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Abstract
Cellular processes, including morphogenesis, polarization, and motility, rely on
a variety of actin-based structures. Although the biochemical composition and
filament organization of these structures are different, they often emerge from a
common origin. This is possible because the actin structures are highly
dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a
second to a minute. Therefore, the reorganization of a given actin structure can
promote the formation of another. Here, we discuss such transitions and
illustrate them with computer simulations.
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Introduction
Cellular actin assembly can generate a variety of architectures. 
These highly dynamic actin-based structures lie at the heart of a 
diverse array of cellular processes1,2. Actin filaments are found 
inside cells in three basic patterns: branched filament networks, 
parallel-, or mixed-polarity filament bundle arrays. These different 
types of organization can contribute to more complex structures and 
determine their functions3. Although most of the time many actin 
structures are localized to different parts of the cell, they are rarely 
independent and their dynamics often influence each other. In this 
review, we will discuss the dynamic reorganization of actin inside 
the cell and explore the crosstalk between different architectures.

Actin structures in the cell: formation, architecture, 
and functions
The cell cytoplasm provides a large reservoir of actin monomers, 
and this reservoir is necessary for the assembly of complex actin-
based structures4. The initial step in building such a large struc-
tural array containing different types of actin filament arrangements 
(Figure 1) requires controlled actin assembly and the inhibition of 

spontaneous polymerization4. Two actin-binding proteins play a 
major role in regulating this process: thymosin and profilin5. Thy-
mosins sequester actin monomers to which they bind and thus fully 
block filament assembly6. Profilins also bind to actin monomers but 
only inhibit spontaneous nucleation7. Indeed the profilin/actin com-
plex can add on to any pre-existing free filament barbed end and 
therefore participate in actin elongation8.

Several types of proteins, classified as actin nucleators, can counter-
act the inhibitory effects on actin assembly by thymosin, profilin, or 
other monomer binding proteins9,10. These actin nucleators include 
the actin-related protein 2/3 (Arp2/3) complex, formins, and pro-
teins containing WASP homology 2 (WH2) domains. However, 
the Arp2/3 complex11,12 is the only definitive actin nucleator, in the 
sense that it can overcome the limiting step in the formation of an 
efficient actin nucleus during assembly. Indeed, this complex con-
tains two Arps, Arp2 and Arp3, that mimic an actin dimer11. Other 
actin nucleators, including formins13,14 or WH2-domain containing 
proteins15, appear to stabilize pre-existing dimers rather than gen-
erating or mimicking new ones16,17. Interestingly, profilin in yeast 

Figure 1. Cellular actin organization. Schematic representation of the three main actin structures found in the cell: 1. Lamellipodium: dense, 
branched network involved in cell protrusion. 2. Filopodium: a finger-like structure located at the leading edge of the motile cell composed of 
aligned filaments. Filopodia sense the extracellular environment and influence the direction of cell motility. 3. Contractile structure: dynamic 
structure made of antiparallel and/or mixed-polarity actin filaments associated with myosin. These structures play an important role in 
mechanical responses, providing force generation for different cellular functions. Zoomed regions highlight the specific actin organization of 
the different cellular actin structures.
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and mammalian cells can inhibit Arp2/3 complex nucleation activ-
ity, thus favoring the actin filament elongation activity of formin or 
Ena/VASP18,19.

The lamellipodium is a dense branched array of filaments that occurs 
at the leading edge of a motile cell and its formation is dictated by 
the activity of the Arp2/3 complex (Figure 1 and 20). This specific 
type of actin organization pushes forward the plasma membrane 
during motility1,21,22. This property relates to the lamellipodium’s 
optimal composition of arrays of growing actin filaments, which are 
oriented at ±35° with respect to the membrane. Once growing actin 
filaments extend beyond ~1 µm, they form parallel filament bundles 
and emerge as finger-like protrusions called filopodia23,24.

Filopodia direct how the cell probes the extracellular matrix 
(ECM) (Figure 1 and 25) and control the orientation of lamellipo-
dium26. The parallel filament bundles within the filopodium also 
serve as tracks for protein transport27. Filopodia are ~1–10 µm 
long28,29, with 10–30 actin filaments crosslinked in parallel arrays by 
fascin30. Structural models predict that the densely packed nature 
of these actin arrays is important for the filaments to resist the 
loads coming from the membrane, such that filament elongation 
(by insertion of monomeric actin at the growing tip) remains unin-
hibited29,31. Moreover, the filaments within the filopodium have 
a turnover rate of ~20 mins32 and hence are far more stable than 
those filaments within the lamellipodium, which have a turnover 
rate of ~1 min33, or even only a few seconds at the very front of the 
lamellipodium34.

The cell can also contain actin structures assembled from short fila-
ments that are the sites for the action of molecular motors of the 
myosin family. Depending on their orientation, the short filaments 
can act as tracks for myosin or as contractile fibers, such as the 
transverse arcs or ventral stress fibers35, and the perinuclear actin 
cap (Figure 1 and 36). Radial and ventral stress fibers, oriented 
parallel to the migration axis37, are anchored at focal adhesions at 
one (radial) or both (ventral) ends35. Transverse arcs are formed just 
behind the lamellipodium35,38. Ventral stress fibers are made of fila-
ments of >2 µm in length, whereas transverse fibers are made of 
shorter filaments of ~1 µm in length. These fibers contain on average 
10–30 filaments by width section39. Filament polarities inside stress 
fibers can be random (i.e. mixed polarity), graded, or sarcomeric 
(i.e. anti-parallel)39,40. Contractility is triggered by myosins that 
mediate sliding of anti-parallel filaments along each other41. The 
equilibrium between contractile stress and adhesion strength can 
act as a modulator of cellular tension42 and of the conversion of 
mechanical signals (tension) into biochemical signals (focal adhe-
sion maturation), thus regulating the communication between the 
cell and the ECM36,43. Indeed, the assembly of stress fibers may 
only occur once the cell is under mechanical stress36. Ventral fib-
ers allow the retraction of the motile cell’s trailing edge39 and may 
also initiate cell motility44. By connecting the lamellipodium and 
the lamella, the transverse arcs, in the flattened perinuclear region45, 
participate in the persistence of cell motility35,46. The perinuclear 
cap, a structure consisting of actomyosin fibers positioned around 
the nucleus, regulates the shape and position of the nucleus47.

The actin structures described above are highly dynamic in terms of 
formation, elongation/contraction, and disassembly, and these proc-
esses can be interdependent (Figure 2). Therefore, to have a more 
complete understanding of cellular actin organization, it is essential 
to take into account the cytoskeleton dynamics inside the cell.

From one actin structure to another: dynamical 
transitions
From lamellipodium to filopodia
The potential for filopodia to emerge from the lamellipodium near 
the plasma membrane (Figure 2A) raised the question of how a 
structure made of parallel actin bundles can arise from a densely 
branched actin network. Two overlapping theoretical models have 
attempted to explain this transition: the convergent elongation 
model and the nucleation model23,48,49.

According to the convergent elongation model, filopodia are ini-
tiated by the reorganization of the branched actin network due to 
a fine-tuning of actin filament elongation at their growing ends25. 
The branched actin filaments of the lamellipodium are short due to 
the regulation of their growth by capping proteins50,51. An attractive 
hypothesis to explain the transition between short filaments in the 
lamellipodium and the longer filaments driving filopodium forma-
tion is that some of the barbed actin filament ends in the lamel-
lipodium are protected from capping proteins by cellular elongation  
factors such as Ena/VASP proteins52,53 or formins54 and will there-
fore grow longer. In support of this hypothesis, Ena/VASP and 
formin proteins have been observed at filopodia tips30,55 and can 
induce filopodia formation56,57.

Moreover, depletion of capping protein promotes filopodia forma-
tion at the expense of lamellipodium extension, and Ena/VASP 
proteins have been shown to play an important role in filopodia 
formation58. Indeed, Ena/VASP proteins promote the convergence 
of filament barbed ends and have an enhanced activity when bound 
to trailing barbed ends in a fascin bundle, thus allowing the trailing 
ends to catch up with the leading barbed ends59. Longer actin fila-
ments can, after positional fluctuations and bending, be captured 
and aligned into bundles by fascin (Figure 2), depending on the 
angle of their association60,61. These initial thin bundles can be fur-
ther reinforced by other actin filaments to form a rigid body that is 
necessary for filopodium growth29. Convergence of actin network 
filaments into filopodia-like bundles can be recapitulated by both  
in vitro reconstitution23,62 and Monte Carlo simulation63.

The nucleation model is supported by the observation that filopodia 
can form even when the lamellipodium is absent as a consequence 
of lack of the Arp2/3 complex or its activation64–67. In this model, 
formin and/or Ena/VASP promoting de novo tip nucleation form 
actin filaments in filopodium. Further support for this model comes 
from the recent observation that fibroblasts lacking Arp2/3 complex 
produce more prominent filopodia than wild-type cells68. However, 
it is not yet clear how precisely filaments are initiated in the absence 
of the Arp2/3 complex. In a very elegant study using fission yeast, 
inhibition of the Arp2/3 complex disturbed the balance of different 
actin structures that were, in effect, competing for actin monomers 
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Figure 2. Actin architecture transitions. (A) In the convergent elongation model, the transition from lamellipodium to filopodium involves 
the formation of parallel actin filaments from a branched network created by the Arp2/3 complex. Elongation factors, like Ena/VASP or formin, 
protect barbed ends from capping protein and induce the rapid polymerization of parallel bundles. (B) The transition from lamellipodium to 
contractile structures is triggered by the disassembly of the branched network at the rear of the lamellipodium by ADF/cofilin and myosin. 
Myosin induces actin filament alignment and the formation of fibers stabilized by crosslinkers, such as α-actinin. (C) The fusion of contractile 
structures (the transverse arcs) and non-contractile structures (the radial fibers) can lead to the formation of ventral stress fibers. In this 
scheme, myosins connect a transverse arc and two radial fibers and, after contraction, align the radial fibers with the transverse arc, creating 
a ventral stress fiber. This contractile antiparallel fiber is anchored at its two ends to focal adhesions.
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from the same reservoir and resulted in the enhanced formation of 
formin-dependent structures69. The abundance of filopodia when 
the Arp2/3 complex is knocked down might also be explained by 
the disruption of actin homeostasis causing an increased incidence 
of spontaneous assembly of actin filaments in the cytoplasm68. A 
proportion of these spontaneously formed actin filaments may be 
capped by Ena/VASP and/or formins, whose activities are enhanced 
by the absence of the Arp2/3 complex, to promote filopodia for-
mation49. Together, the two models are not necessarily mutually 
exclusive and might be reconciled by a capture elongation model 
mediated by Ena/VASP or formins.

To interrogate and illustrate the dynamic transition from lamellipo-
dium to filopodia, we performed mathematical simulations using 
the cytoskeleton simulation software Cytosim70. In the simulation, a 
lamellipodium-like branched network was grown by distributing the 
Arp2/3 complex-like nucleators within a broad, two-dimensional 
area (Figure 3A, top and 61). To create the variation of lengths 
among those actin filaments, formin-like (could also be Ena/VASP-
like) entities were added to capture the barbed ends of growing actin 
filaments and accelerate filament elongation. The growing actin fil-
aments then extended out of the lamellipodium network and merged 
into bundled filaments by fascin-like crosslinkers. In the simulation, 
a synergy between the modulation of actin filament elongation at 
growing barbed ends by Ena/VASP and/or formin and actin fila-
ment crosslinking into tight bundles is sufficient (Figure 3A, top) 
and necessary to induce filopodium formation (Figure 3A, bottom 
panel).

Although the principle of the transition from lamellipodium to filo-
podia may be simple, it is quite difficult to identify exactly which 
proteins or pathways are involved in the formation of a filopodium. 
There exists potential competition or redundancy between differ-
ent cellular actors, illustrated by formins that constitute a large 
family of different isoforms71. Moreover, the interactions between 
filaments and the membrane could also regulate this transition. 
The tension produced by the membrane can determine filopodia 
dimensions29 and can induce filament alignment in protrusions, 
even in the absence of crosslinkers72.

From lamellipodium to contractile structures
A considerable amount of information about the assembly mecha-
nisms of contractile structures has been obtained from numerous 
studies using live cell imaging36,38,46,73,74. The current model for 
the assembly of radial fibers is based on a simple mechanism of 
initiation, whereby the fibers are generated by formin-mediated 
nucleation at focal adhesions75. Following this initiation step, the 
growing actin filaments are brushed into parallel bundles by the 
retrograde flow toward the cell center38. Radial fibers further recruit 
crosslinked filaments from the lamella, giving rise to an organiza-
tion of filaments with graded polarity36.

The model for the formation of transverse arcs is clearly different to 
that of radial fibers38. Transverse arcs are assembled by the end-to-
end annealing of myosin filaments and actin bundles that have come 
from the reorganization of the Arp2/3 complex branched network at 
the back of the lamellipodium (Figure 2 and 46). The reorganization 
of a branched network into actin bundles of mixed polarity includes 

several steps. First, disassembly factors such as ADF/cofilin and glia 
maturation factor (GMF) disconnect the network by debranching 
the Arp2/3 complex links76–78. Second, the released short filaments 
are captured by myosin and actin filament crosslinkers such as  
α-actinin, which are present in the lamella to trigger the formation 
of small bundles (Figure 2B). Third, the alignment of the filaments 
is enforced by the high mechanical stress produced by the inter-
action between focal adhesions and the ECM, and by centripetal 
flow at the lamellipodium/lamella interface79. Fourth, the nascent 
bundles are pushed away from the cell edge by the actin centripetal 
flow74, while condensing and forming transverse arcs, until they 
encounter focal adhesions and pre-formed radial fibers38,80. The 
radial fibers and transverse arcs will then associate with crosslinked 
actin bundles incorporating into the ends of radial fibers through the 
activity of myosin filaments.

We have also performed simulations of the transition from a  
branched actin network to a contractile fiber using Cytosim and the 
same simulation starting point using Arp2/3 complex-like nuclea-
tors as described above (Figure 3A). To mimic focal adhesions 
nucleating the radial fibers, two small zones of adherence (friction 
points) with a few parallel filaments growing toward the cell center 
were placed at the bottom of a growing branched network. Arp2/3 
complex connections were removed to simulate the lamellipodium 
debranching effect mediated by ADF/cofilin or GMF, and then 
motors (to simulate myosins) and crosslinkers (to simulate α-actinin) 
were added. A slow, directed flow was added to simulate the effect 
of centripetal actin flow. With only these few ingredients, the transi-
tion from a branched, non-contractile network to a mixed polarity, 
contractile fiber emerged from numerical simulations (Figure 3B, 
top panel). These ingredients all seem essential, since removal of 
the motors, crosslinkers, or friction points all prevented the efficient 
formation of the contractile cable (Figure 3B, bottom panel).

Other transitions
Fusion of contractile and non-contractile structures
Radial fibers can associate with transverse arcs by the incorpora-
tion of myosin II filaments and subsequently develop into ventral 
fibers37,38. During this process, first, two independent radial fibers 
connect with a pre-existing transverse arc that is pushed to the 
trailing edge of the motile cell by the flow. As a consequence, arc 
contractile forces get transmitted to radial fibers. Second, the distal 
parts of the transverse arc dissociate because of local stress relaxa-
tion (Figure 2C). Finally, the radial fibers fuse with what remains 
of the contracting transverse arc to form a ventral stress fiber that is 
attached to focal adhesions at both ends38.

In addition, a ventral stress fiber could be formed by the fusion 
of two dorsal stress fibers, without transverse arc incorporation80. 
This latter case has been observed in Arp2/3 complex knockdown 
cells38.

Filopodia disassembly and their fate
The mechanisms by which filopodia disassemble remain to be 
determined. However, stationary filopodia can be disassembled into 
small bundles by ADF/cofilin81. Filopodia may also develop kinks 
after a decrease and/or change of direction of the actin flow between 
the lamellipodium and lamella leading to their integration into the 
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Figure 3. Simulation of transitions between actin structures. (A) Emergence of filopodia-like protrusions from a lamellipodium-like network. 
Simulations were performed using the Cytosim software. In the top panel, the actin network grows by branched nucleation via the Arp2/3 
complex, and a proportion of actin filaments grow longer due to capture of their growing barbed ends by an elongation factor (formin/VASP, 
green filaments). Actin filaments contact each other by chance due to thermal fluctuations and are stabilized in bundles by crosslinkers 
(fascin). In the bottom panel, the presence of elongation factors in the simulation is essential for the emergence of protrusions (left), while the 
crosslinkers are necessary to group the protrusions into one rigid bundle (right). (B) Transition between lamellipodium-like and stress fiber-like 
networks. Simulations were performed using the Cytosim software. In the top panel, a branched network is formed and moved towards friction 
points (mimicking focal adhesions nucleating dorsal fibers) associated with parallel filaments. In the contact zone, the action of crosslinkers 
and myosins induces the disassembly of the branched network leading to the formation of a contractile structure of anti-parallel filaments. This 
structure is further compacted by a slow vertical flow (~centripetal actin flow) until it co-aligns with the friction points to form one contractile 
fiber. In the bottom panel, in the absence of motors, the network has no tension and is thus highly curved and spread (left). The crosslinkers 
are essential to maintain the connectivity between the filaments and form a continuous actin structure (middle). The friction points are essential 
to keep the network elongated at a given length, otherwise the network collapses to one point in the middle due to the tension (right). ti and tf 
indicate initial time and final time of simulations (empirical).
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lamella73,74,82. In both scenarios, short actin bundles generated by 
filopodia disassembly would then participate in the formation of 
contractile structures, by feeding pre-existing contractile fibers with 
actin filaments.

Conclusion
Cellular functions depend on complex actin choreography. To 
orchestrate such a diversity of actin organizations, the dynamic 
integration of different mechanistic pathways is necessary. Some 
pathways are quite specific to the formation and maintenance of a 
particular basic actin organization, but because these actin struc-
tures may reorganize and transform, they may also indirectly par-
ticipate in the emergence of other structures. The prevalence of 
these different basic actin organizations also varies in different cell 
types (e.g. lamellipodia predominate over filopodia in keratocytes 
and neutrophils, whereas filopodia predominate over lamellipodia 
in dendritic cells or neuronal growth cones). Within a given cell 
type, the predominance and/or existence of the different actin struc-
tures can be regulated to achieve specific functions, for example 
during collective migration83. Thus, focusing on the behavior of a 
single type of actin structure may only provide an incomplete view 
of its formation and maintenance in vivo. Hence, the development 
of more appropriate experimental systems that can reconstitute 

more than one actin structure at a time should improve the under-
standing of the complexity of cellular actin dynamics. Mathemati-
cal simulations demonstrate that only a few components and simple 
boundary conditions are sufficient to mediate transitions between 
or during the emergence of complex actin structures. These math-
ematical approaches may also help in elaborating more appropriate 
experimental systems to unveil the general laws behind dynamic 
cytoskeletal reorganization.
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Supplemental movie legends

Movie S1 (related to Figure 3A)

Transition of lamellipodium into filopodia: assembly of parallel bundles (filopodia) triggered by the dense branched network (lamellipodium).

Click here for file.

Movie S2 (related to Figure 3B)

Transition of lamellipodium into contractile structures. Formation of a contractile structure generated by the combined action of 3 param-
eters: actin flow, molecular motors and crosslinkers.

Click here for file. 
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