Skip to main content
. 2016 Feb 6;17(2):218. doi: 10.3390/ijms17020218

Table 3.

The performance of models trained with combined features.

Training Feature Sensitivity Specificity Accuracy MCC AUC
3-gap DC+CSP-PSSM-DC 0.853 0.816 0.834 0.669 0.887
3-gap DC+CSP-Bi-gram PSSM 0.853 0.839 0.846 0.691 0.887
3-gap DC+CSP-ED-PSSM 0.876 0.843 0.859 0.719 0.905
3-gap DC+CSP-PSSM-DC+CSP-Bi-gram PSSM 0.857 0.793 0.825 0.651 0.882
3-gap DC+CSP-PSSM-DC+CSP-ED-PSSM 0.862 0.843 0.853 0.705 0.899
3-gap DC+CSP-Bi-gram PSSM+CSP-ED-PSSM 0.843 0.839 0.841 0.682 0.894
3-gap DC+CSP-PSSM-DC+CSP-Bi-gram PSSM+CSP-ED-PSSM 0.876 0.853 0.864 0.728 0.912