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Single-cell transcriptomes reveal characteristic
features of human pancreatic islet cell types
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Abstract

Pancreatic islets of Langerhans contain several specialized endo-
crine cell types, which are commonly identified by the expression
of single marker genes. However, the established marker genes
cannot capture the complete spectrum of cellular heterogeneity in
human pancreatic islets, and existing bulk transcriptome datasets
provide averages across several cell populations. To dissect the
cellular composition of the human pancreatic islet and to establish
transcriptomes for all major cell types, we performed single-cell
RNA sequencing on 70 cells sorted from human primary tissue. We
used this dataset to validate previously described marker genes at
the single-cell level and to identify specifically expressed transcrip-
tion factors for all islet cell subtypes. All data are available
for browsing and download, thus establishing a useful resource
of single-cell expression profiles for endocrine cells in human
pancreatic islets.
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Introduction

Located within the pancreas, the islets of Langerhans are composed

of endocrine cells expressing glucagon (alpha cells), insulin (beta

cells), somatostatin (delta cells), pancreatic polypeptide (PP cells),

and ghrelin (epsilon cells). Furthermore, they are heavily vascular-

ized and innervated, and in contact with the surrounding acinar and

ductal cells of the exocrine pancreas. Pancreatic islets function as

highly specialized micro-organs that monitor and maintain blood

glucose homeostasis. While damage to beta cells causes diabetes,

the other pancreatic cell types may also contribute to pathogenesis

in ways that are not well understood. Recent studies showed that

both alpha [1] and delta cells [2] have the potential to replenish beta

cell mass in animal models.

Development of diabetes correlates with global changes in the

transcriptome of pancreatic islets [3]. These gene expression changes

could reflect alterations in the cell subtype composition of the islet

and/or changes in the transcriptomes of beta cells or other individual

cell types. Analyzing islet cell-specific gene expression changes has

the potential to shed light on the etiology of diabetes. Recently, alpha

and beta cell purification protocols from human [4–6] and mouse

islets [7,8] have yielded initial maps of cell type-specific transcrip-

tomes. The available transcriptome datasets further comprise primary

mouse and human alpha cells, beta cells, and delta cells, a number of

rodent alpha and beta cell lines, and one human beta cell line [4,9–

12]. Despite the rapid progress in this field, a comprehensive tran-

scriptome database for individual human islet cell types is still miss-

ing, and no transcriptome data are currently available for PP cells.

Recent advances in next-generation sequencing and library

preparation enabled for the first time the transcriptome characteriza-

tion of single cells from primary tissue. For example, this approach

was successfully used to establish transcriptome profiles and dissect

cell type heterogeneity for primary tissue obtained from the lung

[13], the spleen, and the brain [14,15].

Here, we used single-cell RNA-seq to establish a comprehensive

transcriptome database for the cell types that are present in primary

human pancreatic islets. Principal component analysis in combina-

tion with visualization as biplots identified alpha cells, beta cells,

delta cells, PP cells, acinar cells, and pancreatic duct cells directly

from the single-cell transcriptome profiles. We illustrate the utility

of this resource by discovering novel cell type-specific marker

genes, and we identified human-specific expression patterns in

alpha and beta cells. All data are readily available for user-friendly

online browsing and download to foster research on pancreatic islet

biology and diabetes-related mechanisms in human.
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Results and Discussion

Single-cell transcriptomes recapitulate pancreatic endocrine
cell types

Primary human pancreatic islets of Langerhans were disassociated

into single cells, and these cells were sorted into individual wells of

a 96-well plate by FACS [16]. The Smart-Seq2 protocol [17] was

then applied to obtain single-cell transcriptomes. Following the

generation and amplification of cDNA, we determined the levels of

beta-actin expression by qRT–PCR and selected all cell-containing

wells for library preparation and next-generation sequencing

(Fig 1A). Seventy cells were sequenced in total, of which 64 cells

passed quality control (see Materials and Methods) and were

included in the analysis (Fig EV1A and B, and Dataset EV1). We

obtained an average of 12.7 million high-quality reads per single

cell, of which 62.9% aligned to the human reference genome. RNA

expression levels were calculated using the BitSeq software which

uses RPKM normalization and corrects for non-uniform read distri-

bution along the transcripts (e.g., 3-prime bias) [18]. Data quality

was validated by assessing the relation between expression level

and transcript length in native RNA (Fig EV1C) as well as ERCC

spike-in controls (Fig EV1D). While transcript length and expression

level were not correlated in the ERCC spike-in controls, we detected

a negative correlation (r = �0.405) in the native RNA which was in

the range of what had been previously reported as biologically

significant finding [19]. However, a potential bias due to transcript

length normalization cannot be completely excluded; therefore,

comparing expression levels of different transcripts/genes should be

performed with caution. To define global similarities among the

single cells and the marker genes that drive these similarities, we

performed principal component analysis (PCA) on the transcriptome

dataset and displayed the results as biplots. PCA on the full dataset

separates a group of 18 cells based on high glucagon (GCG) and

transthyretin (TTR) expression and a group of 9 cells expressing

pancreatic polypeptide (PPY) from a heterogeneous group of 37 cells

(Fig 1B). In a second PCA on the 37 yet undefined cells, we identi-

fied a group of 12 cells with high insulin (INS) expression, a group

of 11 cells characterized by PRSS2, CTRB2, REG3A, REG1A, and

REG1B and a group of two somatostatin (SST)-expressing cells. In a

third PCA on the remaining 12 undefined cells, a group of 8

cells was characterized by keratin18 (KRT18) and keratin8

(KRT8). Based on the expression profiles of the identified marker

genes, we were able to uniquely assign 60 out of 64 single-cell

transcriptomes to the alpha, beta, delta, PP, acinar, or ductal cell

type (Fig 1C).

As an additional validation of our cell type classification, we

visualized the global transcriptional similarity of individual

pancreatic cells by multidimensional scaling (MDS), where each

single-cell transcriptome was colored by the cell type derived from

PCA (Fig 1D). When mapped upon the MDS plot, the known cell

type-specific marker genes INS, GCG, PPY, SST, REG1A, and KRT8

show the expected expression patterns, with different amounts of

variability within the subgroups (Fig 1E). The validity of our single-

cell RNA-seq dataset was further confirmed in direct comparison to

an external dataset consisting of bulk RNA-seq data for whole islet,

beta, and acinar cells [20]. Using MDS, we show high transcrip-

tional similarity between the corresponding cell types of both data-

sets (Fig EV1E). The expression information of individual cells and

merged expression values for each cell type is available in Dataset

EV2.

To rule out technical reasons as a major source of gene expres-

sion variability, we identified presumably pure alpha and beta cells

among the assessed single cells (Fig EV2A). Their transcription pro-

files were used to simulate transcriptomes with defined percentages

of alpha and beta cell contribution (Fig EV2B). Individual alpha and

beta cells were then compared to these virtual transcriptomes to

estimate upper limits for potential cross-contamination (Fig EV2C–E).

All beta cell transcriptomes were found to be free from any alpha

cell contribution, whereas beta cell profiles could explain a small

proportion (< 3%) of the variance observed in 8 of the 18 alpha

cells studied. However, given that these alpha cells further show

higher unexplained variance, it is likely that they are characterized

by high inherent variability rather than cross-contamination from

beta cells. We conclude that the differences between alpha and beta

cell heterogeneity are in line with biological rather than technical

effects which supports the hypothesis that alpha cells might be more

plastic than beta cells [4].

The heterogeneity within the different cell types was further

explored by separate PCAs for each cell type (Appendix Fig S1).

Particularly for endocrine cells, heterogeneity was mainly driven by

expression differences of marker genes as identified in the initial cell

type classification by PCA, suggesting that these cell types are char-

acterized by a spectrum of marker gene expression levels. While this

analysis provides evidence for transcriptional heterogeneity, more

cells are needed to thoroughly characterize subgroups within the

different cell types.

A transcriptome resource to reveal marker genes of human
pancreatic cell types

To maximize the utility of our dataset for the identification of cell

type-specific expression patterns, we generated a resource of

genome browser tracks of all individual cells as well as cumulative

tracks for the cell type clusters identified by PCA (http://islet-tran-

scriptome.computational-epigenetics.org/). One interesting use of

Figure 1. Single-cell transcriptomes recapitulate the major pancreatic cell types.

A Workflow for obtaining and analyzing single-cell RNA-seq data from human pancreatic islets.
B Iterative PCA/biplot-based approach for the identification of cell types and cell type-defining transcripts from single-cell RNA-seq data.
C Expression (scaled RPKM values) of cell type-defining genes as identified in (B) across all single cells. Transcripts and single cells are grouped by cell type as identified

in (B).
D Display of transcriptional similarity between all single cells by MDS. The coloring scheme is based on the cell types as identified in (B).
E Relative expression (scaled RPKM value) of canonical marker genes for the 6 identified pancreatic islet cell populations represented by bubble size and projected onto

the MDS profile.

▸
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this resource is the analysis of master regulatory transcription

factors, which are fundamental for the development and the mainte-

nance of different pancreatic cell types based on animal models and

human genetics. The genome browser tracks illustrate the beta cell-

specific expression of PDX1, a master regulatory transcription factor

directly controlling insulin expression. In contrast, the alpha

lineage-defining factor ARX is expressed in both alpha and some PP

cells (Fig 2A and Appendix Fig S2). Other transcription factors that

are important for pancreas development have different degrees of

cell type-specific expression in mature human islets, including pan-

endocrine (PAX6), beta cell-specific (PAX4), and duct/delta (HHEX)

patterns (Fig 2B). While MAFA is transcribed in beta cells specifi-

cally, we observed robust MAFB expression in alpha, beta, and delta

cells. Half of the beta cells studied expressed MAFA and MAFB

concomitantly. In addition to these previously described factors, we

also observed cell type-specific expression for transcriptional regula-

tors, which have not yet been extensively characterized in the endo-

crine pancreas. For example, MORF4L1 shows a similar pan-

endocrine pattern to the canonical islet cell marker NEUROD1

(Fig 2C). A subset of alpha cells express IRX2 (Fig 2D), some beta

cells show high expression of polycomb ring finger oncogene (BMI1)

(Fig 2E), and PP cells can be characterized by the transcription

factors ETV1 and MEIS1 (Fig 2F).

We further performed pairwise correlation analysis on transcript

level to identify genes, of which the expression profiles correlate

highly (r > 0.9) with those of the endocrine marker genes INS, GCG,

SST, and PPY (Fig EV3). While several highly correlated genes could

be identified for INS and SST (e.g., zinc transporter SLC39A4 and

Notch pathway component DLK1 for INS and transcription factors

NKX6-3, ZNF430 for SST), the expression profiles of GCG and PPY

did not show high correlation with any other genes.

To extend our analysis beyond transcription factors and known

marker genes, we performed pairwise comparisons of cell type-

specific transcriptomes by gene set enrichment analysis (Dataset

EV3). Interestingly, we observed strong enrichment of a gene set

containing the REST-binding motif in all endocrine cell types

compared to acinar and ductal cells (Fig 3A). Most genes that

contain the REST motif in their promoters are expressed in alpha,

beta, delta, and PP cells, whereas they are repressed in ductal and

acinar cells (Fig 3B). The transcriptional repressor REST targets the

REST-binding motif. In line with the target gene expression pattern,

REST is specifically expressed in ductal and acinar cells (Fig 3C and

Appendix Fig S3).

Finally, based on pairwise differential expression analysis

between the pancreatic cell types, genes with highly specific expres-

sion patterns were identified (Fig EV4 and Appendix Fig S4,

Datasets EV4 and EV5). We then used these data to assess islet cell

type-specific expression in two areas of high relevance for diabetes

research–diabetes risk genes and mouse–human species differences.

Genomewide association studies (GWAS) have identified

genomic loci conferring increased risk for the development of

diabetes. We examined whether any of the diabetes-related genes

predicted by GWAS were specifically expressed in one of the pancre-

atic islet cell types and genes differentially expressed between the

endocrine and exocrine cell types (Fig EV5A). For both type 1 and

type 2 diabetes, we identified GWAS genes with beta cell- and

endocrine-specific expression. Other genes show broader expression

patterns, emphasizing the complexity of functional annotation of

diabetes GWAS results. Furthermore, key MODY (Mature Onset of

Diabetes in Young) [21] genes PDX1, PAX4, INS, HNF1A, GCK are

predominantly specific to beta cells (Fig EV5B).

To investigate species-specific differences of alpha and beta cell

transcriptomes, we assessed the degree to which the previously

identified differentially expressed mouse genes [7,9] are also dif-

ferentially expressed in human islets and vice versa (Appendix Fig

S5). We found that the human alpha cell-specific gene group-

specific component (vitamin D binding protein) GC and the human

beta cell-specific gene DLK1 (Fig 3D) displayed opposite expression

patterns as to what had been reported in mouse islet cells. To

confirm the cell type-specific expression of DLK1 and GC, we

performed immunofluorescence staining on both human and mouse

pancreatic tissue sections. In human islets, DLK1 was specifically

expressed only in insulin-positive cells (Fig 3E), whereas this

protein was observed in glucagon-positive cells in mouse tissue

(Fig 3F). Similarly, GC expression showed alpha cell specificity in

human tissues (Fig 3G), whereas it was co-expressed with insulin

in mouse tissues (Fig 3H). These results suggest that two of the

most differentially expressed cell type-specific marker genes for

human alpha and beta cells have opposite expression patterns in

mouse islets.

Pancreatic islets comprise different cell types with characteristic

transcriptomes, which confounds transcriptome studies that focus

on whole pancreatic islets in physiological and pathological condi-

tions. Lineage-labeled transgenic mice have made it possible to

obtain transcriptomes for highly pure alpha and beta cell popula-

tions in mouse. For human islets, however, cell type-specific

enrichment strategies depend on the availability of specific antibod-

ies. Efforts have been made to measure the transcription of individ-

ual genes in single human islet cells by qRT–PCR [22], but our

dataset is the first to provide genomewide transcriptional informa-

tion of human islets at single-cell resolution. Using single-cell data,

we also for the first time defined the transcriptomes of human delta

cells and PP cells, thereby providing reference transcriptomes for

all major endocrine cell types in human pancreatic islets.

We illustrated the practical utility of our resource and dataset by

three case studies. First, after confirming the cell type specificity of

the major transcription factors involved in pancreatic endocrine

lineage determination, we identified transcripts encoding transcrip-

tion factors expressed in islet cells. These include the pan-endocrine

marker MORF4L1, alpha cell-specific IRX2, beta cell-specific BMI1,

and PP cell-specific MEIS1 and ETV1. These data can provide the

basis for future functional studies in the roles of these transcription

factors in the pancreas and in diabetes.

In a second example, we analyzed cell type-specific enrichment

of previously characterized gene sets. The specific expression of

REST-motif-containing genes in the endocrine cell types led us to

identify the specific expression of the transcriptional repressor REST

in the exocrine pancreas. REST recruits a large complex of chro-

matin regulators, including many factors that allow pharmacological

modulation like histone deacetylases and the histone demethylase

LSD1. REST repression in non-endocrine cells activates the promot-

ers of important beta cell transcription factors, including PAX4 and

PDX1 and is a key step in reprogramming to insulin-producing cells

[23–26]. Future studies will show whether REST is critical in

restricting ductal differentiation potential and may be a target for

inducing beta cell neogenesis from duct cells.
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Figure 2. Expression of cell type-specific transcription factors at single-cell resolution.

A Merged UCSC Genome Browser tracks for the PDX1 and ARX loci. The respective tracks for all single cells are presented in Appendix Fig S2.
B Relative expression (scaled RPKM value) of important transcription factors represented by bubble size and projected onto the MDS profile.
C–F Cell type-specific expression of pan-endocrine (C), alpha cell (D), beta cell (E), and PP cell (F) transcription factors (red bar: mean expression). The statistical

significance of the differential gene expression is presented in Appendix Fig S6.
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Figure 3. Single-cell transcriptomes reveal unique features of human islets.

A Heatmap displaying the P-values obtained by pairwise Gene Set Enrichment Analysis (GSEA) for the REST-binding motif.
B Relative expression (scaled RPKM value) of genes contained in the REST-binding motif gene set.
C Merged UCSC Genome Browser tracks for REST. The respective tracks for all single cells are presented in Appendix Fig S3.
D Expression of DLK1 and GC in human islet cell types (red bar: mean expression). The statistical significance of the differential gene expression is presented in

Appendix Fig S6.
E–H Co-staining of DLK1 (E, F) or GC (G, H) with insulin and with glucagon in representative human (E, G) and mouse (F, H) islets.
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Finally, in a third example, we focused on differences between

mouse and human islets. Previous studies have noticed such dif-

ferences regarding the overall architecture and specific physiological

properties [7,27]. Our human islet single-cell transcriptomes confirm

that the expression of hormones and canonical transcription factors

is conserved between human and mouse. However, two genes—GC

and DLK1—that are among the most characteristic for human alpha

and beta cells, respectively, are expressed in opposite patterns in

the mouse. Both DLK1 and GC are relevant to diabetes [5,28], and

further research is necessary to dissect their roles in both human

and mouse islet biology.

These examples highlight the utility of the current single-cell

transcriptome database for islet biology. In addition, we expect

future growth of our resource with the addition of single-cell expres-

sion data from diabetic donors and from islets treated with drugs

and metabolites ex vivo, contributing to the utility of the presented

resource for studies on all aspects of human islet biology. In

summary, our study establishes a transcriptional dataset for all the

cell types in human pancreatic islets with single-cell resolution and

defines distinctly human features in the patterns of alpha and beta

cell-expressed genes.

Materials and Methods

Reagents

Antibodies used in this project are directed against insulin (Sigma

I8510), glucagon (Abcam ab92517), DLK1 (R&D MAB1144-100),

and GC (Abcam ab81307). The sequences of primers for actin have

been published recently [29]. All the fluorescently labeled secondary

antibodies were purchased from Life Technologies Corporation. The

reagents used for the Smart-seq2 protocol for cDNA synthesis,

amplification, and sequencing library preparation have been

published recently [17].

Cell culture

Human islets were provided through the JDRF award 31-2012-783

(ECIT: Islet for Research program). They were from a 37-year-old

male donor whose BMI was 22. Islets were cultured in CMRL

medium (Life Technologies) supplemented with 10% FBS, 2 mM

glutamine, 100 U/ml penicillin, and 100 lg/ml streptomycin. Islets

were collected following overnight culture after receiving them. To

disassociate islets into single cells, islets were incubated in Accutase

(Life Technologies) in 37°C for 20 min, neutralized by CMRL

medium. Purification of single cells was performed by flow cytome-

try cell sorting on a Moflo AstriosEQ (Beckman Coulter, Miami) as

previously described in [16].

Immunofluorescence

The human pancreatic histology slides were ordered from Abcam

(ab4611). The mouse pancreatic histology slides from 129SV mice

were gifts from Patrick Collombat. The staining followed a published

protocol [30]. Briefly, the paraffin was removed from the tissues.

Afterwards, rehydration and antigen retrieval was performed. The

tissues were blocked by 3% BSA for half an hour and incubated

overnight at 4°C with primary antibodies in 1:1,000 dilutions. After

washing with PBST, tissues were incubated with secondary antibod-

ies and Hoechst 33342 for half an hour. Finally, the slides were

mounted and sealed with nail polish and images were taken with

Leica CRT6000.

Single-cell RNA-seq sample and sequencing library preparation

cDNA synthesis and enrichment were performed following the

Smart-seq2 protocol as described Picelli et al [17]. ERCC spike-in

RNA (Ambion) was added to the lysis buffer in a dilution of

1:1,000,000. Library preparation was conducted on 1 ng of cDNA

using the Nextera XT library preparation kit (Illumina) as described

Picelli et al [17]. Sequencing was performed by the Biomedical

Sequencing Facility at CeMM using the 50 bp single-read setup on

the Illumina HiSeq 2000/2500 platform.

qRT–PCR

After the cDNA was synthesized and amplified from single cells,

quantitative PCR was performed with Power SYBR Green PCR

Master Mix (Applied Biosystems) on a LightCycler 480 qPCR instru-

ment (Roche).

Single-cell RNA-seq data processing

The raw sequencing data were processed using a custom bioinformat-

ics pipeline which consists of the following main steps: (i) trimming

of contaminating sequencing adapter sequences, (ii) alignment of

the trimmed reads to the human transcriptome as well as genome,

(iii) calculation of expression estimates for each transcript, differen-

tial expression analysis and visualization as genome browser tracks.

Trimming of adapter sequences was performed with trimmo-

matic (v 0.32). Only reads with a minimum length of 25 bp after

adapter trimming were included in the downstream analysis. Align-

ment of the trimmed reads to the human transcriptome (hg19

GRCh37 ftp://ftp.ensembl.org/pub/release-74/fasta/homo_sapiens/

cdna/Homo_sapiens.GRCh37.74.cdna.all.fa.gz) was performed with

bowtie1 (v 1.1) [31] recording up to 100 different mapping positions

for each read which takes into account that one read might originate

from any of the different transcripts of one gene. Alignment to the

human genome (hg19/GRCh37) was performed using Tophat

(v 2.0.13) [32]. These genomic alignments were purely performed

for the purpose of visualization in genome browser tracks. Conver-

sion of the alignment files to the files needed to display the data as

genome browser tracks (bigWig) was performed with RSeQC

(v 2.3.9) bam2wig.py followed by UCSC tools’ wigToBigWig. Calcu-

lation of normalized transcript-wise expression estimates (rpkm

values) as well as differential expression analysis was performed

based on the transcriptome alignments using the R (v 3.1.2) package

BitSeq (v 1.10.0) [18]. In order to correct for potential biases in the

read distribution, the BitSeq function getExpression() was run with

the “uniform” option disabled.

Quality filtering

The minimal number of reads needed to obtain reliable RPKM

values as estimates of gene expression was determined by taking
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advantage of a synthetic RNA mix consisting of 92 RNAs covering a

106-fold concentration range (ERCC spike-in controls) that had been

carried along through the entire library preparation and sequencing

process with each single cell. Starting from ~25 reads per transcript,

we observed the expected linear relationship between ERCC tran-

script abundance and measured RPKM values (Fig EV1B). For the

purpose of noise reduction, we defined transcripts covered by less

than 25 reads as “not expressed” and set their RPKM values to a

minimal value. Furthermore, 6 samples showed less than 500 (arbi-

trary cutoff) reliably covered transcripts and were excluded from the

analysis (Fig EV1A).

Grouping the single cells based on their gene expression profiles

In order to determine groups of cells with similar expression profiles

and at the same time identify the primary defining genes for each

group, we performed a stepwise principal component analysis

(PCA) based on the quality-filtered expression values. PCA was

performed using the function prcomp() in R. The results were

displayed as a biplots showing samples (cells) as dots and the most

highly loaded variables (transcripts) as vectors. Biplots were

constructed using a slightly modified version of the R function ggbi-

plot() (https://github.com/vqv/ggbiplot).

External data

External RNA-seq raw data (next-generation sequencing reads) for

bulk samples of human acinar cells, beta cells, and islet cells were

obtained from ArrayExpress (E-MTAB-1294: https://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-1294/samples/) [20]. We used

the samples HI10 (islet), HI25 (islet), HI32 (islet), HIE1 (beta cells),

HIE2 (beta cells), and acinar tissue donor (acinar cells). External

data were processed using the same pipeline as the single-cell

data. For the comparison of external and single-cell as well as

500 cell data by multidimensional scaling, batch effect correction

was performed using the function ComBat() of the R package

sva.

Defining cell type-specific gene expression profiles

Cell type-specific gene expression profiles were defined by perform-

ing pairwise differential expression analysis between all previously

defined groups of cells. Differential expression analysis was

performed using the function estimateDE() of the R package BitSeq.

For each cell type in each comparison, the specificity of the expres-

sion of each transcript was deduced under consideration of effect

size (absolute difference and log2 fold change) as well as statistical

significance (probability of positive log ratio, PPLR) of the measured

differential expression. Technically, for each comparison, all tran-

scripts were ranked by absolute difference in gene expression, log

fold change of gene expression, and probability of positive log ratio

and a combined rank for each transcripts was produced by selecting

the worst (i.e., highest) of these three ranks as a representative

rank. Finally, the representative ranks from all comparisons for

each cell type were again combined by selecting the worst rank

for each transcript (Appendix Fig S7). Therefore, the lower the

combined rank, the more specific the expression of the respective

transcript for the assessed cell type. To identify the cell type for

which the expression of a given gene is most specific, we

compared the assigned combined ranks between all cell types and

selected the cell type that showed the lowest combined rank for

this gene.

Assessing cross-contamination between cell types

We assessed potential cross-contamination between two cell types

using a four-step approach: (i) selection of cell type-specific genes

(profile genes), (ii) selection of the purest single cells for each cell

type (profile cells), (iii) calculation of pure and increasingly contam-

inated gene expression profiles in silico (mix profiles), and (iv) iden-

tification of the mix profiles that best match the expression profile

of each single cell.

As profile genes, we selected all genes among the top 500 cell

type-specific genes for each of the two cell types that showed an abso-

lute mean expression difference of greater than 0.5 and a relative

mean expression difference of at least twofold. This selection resulted

in 233 profile genes for alpha cells and 252 profile genes for beta cells.

To identify the purest cells of each cell type, we calculated a

weighted mean of scaled expression values (sample-wise, scale 0 to

1; lower percentile: 0.05, upper percentile: 0.95) for both groups of

profile genes for each single cell (profile scores). We used a rank-

based weighting system in order to give more power to more cell

type-specific profile genes. All single cells were then plotted accord-

ing to their profile scores, and per cell type, the three cells with the

most cell type-specific profile scores (highest distance to the diago-

nal) were selected as profile cells (Fig EV2A).

Pure expression profiles consisting of both groups of profile

genes were calculated as the mean expression values of the three

profile cells. We then used these two cell type-specific profiles to

artificially construct expression profiles that represented different

degrees of contamination by computationally mixing the two pro-

files in different ratios. Specifically, we calculated weighted means

of the two pure expression values for each profile gene, with the

weight increasing from 0 to 100 in steps of 1 for one of the pure pro-

files and at the same time decreasing from 100 to 0 for the other

pure profile. This resulted in 100 profiles, two pure (cell type speci-

fic) and 98 mixed profiles (Fig EV2B).

We then calculated the Pearson correlation of each of the arti-

ficial 100 profiles with the actual expression profiles of each of

the single cells (Fig EV2C) and selected the highest correlating

mix profile for each single cell. These selected mix profiles repre-

sent the fraction of variance in profile gene expression that is

explained by either of the two cell type-specific profiles as well

as the fraction of variance that remains unexplained (Fig EV2D

and E).

Gene set enrichment analysis

Binding motif analysis was done with Gene Set Enrichment Analysis

(GSEA) [33,34]. For each single cell, the most highly expressed tran-

script was selected as representative for the respective gene. Finally,

gene expression values for each cell type were found by calculating

the median across all cells of a particular cell type. These median

expression values were used as input for GSEA. Genes that were not

found to be expressed in any of the cell types were removed from

the input dataset. Pairwise comparisons were done among all six
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assigned cell types except the “undefined” amounting to 30 compar-

isons in total. The REST-binding motif was significantly enriched

(P < 0.05, FDR < 25%) in all of the comparisons between endocrine

cell types and exocrine cell types.

GWAS analysis

GWAS results relevant for diabetes (search for “diabetes”) were

downloaded from the GWAS catalog (https://www.ebi.ac.uk/gwas/).

We categorized the reported traits into type 1 and type 2 diabetes

according to whether “1” or “2” appeared in the trait description.

Each gene that was identified as significant in a GWAS (reported

gene) was assigned to the cell type for which it was identified as

most specific (see “Defining cell type-specific gene expression pro-

files”). Because in this analysis specificity among the endocrine cells

(alpha cells, beta cells, delta cells, PP cells) and among the exocrine

cells (acinar cells, duct cells) was not paramount, cell type speci-

ficity was determined only in comparison with cell types of the

other group. This approach was chosen in order to not dismiss

genes as unspecific if they are endocrine or exocrine specific but not

necessarily cell type specific. The eight MODY genes were taken

from [21].

Data deposition

Sequencing datasets described in this work have been deposited in

the Gene Expression Omnibus (GEO) repository under accession

number GSE73727.

Expanded View for this article is available online.
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