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Abstract: Antibody-drug conjugates (ADCs) have become a promising targeted therapy strategy
that combines the specificity, favorable pharmacokinetics and biodistributions of antibodies with the
destructive potential of highly potent drugs. One of the biggest challenges in the development of
ADCs is the application of suitable linkers for conjugating drugs to antibodies. Recently, the design
and synthesis of linkers are making great progress. In this review, we present the methods that are
currently used to synthesize antibody-drug conjugates by using thiols, amines, alcohols, aldehydes
and azides.

Keywords: antibody-drug conjugates (ADCs); targeted therapy; monoclonal antibodies (mAbs);
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1. Introduction

Cancer is still one of the major threats to human health. However, cancer therapies used today
always have more or less adverse side effects to normal tissues. Targeted therapy is a promising strategy
to address this challenge. The pioneer of targeted therapy is Paul Ehrlich who introduced the principle
“magic bullet” at the beginning of the 20th century [1]. To avoid side effects, drugs should be specifically
delivered to cancer cells via binding to ligands that can specifically recognize the cancer-associated
biomarkers such as antigens. Among the ligands for targeted therapy, antibodies are excellent
candidates because of their specific recognitions and high affinities. Nowadays, antibody-drug
conjugates (ADCs) are attracting tremendous attention for targeted cancer therapy.

Antibody-drug conjugates are biotherapeutics that consist of monoclonal antibodies, potent
cytotoxic drugs and linkers between them (Figure 1). The monoclonal antibodies lead the drug
precursors to the target cancer cells, in which the prodrugs can be chemically or enzymatically
converted to drugs in their active forms [2]. Conjugating cytotoxins to monoclonal antibodies that
specifically tie to tumor cell surface antigens enables the drugs to be target-delivered to cancer cells and
leaves normal cells unaffected. More important, many of the cytotoxic drugs that are too toxic for use
in traditional chemotherapy can also be used in the construction of antibody-drug conjugates [3,4]. The
linkers are also essential parts of antibody-drug conjugates, which account for stability in circulation,
good pharmacokinetics and efficient release of toxic drugs in the tumor cells.

The selection of antibody, drug, and linker has recently been summarized in a few excellent
reviews [5–11]. In this review, we mainly describe the linking methods to design and synthesize ADCs,
including those that are not discussed in the reviews mentioned above.
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Figure 1. Schematic representation of an antibody-drug conjugate (ADC). Reprinted with permission 
from Reference [2]. 
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2.1. Conjugation via Thiols 

Employing the thiols of interchain cysteine residues in monoclonal antibodies as attachment 
sites for drug molecules is one of the most used conjugation methods. In a human IgG1, there are 
four interchain disulfide bonds that can be used as potential conjugation sites [12]. The four interchain 
disulfide bonds can be reduced by tris(2-carboxyethyl) phosphine (TCEP) or dithiothreitol (DTT), 
which results in eight thiol groups that are available for conjugating drug molecules. Through this 
method, different drug antibody ratio (DAR) conjugates will be obtained when targeting typical 
DARs of 2–4 [13,14]. In addition, antibody-drug conjugate at each drug antibody ratio has several 
isomers. Thus, over a hundred different species are present in the antibody-drug conjugate. Although 
conventional methods that employ cysteine residues as conjugation sites are highly heterogeneous, 
Adcetris® was approved by FDA in 2011. 

Homogeneous antibody-drug conjugates can be produced through cysteine residues when all 
interchain cysteines are coupled to drugs. For example, Senter and coworkers [15,16] developed such 
a conjugate which consisted of cAC10, an anti-CD30 monoclonal antibody, and monomethyl 
auristatin E (MMAE). This cAC10-vcMMAE conjugate contains eight drugs per antibody, which is 
the highest drug antibody ratio (DAR) that can be obtained through using interchain cysteines as 
conjugation sites. However, antibody-drug conjugates with four drugs per antibody generally have 
improved in vivo performance [17]. McDonagh et al. [18] developed a method to control the conjugate 
sites by mutating four or six of the interchain cysteines to serines, therefore leaving four or two 
cysteines accessible for conjugating (Scheme 1). After reduction of the disulfide bonds, the mutated 
monoclonal antibodies with the reduced number of interchain cysteines were conjugated with the 
drug vcMMAE. Through this method, homogenous antibody-drug conjugates with clear attachment 
sites could be produced. 

 
Scheme 1. Interchain cysteine to serine mutagenesis enables drugs to conjugate to the remaining 
cysteines. Adapted from reference [18]. 

Reducing the disulfide bonds of a monoclonal antibody should not affect its functions [19]. What 
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2. Conjugation via Various Functional Groups to Synthesize Antibody-Drug Conjugates (ADCs)

2.1. Conjugation via Thiols

Employing the thiols of interchain cysteine residues in monoclonal antibodies as attachment sites
for drug molecules is one of the most used conjugation methods. In a human IgG1, there are four
interchain disulfide bonds that can be used as potential conjugation sites [12]. The four interchain
disulfide bonds can be reduced by tris(2-carboxyethyl) phosphine (TCEP) or dithiothreitol (DTT),
which results in eight thiol groups that are available for conjugating drug molecules. Through this
method, different drug antibody ratio (DAR) conjugates will be obtained when targeting typical
DARs of 2–4 [13,14]. In addition, antibody-drug conjugate at each drug antibody ratio has several
isomers. Thus, over a hundred different species are present in the antibody-drug conjugate. Although
conventional methods that employ cysteine residues as conjugation sites are highly heterogeneous,
Adcetris® was approved by FDA in 2011.

Homogeneous antibody-drug conjugates can be produced through cysteine residues when all
interchain cysteines are coupled to drugs. For example, Senter and coworkers [15,16] developed such
a conjugate which consisted of cAC10, an anti-CD30 monoclonal antibody, and monomethyl auristatin
E (MMAE). This cAC10-vcMMAE conjugate contains eight drugs per antibody, which is the highest
drug antibody ratio (DAR) that can be obtained through using interchain cysteines as conjugation sites.
However, antibody-drug conjugates with four drugs per antibody generally have improved in vivo
performance [17]. McDonagh et al. [18] developed a method to control the conjugate sites by mutating
four or six of the interchain cysteines to serines, therefore leaving four or two cysteines accessible for
conjugating (Scheme 1). After reduction of the disulfide bonds, the mutated monoclonal antibodies
with the reduced number of interchain cysteines were conjugated with the drug vcMMAE. Through
this method, homogenous antibody-drug conjugates with clear attachment sites could be produced.
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Reducing the disulfide bonds of a monoclonal antibody should not affect its functions [19]. What
is more, interchain disulfide bonds are easier to be reduced than intrachain disulfide bonds [20]. These
allow free thiol groups to be generated under mild reducing conditions while leaving the antibody
intact at the same time. Liu et al. [21] took advantage of the fact that different disulfide bonds in a
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monoclonal antibody have different susceptibilities towards reduction and developed another strategy
to tightly control the site of conjugation. Limited reduction with TCEP or DTT predominantly yielded
conjugates in which drugs were attached to heavy-light chain disulfides; partial re-oxidation of fully
reduced antibodies with 5,51-dithiobis (2-nitrobenzoic acid) (DTNB) yielded conjugates that drugs
were mainly attached to by heavy-heavy chain disulfides [13].

2.1.1. Addition to Maleimides

Classically, cysteine residues can be modified through addition of thiols to electrophiles such as
maleimides (Scheme 2) [22–25]. The conjugate could be achieved by reducing the disulfide bonds of
the antibody and then adding to maleimides. Addition to maleimides is the most common method
for attaching drugs to antibodies. Adcetris®, which was approved by the FDA for the treatment of
patients with Hodgkin’s lymphoma after failed autologous stem cell transplantation or patients with
systemic anaplastic large-cell lymphoma after the failure of at least one prior multi-agent chemotherapy
regimen, was produced by this method in which a maleimide-functionalized drug was conjugated
to the interchain cysteine residues of an anti-CD30 antibody [15]. Maleimide-based antibody-drug
conjugates were recently found to have limited stability in blood circulation [26], which would lower
the efficacy of the conjugates and damage healthy tissue. Succinimide or maleimide hydrolysis is
a promising method to get around this problem. Once hydrolyzed, the antibody-drug conjugates
were no longer subject to elimination reactions of maleimides through retro-Michael reactions, thus
improving the stabilities and potencies of ADCs [27–29].
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2.1.2. Disulfide-Thiol Exchange

The approach disulfide-thiol exchange could also be used to synthesis ADCs by forming a new
disulfide bond between drugs and antibodies [30,31]. Ojima et al. [30] designed and synthesized novel
antibody-taxoid conjugates that include highly cytotoxic taxoid drug and monoclonal antibodies that
could recognize the EGFR expressed in cancer cells. In this study, taxoid bearing a free thiol group
was attached to the pyridyldithio groups of the modified anti-EGFR antibodies through disulfide-thiol
exchange (Scheme 3). The resulting conjugates possess remarkable antitumor activities against
EGFR-expressing A431 (human epidermoid) tumor xenografts in immune deficient mice.
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2.1.3. Addition to Alkynes

To avoid the maleimide instability issue, Kolodych et al. [32] developed a heterobifunctional
reagent, sodium 4-((4-(cyanoethynyl)benzoyl)oxy)-2,3,5,6-tetrafluorobenzenesulfonate (CBTF), for
amine-to-thiol coupling (Scheme 4). This reagent comprises a 3-arylpropionitrile (APN) group that
replaces the maleimide and allows for the preparation of remarkably stable conjugates. Addition
of thiols in the antibodies to the 3-arylpropionitriles predominantly produced Z-isomers of the
addition products.
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2.1.4. Disulfide Re-Bridging

Recently, various novel cysteine-relied conjugation methods have been developed [33]. Godwin
and coworkers [34–36] developed a thiol conjugation approach in which interchain disulfide bonds
of the cysteines were partially reduced, followed by bis-alkylation (including Michael addition and
elimination) to introduce thiols of two cysteines to the drug (Scheme 5). Depending on the reduction
degree, the numbers of cysteines for conjugation can be eight or four to generate drug antibody ratios
(DARs) of four and two, respectively. They also demonstrated that the thiobridge ADCs are more
stable than maleimide ADCs in the human serum.

Behrens et al. [37] reduced all the disulfide bonds, exposing eight cysteine residues, then similarly
used dibromomaleimide (DBM) to react with the free thiol groups of the antibody and produced a
dithiomaleimide (DTM) ADC. Four cytotoxic drugs with this functional linker were attached to the
monoclonal antibodies conveniently by linking with the cysteine residues.

Chudasama and coworkers [27,38–40] presented a significant method towards next-generation
antibody-based therapeutics through disulfide re-bridging. In their works, the reduction of
disulfides and disulfide re-bridging could be achieved in one step by the use of a single
reagent: dithioaryl(TCEP)pyridazinedione [38]. Disulfide re-bridging through the use of
dibromopyridazinedione derivatives after disulfide reduction by TCEP was another strategy for
the construction of antibody-based therapeutics in their studies [39,40]. The resulting conjugates were
highly stable and had potent cytotoxicites against tumor cells.
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2.1.5. Expressed Protein Ligation (EPL) and Alkylguanine-DNA-Alkyl Transferase (AGT) Reaction

Another strategy for making homogeneous ADCs was inserting entire domains or proteins into
antibodies. The most well known such method is expressed protein ligation (EPL), which relied on
a self-splicing intein to activate the C-terminal of the target protein and thus formed a new amide
bond with a small molecule, peptide or protein. EPL followed the mechanism: (1) C-terminal thioester
formation through the spontaneous N to S rearrangement of an intein; (2) selected thiol displacement
of the intein sequence to give an activated thioester; (3) thiol exchange of the thioester with a β-amino
mercapto ligand (small molecule, peptide or protein); and (4) spontaneous N to C rearrangement to
form an stable amide bond that links the antibody of interest to the drug with a inserted cysteine
(Scheme 6) [34].
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Proteins that do not interfere with the function of an insertion can take advantage of the human
O6-alkylguanine-DNA alkyltransferase (hAGT) reaction in which the guanine attached to the O6

benzyl group is attacked by the cysteine of hAGT and thus transferred to the drug-AGT conjugate
(Scheme 7). To realize this reaction, hAGT was directly evolved to possess comparable kinetics to the
wild type hAGT, while retaining the substrate tolerance for the O-benzyl moiety [41].
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2.2. Conjugation via Amines

2.2.1. Formation of Amides

Forming amide is one of the most important reactions for the nucleophilic amines.
Amines could typically be acylated by carboxyl via some familiar activating reagents, such as
N-hydroxysuccinimide (NHS), 2-Succinimido-1,1,3,3-tetra-methyluronium tetrafluoroborate (TSTU),
and Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP).

Amines of the antibodies can react with the carboxyls that derived from the drugs in the effect of
the NHS to give antibody-drug conjugates (Scheme 8) [22,23,42]. Amines of lysines are commonly used
for linking drugs to antibodies because lysines are usually exposed on the surface of the antibodies
and therefore easily accessible. Antibodies contain up to 80 lysines [43] and, as a result, conjugation
through lysine residues inevitably leads to twofold heterogeneity: (1) different number of drugs per
antibody; and (2) antibodies with the same number of drugs attached at different sites [31,44]. The
heterogeneity with respect to DARs can be restricted to a certain extent by adjusting the stoichiometry
of drug and antibody used in the reaction; and with respect to site-specificity, the heterogeneity can be
limited by the chemical accessibility of reactive groups [45,46]. Mylotarg® was the first antibody-drug
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conjugate on the market by lysine-coupling. In the conjugate, a semi-synthetic calicheamicin derivative
was activated with NHS, and then attached to the lysines of a humanized IgG4 [47]. However,
Mylotarg® was withdrawn from the market in 2010 due to the lack of benefit improvement to patients.
Recently, there was a new clinically relevant antibody-drug conjugate generated by lysine modification:
Kadcyla® [48].
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Hong et al. [49] developed an approach to covalently attach the anticancer drug doxorubicin
to an anti-EGFR antibody fragment (Fab’) through a polyethylene glycol (PEG) linker. In this work,
CIT–(CH2)5–PEG24–CO2H was activated by TSTU or PyBOP and then coupled in situ with the
C31-amine of DOX to give CIT–(CH2)5–PEG24–DOX, which was then conjugated with the cysteine
residues of an anti-EGFR Fab’. Introduction of PEG increased aqueous solubility of the drug, which
led to a yield improvement of the conjugation reaction with the Fab’.

Besides familiar activating reagent, amines could react with carboxyl acids and their derivatives to
form the amides under the influence of the BTG, SrtA and BirA. For example, Jeger et al. [50] observed
the selective acylation of amines by the glutamines in the heavy chain’s flexible regions of an IgG
where the asparagines (N) were mutated to glutamines (Q). By using bacterial transglutaminase (BTG)
at these sites, they synthesized homogeneous conjugates that were tumor-uptake selective in vivo
(Scheme 9).
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transglutaminase (BTG). Adapted from reference [50].

Sortase A (SrtA), one of the many sortases found in Gram-positive bacteria, is a transpeptidase [51]
that can recognize a LPXTG sequence, break the TG bond and facilitate the formation of a new amide
bond with the amine of glycine-derivitized drug. This was demonstrated through conjugating folate,
biotin, rhodamine and so on [52,53]. The leaving glycine could return as a competing nucleophile,
which reversed the reaction, unless more than 10 equivalents of glycine-derivitized drugs were used
(Scheme 10) [54]. Williamson et al. [55] put forward a creative solution to solve this problem: they
used threonine esters as substrates and the product glycolic acids were far less nucleophilic, enabling
conjugation with a 1:1 stoichiometry.
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The biotin ligase (BirA) could recognize and acylate the Avi-tag, which is a 15-amino acid
GLNDIFEAQKIEWHE sequence. Chen et al. [56] found that BirA could accept keto analogs of biotin
as substrates to react with Avi-tag and form intermediates that could conjugate with the oxyamines of
drugs (Scheme 11). BirA has a similar function as formylglycine-generating enzyme (FGE), which can
site-specifically insert an aldehyde group into an antibody. In this case, a keto group was introduced
into the antibody. Although BirA requires a long sequence, it is far less restricted in the location along
the antibody. They demonstrated the reaction with the installed carbonyl using fluorescein hydrazide.
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2.2.2. Formation of Carbamates

Amines of the drugs could react with the hydroxyls that derived from the linkers in the effect
of phosgene, 4-nitrophenyl chloroformate, etc. and form the carbamate containing drug-linkers
(Scheme 12), which was then coupled to antibodies [57,58]. For instance, Jeffrey et al. [57] prepared
antibody-drug conjugates in which the amino-CBI drug, a DNA minor groove binder drug (MGBs),
was attached to monoclonal antibodies through peptide linkers that designed to release drugs in
the lysosomes of target cells. In this study, the amino-CBI drug reacted with phosgene to form the
corresponding isocyanate and then the linker with a hydroxyl was added to form the carbamate.
Dubowchik et al. [59] linked the anticancer drug doxorubicin to chimeric BR96, an internalizing
monoclonal antibody, through lysosomally cleavable dipeptides. In this case, the carbamate between
drug and antibody was prepared with 4-nitrophenyl chloroformate. These antibody-drug conjugates
usually insert a spacer such as para-aminobenzyl carbamate (PABC) between the peptide linkers and
the drugs to minimize the steric interaction effects. This approach has previously been used to release
doxorubicin [60], MMAE [17] and camptothecin [61] from antibody-drug conjugates.
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Scheme 12. The reaction of amines of the drug and hydroxyls of the linkers in the effect of phosgene or
4-nitrophenyl chloroformate. Adapted from Reference [57,58].

Another carbamate was designed for the hydroxy containing drug. For instance, antibody-drug
conjugate SYD985 consists of seco-DUBA drug, self-elimination spacer, cleavable peptides linker and
trastuzumab. The seco-DUBA drug was linked to the self-elimination spacer via carbamate bond that
derived from carbonate. Treatment of MOM protected duocarmycin with 4-nitrophenyl chloroformate
gave the corresponding carbonate. Commercially available tert-butyl methyl(2-(methylamino)
ethyl)carbamate was then used to synthesize the carbamate. Removal of the Boc and MOM groups
with trifluoroacetic acid (TFA) provided cyclization spacer-duocarmycin as a TFA salt. Cyclization
spacer-duocarmycin was reacted with the activated linker to synthesis drug-linker module under
slightly basic conditions [62].
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2.3. Conjugation via Alcohols

2.3.1. Formation of Carbonates

Similar with amines, alcohols can react with chloroformates to form carbonates. For example,
Moon et al. [63] conjugated 7-ethyl-10-hydroxycamptothecin (SN-38) derivatives to hMN-14, a
humanized anti-CEACAM5 mAb, via a carbonate bond. To construct the carbonate bond,
BOC-SN-38 [64] was firstly converted to its 20-O-chloroformate, and then reacted in situ with the
known linker, MC-Phe-Lys(MMT)-PABOH [60].

2.3.2. Formation of Ether Bonds

Jeffrey et al. [57] described a method to conjugate amino-CBI drug to the monoclonal antibody
by formation of carbamates (see Section 2.2.2). Another approach for attaching a DNA minor groove
binder drug (MGB) derivative to mAb involved O-alkylation of the hydroxy in aza-CBI to form ether
bond. In this approach, a para-aminobenzyl ether (PABE) group was used as a self- elimination spacer
between the drug and the peptides [57]. An important step in the synthesis of this antibody-MGB
conjugate was the formation of an ether bond through the O-alkylation of aza-CBI by bromide and
potassium carbonate (Scheme 13). This work also showed that the conjugate could cleave via amide
bond hydrolysis and lead to the release of free phenolic drug [65]. This approach should be broadly
applied to drugs that have a phenolic hydroxyl group as the conjugate site [66].
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2.3.3. Formation of Ester Bond

In 2010, Quiles et al. [67] developed paclitaxel-monoclonal antibody (PTX-mAb) conjugates that
could deliver significant doses of drugs to the tumor cells using the ester bond. The conjugates used
PEG as linker, and the paclitaxel was attached to the linker with glutarate (GL) or succinate (SX)
through the ester bond, the resulting PTX–L–Lys[(PEG12)3–PEG4]–PEG6–CO2NHS (L = GL or SX) was
then conjugated to C225, an antiepidermal growth factor receptor (anti-EGFR) monoclonal antibody,
producing completely soluble conjugates.

2.4. Conjugation via Aldehydes

2.4.1. Conjugation via FGE

Conjugation via aldehydes is another method for linking drugs to antibodies.
Formylglycine-generating enzymes (FGEs), which recognize and modify a short CXPXR (where
X is any amino acid) sequence, can be used to modify the cysteine residues of antibodies to
aldehyde-containing formylglycine (FGly) residues. This method was applied to generate site-specific
antibody-drug conjugates via incorporating cytotoxic drugs into monoclonal antibodies with a
formylglycine [68]. Following the production of modified antibody, a chemical method can be used to
conjugate a drug to the aldehyde group of formylglycine. Oxyamine or hydrazide drugs were attached
to the modified antibodies successfully (Scheme 14) [69]. Recently, this kind of aldehyde conjugation
strategy was further developed by Agarwal et al. [70], who used hydrazino-iso-Pictet-Spengler (HIPS)
chemistry to attach maytansine to the aldehyde-containing trastuzumab. The HIPS chemistry resulted
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in the formation of a covalent C–C bond, which was more stable than oxime or hydrazone ligation
products in physiological condition. What is more, this study showed that the aldehyde group can
be introduced in many locations of the antibody without affecting the stability and activity of the
obtained antibody-drug conjugates.
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2.4.2. Conjugation via aaRS

The tRNA/aminoacyl-tRNA synthetase (aaRS) pair can site-specifically incorporate an unnatural
amino acid (e.g., p-acetylphenylalanine, pAcPhe) into antibody [71]. Recently, the genetic incorporation
of unnatural amino acids into antibodies had become a useful tool in the ADC design [72,73]. This
method was successfully realized by Axup et al. [74], who developed site-specific auristatin conjugates
of trastuzumab. A p-acetylphenylalanine was loaded onto the amber codon of tRNA by aaRS and then
specifically incorporated into the amber site of the trastuzumab heavy chain. After purification, the
antibody was coupled to the monomethyl auristatin F (MMAF) derivative that contains an oxyamine
group by an oxime ligation with the pAcPhe residues (Scheme 15). The analysis of antitumor activity
and pharmacokinetics of this site-specific antibody-drug conjugate confirmed its efficacy and stability
in serum.
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2.4.3. Oxidation of Sialic Acids

Glycoengineering has been employed to synthesize site-specific antibody-drug conjugates, in
which sialic acids were used as chemical handles for selective conjugations. This was achieved by
incorporating sialic acids into the native glycans of trastuzumab through β-1,4-galactosyltransferase
(Gal T) and α-2,6-sialyltransferase (Sial T). Prior to reaction with the oxyamine drugs, the alcohol groups
of sialic acids were oxidated to aldehyde groups. The resulting antibodies could react with the cytotoxic
drugs via an oxime ligation (Scheme 16). This method was evaluated by conjugating trastuzumab with
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two drugs, monomethyl auristatin E (MMAE) and dolastatin 10. The glycoengineered antibody-drug
conjugates exhibited comparable antitumor activities to the conventional analogs [75].Int. J. Mol. Sci. 2016, 17, 194 10 of 16 
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2.4.4. Conjugation via Transamination Reagent

Witus et al. [76,77] introduced carbonyl groups by transamination reagent pyridoxal 51-phosphate
(PLP) at the N-terminus of antibodies, which could be used as unique attachment sites for the
conjugation formation (Scheme 17). However, the reaction yields were not very high and high
temperatures were required, which limited the application of this method. To solve these problems,
they developed a combinatorial peptide library screening platform and found a new transamination
reagent, N-methylpyridinium-4-carboxaldehyde benzenesulfonate salt (RS) [78]. Antibodies with
glutamate-rich sequences were particularly reactive substrates for this reagent [79].
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2.5. Conjugation via Azides

2.5.1. Click Reactions with DBCO

Azides can react with alkynes to form triazoles through click chemistries, such as copper-catalyzed
azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC)
(Scheme 18) [80,81]. This approach was recently used to construct antibody-drug conjugates. For
example, Zhou et al. [81] conjugated drugs to antibodies using this method. In this study, an
azide-containing reagent, sodium (difluoroalkylazido)sulfinate (DAAS-Na), allowed azide groups
to be linked to heteroaromatics, and the products could then be attached to monoclonal antibodies
by click reactions. DAAS-Na was used in the heteroarene functionalization reaction, in which ZnCl2
and TsOH¨ H2O were acid additives and tBuOOH was an oxidant. The resulting azide-linked drugs
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could react with a dibenzylcyclooctyne (DBCO) containing antibody through a CuAAC reaction. This
strategy expands the extent of bioactive drugs that can be linked to monoclonal antibodies.Int. J. Mol. Sci. 2016, 17, 194 11 of 16 
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Microbial transglutaminase (MTGase) can catalyze the formation of an isopeptide bond
between the amine group of glutamine and the primary amine of lysine while simultaneously
releasing an ammonia gas [82]. The coupling activity of MTGase was applied to synthesize
antibody-drug conjugates [83–85]. For example, Dennler et al. [83] afforded a highly homogeneous
trastuzumab-MMAE conjugate with DAR of 2 using this enzymatic conjugation strategy. In this
work, an azide-containing linker, which involves a primary amine, was coupled to Q295 of the
deglycosylated antibody by MTGase. This enzymatic reaction was followed by a SPAAC reaction with
the DBCO-containing auristatin drug.

Cell-free protein synthesis (CFPS) system was also efficiently applied to produce monoclonal
antibodies that contain unnatural amino acids for antibody-drug conjugate generations. For example,
Zimmerman et al. [86] prepared a site-specific antibody-drug conjugate via CFPS system using a new
synthetase to incorporate a para-azidomethylphenylalanine (pAMF) to the monoclonal antibody, which
was then linked to a DBCO-functionalized MMAF drug by SPAAC reaction.

2.5.2. Click Reactions with Terminal Alkynes

In 2014, Bryden et al. [87] described the attachment of azide-functionalized porphyrins to
a tratuzumab via a novel conjugation method. In this study, Trastuzumab was treated with TCEP in
order to reduce the interchain disulfide bond. Treatment with N-propargyl-3,4-dibromomaleimide
yielded alkyne-containing trastuzumab, which then successfully reacted with porphyrin derivatives
through the CuAAC reaction to afford trastuzumab-porphyrin conjugates (Scheme 19). This method
could also be realized using SPAAC reaction [39].
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3. Conclusions

A promising approach to improve the potency of drugs is to be conjugated to monoclonal
antibodies that enable these cytotoxic drugs to be site-specifically delivered to tumor cells while
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avoiding the toxicity of drugs on normal cells. The linkers of antibody-drug conjugates profoundly
impact their potency and safety. Recently, a variety of methods have been developed to conjugate
drugs to antibodies. In this review, we summarized the methods that are currently used to design
and synthesize antibody-drug conjugates, including heterogeneous ADCs and homogeneous ADCs,
via various functional groups such as thiols, amines, alcohols, aldehydes and azides. Heterogeneous
ADCs were usually synthesized through the thiols of cysteine residues and the amines of lysines,
however, the heterogeneity diminished their activities and promoted antibody aggregations, and
increased toxicities in the circulation. Homogeneous ADCs made through the catalysis of site-specific
conjugation enzymes such as AGT, BTG, aaRS and Sial T are more stable and have comparable or
even better activities than those conventional analogs in vivo. We believe that a growing number
of methods will be developed to synthesize ADCs in the near future, and more and more ADCs,
especially site-specifically modified ADCs, will be produced.
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