-automated method was able to avoid
failures. More recently, de Haan et al. [2015] showed that a
semi-automated algorithm can be used to segment stroke
lesions in any of the available modalities (T1, T2, DWI, CT),
achieving excellent accuracy rates (i.e., dice of 0.87 on T1
images with 32 min human interaction per segmentation).

Such high segmentation accuracy shows that human inter-
vention can greatly improve computerized segmentation.
On the downside, the expertise of human raters is still
required and observer bias cannot be avoided.

In this study, for the first time, we report comparative
lesion-to-symptom mapping based on manual and pre-
dicted lesions. One previous study reported LSM from
predicted lesions, but not a comparison with manual
lesions [Gilleber et al., 2014]. Overall, VLSM and RLSM
showed converging results between automated predictions
and manual tracings. The peak voxel showed <2-cm dis-
placement in 4/5 VLSM maps. The peak voxel for
“comprehension” measure showed a large displacement of
64 mm between predicted and manual VLSM. The interpre-
tation of this discrepancy requires multiple theoretical con-
siderations, which go beyond the scope of this article.
However, the result found with predicted lesions are is not
atypical. In fact, the peak was located in posterior perisyl-
vian areas (near the Wernicke’s area), a region known to
support comprehension [Dronkers et al., 2004; Hickok and
Poeppel, 2004; Mirman et al., 2015a,b; Silbert et al., 2014]. On
the contrary, the frontal region has been less frequently asso-
ciated with comprehension. When a frontal involvement in
comprehension is reported, the area of relevance is more
inferior [i.e., inferior frontal gyrus; Friederici et al., 2003] or
more anterior [i.e., dorsolateral prefrontal cortex, BA 46; Bar-
bey et al., 2014; Dronkers et al., 2004] than our finding with
with manual tracings (see Fig. 3).

Differently from VLSM maps, RLSM comparison showed
more consistent results. For “Repetition,” “Naming,” and
“Auditory Discrimination”—the three tests that visibly
showed more consistent VLSM maps—a higher correlation
was observed between the 37 regional t scores than was
seen with the �26.000 voxel t scores. Additionally, top
RLSM regions for all five behavioral scores matched
between manual and predicted lesion masks (see Table I).
These results indicate that RLSM might be more robust to
the accumulation of errors derived from automated seg-
mentations compared to VLSM. Two reasons that might
explain why RLSM is more robust to errors than VLSM are:
(i) it sums the voxels into broader areas, less susceptible to
local error, and (ii) it uses a continuous measure of damage
instead of a binary voxel-wise measure. While RLSM analy-
ses have been gradually abandoned in the lesion-mapping
research field, our results suggest that RLSM analyses can
be useful when faced with inherently erroneous segmenta-
tions. Future studies can combine VLSM and RLSM to take
advantage of each method’s strength, namely, spatial reso-
lution and reliability.

Feature Selection and Overfitting

In this study, we selected a subset of six features out of
twelve features available. For this purpose, 12 patients
were used as reference, raising concerns whether the fea-
tures selected represent an overfitting of these specific
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subjects. However, the procedure we followed and the
subsequent results do not support the presence of overfit-
ting. First, the procedure did not rely solely on the fea-
tures and ground truths of 12 subjects, but on a cross-over
prediction which used the model built on the other 48
patients as substrate for building the predictions of 12
patients. In this scenario, there is little reason for one to
expect that some features would be useful only for these 12
subjects, and not for the other 48, given that the random
forest weights that lead to the prediction were derived
from the 48 patients. Second, the random forest procedure
is well-known to avoid overfitting by testing its predictions
via the “out-of-bag” error (although, admittedly, this
approach is not perfect). Third, if overfitting occurred dur-
ing feature selection, we would expect a dramatic accuracy
drop in the remaining patients. To investigate this hypothe-
sis, we compared the 12 and 48 groups on dice overlap,
Hausdorf distance, and sensitivity, and found no statistical
difference (Wilcoxon tests, all P> 0.1). Further supporting
this evidence, the accuracy with the Penn nd Georgetown
datasets was similar; if the initial feature selection identified
only the “preferential” features of 12 Penn patients, we
would have seen major discrepancies when using the
method on another dataset. Ultimately, even when the
model was built on Penn data and applied on Georgetown
data—a scenario with high risk for overfitting due to the
scanner, the expert labeler, the features, etc.—the drop in
accuracy was minimal (dice decreased from 0.69 to 0.67).
While the possibility that some overfitting might have
occurred cannot be completely excluded, these results sug-
gest that this effect, if present, is small.

Strengths and Limitations of LINDA

One of the advantages of LINDA is that it offers not
only automated segmentation, but also registration to tem-
plate. In fact, the largest part of the time necessary to
obtain a new prediction is template registration.

What might be considered both strength and limitation
is the reliance on existing manual segmentations. On one
side, this allows labs to switch to automated segmenta-
tions and grossly retain the rules applied by the expert
(i.e., if the expert drew only the lesion core, so will do
LINDA). On the other side, many labs do not own numer-
ous examples to train the model. This limitation may be
resolved if trained models are made publicly available. To
encourage this practice, we have included our trained
models in the prediction toolkit (http://dorianps.github.
io/LINDA/). Note, we also showed that models trained
with data from a certain institution can be safely applied
to data obtained at another institution with minimal loss
in predictive power. The preserved accuracy of predictions
emerged because experts follow substantially similar rules
of tracing, and because LINDA was able to capture those
fundamental rules.

Another advantage of LINDA is that it produces graded
posterior probability maps. These maps currently reflect
the uncertainty of the model instead of the uncertainty of
the expert (i.e., values are still high in adjacent areas with
partially damaged tissue because the model is trained to
consider those areas as pure lesion). However, LINDA can
be trained with graded lesion maps to produce graded
segmentations that reflect the uncertainty of an expert or a
group of experts. Although no study to date have used
graded lesion maps, this is a natural development for
future studies given recent evidence that shows graded
blood perfusion or BOLD signal near the lesion contours
[de Haan et al., 2013; Ftizmorris et al., 2015].

One of the limitations of LINDA is the influence
received from inconsistent manual tracings. This effect
was observed when investigating the cases with low dice
overlap. This is a common limitation of all supervised
methods, while unsupervised methods [Seghier et al.,
2008; Shen et al., 2010] are not affected by manual tracings
at all. However, this vulnerability also suggests that the
accuracy of LINDA might further improve with more con-
sistent manual examples.

A limitation that LINDA shares with other methods is
the need for a healthy control dataset. Moreover, the con-
trol dataset should match patients for age and gender, and
the number healthy subjects must be large to avoid insta-
bilities derived by small control numbers [Wilke et al.,
2014]. To partially solve this limitation we have included
in the prediction toolkit the control averages necessary to
produce deviation features from new stroke subjects.

In this study, we used a set of 12 features and selected
the best set for the segmentation. Other features may exist
that we did not explore here (i.e., wavelets, Fourier fea-
tures, patch-based features, HOGG or SIFT features, etc.).
Future implementations can take in consideration these
features as potential candidates for automated prediction.
Moreover, we used a linear model to select the features to
include in the final algorithm instead of using the Gini
impurity measures derived from random forests. This
choice was made because LINDA uses several random for-
est models at different resolutions, and introduces new
features during the learning process, limiting the interpret-
ability of Gini impurity measures.

A limitation of LINDA is that lesion maps have
smoother contours than manual predictions (see examples
in Supplementary Material). This effect arises because the
cascade predictions start at low resolution (i.e., produce a
coarse map) and use always voxel neighborhood informa-
tion to classify the voxel. Because each voxel is considered
in a context, lesioned voxels surrounded mostly by healthy
voxels are more likely to be considered healthy. Thus,
sharp deviances from the lesion maps are disfavored. One
way to mitigate this effect in future implementations is to
train the model at higher resolution steps (i.e., 1 mm)
allowing for more refined spatial distinctions.

Another limitation of LINDA is that it uses high resolu-
tion T1 images obtained for research purposes. The
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applicability of the method to other types of images,
including low resolution clinical images has not been
tested yet. Extending LINDA to these images could facili-
tate studies aiming to estimate long-term prognosis based
on clinical scans obtained at the time of an acute stroke.

Finally, despite the overall accurate lesion segmentation,
there is still a chance that small lesions in the periphery
might be mistaken as normal variation in gyri and sulci,
offering less accuracy in some scenarios.

CONCLUSIONS

In this study, we built and tested LINDA, a tool for
automatically segmenting chronic stroke lesions from a
single T1-weighted MRI. The method showed accurate
lesion identification and low failure rates in a large num-
ber of patients. For the first time, we also tested the
method with cross-institutional data, achieving similarly
accurate results. In addition, we tested the effects of auto-
mated lesion segmentations on lesion-to-symptom map-
ping analyses and found quite similar results for four of
five cognitive measures. The next frontier of machine
learning in medical imaging will necessarily include not
only structural data but also patient cognitive measure-
ments, if this field is to bridge the (still substantial) gap
between research and practical applicability. In the spirit
of open source science, we have packed all the tools and
data necessary to apply LINDA in a single toolkit avail-
able online (http://dorianps.github.io/LINDA/).
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