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Although the mature dental biofilm composition is well studied, there is very little information on the earliest phase of in vivo
tooth colonization. Progress in dental biofilm collection methodologies and techniques of large-scale microbial identification
have made new studies in this field of oral biology feasible. The aim of this study was to characterize the temporal changes and
diversity of the cultivable and noncultivable microbes in the early dental biofilm. Samples of early dental biofilm were collected
from 11 healthy subjects at 0, 2, 4, and 6 h after removal of plaque and pellicle from tooth surfaces. With the semiquantitative
Human Oral Microbiome Identification Microarray (HOMIM) technique, which is based on 16S rRNA sequence hybridizations,
plaque samples were analyzed with the currently available 407 HOMIM microbial probes. This led to the identification of at least
92 species, with streptococci being the most abundant bacteria across all time points in all subjects. High-frequency detection
was also made with Haemophilus parainfluenzae, Gemella haemolysans, Slackia exigua, and Rothia species. Abundance changes
over time were noted for Streptococcus anginosus and Streptococcus intermedius (P � 0.02), Streptococcus mitis bv. 2 (P �
0.0002), Streptococcus oralis (P � 0.0002), Streptococcus cluster I (P � 0.003), G. haemolysans (P � 0.0005), and Stenotrophomo-
nas maltophilia (P � 0.02). Among the currently uncultivable microbiota, eight phylotypes were detected in the early stages of
biofilm formation, one belonging to the candidate bacterial division TM7, which has attracted attention due to its potential asso-
ciation with periodontal disease.

The microbial diversity in the oral cavity is among the largest so
far characterized in the human body (1). Of specific interest is

the dental biofilm, which forms first by selective adsorption of
bacteria from saliva onto the tooth surface, followed by bacterial
growth. It is well known that biofilm microbes interact with each
other and thus show characteristics significantly different from
those of their planktonic counterparts (2). While the biofilm con-
tains beneficial, as well as harmful, bacteria, their relative propor-
tions have a tendency to change as the dental plaque matures (3).
These changes depend on bacterial interactions, as well as host-
derived factors, which are all responsible for the ensuing develop-
ment and biological effects of the structure (4). The very first
microbial settlers of tooth surfaces are critical for the maturation
process of dental plaque. As such, they are likely to play an unan-
ticipated role in pathological conditions associated with oral bio-
film formation, such as caries and periodontal disease. Under-
standing the earliest but most critical steps in the progression of
disease involves identification, timing, and quantitation of the to-
tal dental microbiome, an important goal yet to be achieved.

It has been well established that enamel tooth surfaces are im-
mediately covered with a layer of salivary proteins upon exposure
to the oral environment. This layer, which is called the acquired
enamel pellicle, is several micrometers thick (5–7). It is formed by
the selective adsorption of mostly phosphorylated salivary pro-
teins (8–10). The earliest phase of bacterial biofilm formation is
the attachment of oral bacteria, via specific molecular interac-
tions, to the acquired enamel pellicle (11–13). This permits the
attached bacteria to remain attached to tooth surfaces despite the
mechanical forces of salivary flow, tongue movements, and rins-
ing with water. The first insights into the early biofilm composi-
tion, obtained with culture-based techniques, have shown that
streptococci, as well as Neisseria and Rothia species, are the pre-
dominant early colonizers. Streptococci express adhesins, specif-
ically �-amylase-binding protein A, antigen I/II, SspA/SspB, and

surface lectins, that recognize receptors on proteins in the ac-
quired enamel pellicle (14). As plaque matures, the proportions of
facultative and anaerobic filamentous genera, such as Actinomy-
ces, Corynebacterium, Fusobacterium, and Veillonella, increase
gradually (15–20). Streptococci coaggregate within and between
species involving, e.g., receptor polysaccharides and type 2 fim-
briae expressed by Actinomyces (21–23). The multiple-affinity
properties of streptococci confer advantageous characteristics on
the genus and explain their dominance as the initial colonizing
bacteria of the tooth surface (24, 25).

While valuable insights were obtained with the relatively few
biofilm bacteria that could be cultured at that time, inevitably, the
true microbial complexity of the biofilm structure could not be
fully established. More recently developed molecular techniques
have expanded our ability not only to uncover the complexity of
colonizing microbial communities, but also to identify the non-
cultivable species (26, 27). We have previously used the “checker-
board assay” employing whole-genomic probes, limited to detect-
ing cultivable bacteria (24). The successive-adhesion pattern of 40
species was characterized, and the different species contributions
were quantitated. Porphyromonas gingivalis and Treponema denti-
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cola were found to be among the early colonizers but were rapidly
superseded by streptococci and Actinomyces spp. The microbial
complexity of oral biofilm has also been studied in plaque formed
in situ on retrievable enamel chips using a 16S rRNA gene-based
pyrosequencing approach, identifying at least 97 different species
and some uncultivated phylotypes. Of special note is the fact that
noncultivable species were found for the first time in this study,
and they were tentatively assigned to Clostridia and Flavobacteria
(26).

The knowledge of mature in vivo-formed oral biofilm gained,
using cultivation and DNA-based approaches, is considerable
(27–29). Much less information, however, is available on the ear-
liest phases of biofilm formation and its noncultivable bacterial
fraction. In the present study, we harvested in vivo biofilms
formed during the very early phases (�6 h) of microbial attach-
ment to tooth surfaces. Bacterial growth during this time interval
is limited, and the focus of this study is on the very first bacteria
that interact with the pellicle proteins. The Human Oral Micro-
biome Identification Microarray (HOMIM) was employed, using
407 microbial probes distinguishing over 300 cultivable, as well as
noncultivable, species. The data obtained revealed the microbial
composition of the very early stage of biofilm formation and pro-
vided in-depth information regarding its temporal development.

MATERIALS AND METHODS
Subject population. Early dental biofilms were collected from 11 healthy
subjects. All the subjects provided informed consent prior to their partic-
ipation. The study was conducted according to the principles outlined in
the Declaration of Helsinki on experimentation involving human sub-
jects. The study protocol was approved by the Institutional Review Board
of Boston University Medical Center. The subjects were screened using
oral and systemic health histories. Exclusion criteria were (i) overt signs of
gingivitis, periodontal disease, active dental caries, or any other oral con-
dition that could affect oral fluid/biofilm composition; (ii) fewer than 14
teeth; (iii) history of antibiotic use in the past 3 months; (iv) long-term use
of anti-inflammatory medication; (v) current smoking; (vi) pregnancy;
(vii) presence of systemic diseases that could affect oral health; and (viii)
systemic medications and treatments that could affect salivary function.
Clinical examinations took place on different days of the same week at the
Clinical Research Center at the School of Dental Medicine of Boston Uni-
versity. All clinical examinations were performed once at baseline by the
same trained periodontist using the calibrated method. Measurements
were taken at 6 sites per tooth (mesiobuccal, buccal, distobuccal, mesio-
lingual, lingual, and distolingual) for all teeth except third molars and
included probing depth (PD) and clinical attachment level (CAL), mea-
sured to the nearest millimeter with a periodontal probe (UNC-15; Hu-
Friedy, Chicago, IL, USA), and presence or absence of bleeding on prob-
ing (BOP), supragingival visible plaque (PL), gingival marginal bleeding
(GI), and suppuration. Clinical diagnosis of periodontal health (PH) was
established for all the subjects based on the following criteria: �10% of
sites with BOP and no PD or CAL of �3 mm, although PD or CAL of 4
mm in not more than 5% of the sites without BOP was allowed.

Sample collection and processing. The buccal tooth surfaces in both
arches, excluding second and third molars, were thoroughly cleaned to
remove the acquired enamel pellicle and dental plaque, using a prophy-
laxis hand piece with rubber cup and dental pumice containing no addi-
tives (Preppies; Whip Mix, Louisville, KY) (30). This was followed by in
vivo exposure to the oral environment for either 0, 2, 4, or 6 h. At each of
these four time points, biofilm was collected. The samples were acquired
on two different days within the same week. The 0- and 6-h samples were
collected on day 1, and the 2- and 4-h samples were collected on day 2.
During the biofilm formation phase, subjects were asked to refrain from
eating, drinking (except water), or oral hygiene. For harvesting biofilm,

teeth were isolated from the buccal/labial mucosa with cotton rolls to
avoid contact between tooth surfaces and the oral mucosa. The collection
area was rinsed twice with distilled water and dried with air. Polyvi-
nylidene difluoride (PVDF) membranes (45-�m pore size; 13-mm diam-
eter; Durapore; Millipore, Bedford, MA, USA) soaked in 0.5 mol/liter
sodium bicarbonate, pH 8.4, were used to swab the coronal two-thirds of
buccal dental surfaces of incisors, canines, premolars, and first molars of
both arches while applying mild pressure (Fig. 1). Sodium bicarbonate has
previously been shown to be effective in releasing proteinaceous materials
adsorbed onto tooth surfaces (24). The pooled membranes (four mem-
branes per time point per subject) were placed into 300 �l of TE buffer (50
mM Tris-HCl, 0.1 mM EDTA, pH 7.6), followed by vortexing for 30 s and
sonication for 5 min. DNA isolation was performed using Ready-Lyse
Lysozyme Solution and the MasterPure DNA purification kit (both from
Epicentre, Madison, WI) following the manufacturers’ instructions. The
samples were stored at �80°C until analysis.

Microbiological assessment and quantitation. The purified DNA
samples were analyzed using HOMIM (31). For microbial identification,
a library of 407 probes recognizing the most prevalent oral bacterial spe-
cies was used. Briefly, 16S rRNA-based reverse-capture oligonucleotide
probes (typically 18 to 20 bases) were printed on aldehyde-coated glass
slides. The 16S rRNA genes were PCR amplified from DNA extracts using
16S rRNA universal forward and reverse primers and labeled via incorpo-
ration of Cy3-dCTP in a second PCR amplification. The labeled 16S rRNA
amplicons were hybridized for 16 h with probes on the custom-made
arrays. After washing, the microarray slides were scanned using an Axon
4000B scanner, and the raw data were extracted using GenePix Pro soft-
ware (MDS Analytical Technologies, Sunnyvale, CA). The abundance of
each species/phylotype interrogated by the array was then assigned an
ordinal, nonlinear HOMIM score from 0 to 5 using an online analysis tool
(http://bioinformatics.forsyth.org/homim), where a score of 0 indicates a
fluorescent signal that is less than two times the background level and a
score of 5 corresponds to the average maximum intensity of a set of
universal positive-control probes.

Statistical analyses. Statistical analyses were performed using the R
software program for statistical computing (version 2.15.1). The Wil-
coxon signed-rank test (as defined in the wilcox.test R function) was used
to determine across all subjects whether the abundance of a given species/
phylotype was significantly different between two time points. Spear-
man’s correlation coefficient (rho) and its associated P value (as com-
puted using the cor.test R function) were used to identify species whose
abundances were significantly associated with specific time points, both

FIG 1 Dental biofilm collection procedure. For biofilm collection, one folded
PVDF membrane presoaked in 0.5 mol/liter sodium bicarbonate, pH 8.4, was
used to swab the coronal two-thirds of the buccal dental surfaces of the inci-
sors, canines, premolars, and first molars of both arches while applying mild
pressure. For each quadrant, 1 fresh membrane was used.
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within each subject and across all subjects. The rho value measures how
well the amount of a given species in a given subject correlates with the
amount of time that has elapsed, e.g., a rho value of �1 or �1 means that
the HOMIM scores increased or decreased, respectively, at every time
point during the 6-h biofilm development time. A species with a rho of 0
(no correlation) would have discrete HOMIM scores that showed high
levels of variation over time, whereas a species with an undefined rho
would have HOMIM scores that were unchanged over time (e.g., always 0,
always 1, etc.). Correction for multiple-hypothesis testing was accom-
plished using the Benjamini-Hochberg false-discovery rate (FDR). The
level of significance for each test was set at 5%.

RESULTS
Demographic and clinical parameters. The demographics and
clinical parameters determined for the enrolled subjects are
shown in Table S1 in the supplemental material. The periodontal
measures obtained, CAL, PD, and BOP, were consistent with peri-
odontal health according to reported criteria (32).

Microbial characterization and prevalence. Early biofilms
from the 11 subjects were obtained after 0-, 2-, 4-, and 6-h biofilm
maturation times and evaluated by HOMIM. Of the possible 407
target probes, 124 hybridized with PCR products from the DNA
samples obtained (HOMIM score, �1) (see Table S2 in the sup-
plemental material). In view of the multitargeting by some probes,
it was established that the 124 probes represented at least 92 dif-

ferent oral species. Among the 124 probes, 47 showed a HOMIM
score of �2 in at least 1 of the 11 subjects (Fig. 2). The identified
bacteria primarily belonged to the phylum Firmicutes (42.2%),
followed by Protobacteria (25.6%) and Actinobacteria (16.5%).
Less prevalent bacteria belonged to the phyla Bacteroidetes
(8.26%), Fusobacteria (4.96%), and Synergistetes (0.83%) and the
candidate bacterial division TM7 (0.83%). As expected, strepto-
cocci (Streptococcus oralis, Streptococcus anginosus/Streptococcus
intermedius, and Streptococcus mitis) were the most abundant
across all time points in all subjects. Together with the strepto-
cocci, the species Gemella haemolysans, Haemophilus parainfluen-
zae, Actinomyces cluster I (Actinomyces meyeri, Actinomyces visco-
sus, Actinomyces odontolyticus, and Actinomyces oricola), Rothia
dentocariosa/Rothia mucilaginosa, Neisseria cluster II (Neisseria
oralis, Neisseria flava, Neisseria mucosa, and Neisseria sicca), Kin-
gella oralis, Slackia exigua, and Veillonella atypica/Veillonella par-
vula were the 16 predominant bacteria identified in dental biofilm
formed during the first 6 h (Fig. 2; see Table S2 in the supplemen-
tal material).

Species belonging to the “orange complex,” (33) comprising
Fusobacterium nucleatum, Fusobacterium periodontium, and Par-
vimonas micra, were also found to be present in the early dental
biofilm. This is consistent with previous studies (24), although we

FIG 2 Intensity map of the distribution of bacterial species in each subject and the mean across all subjects after 0, 2, 4, and 6 h of biofilm formation. The image
shows the intensities of the 47 probes (rows) with a maximum HOMIM score of �2 in at least one sample. The species are sorted in descending order by mean
HOMIM score. The different intensities of green correspond to the signal intensities of the arrays, quantitated by HOMIM scores of 0 to 5. Gray indicates missing
data for the 6-h samples in 2 subjects. The probes are labeled with species descriptors, followed by Human Oral Microbiome Database (HOMD) oral taxa in
parentheses. F., Fusobacterium; L., Leptotrichia; S. sanguinegens, Sneathia sanguinegens; all other S., Streptococcus.
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could not confirm the presence of well-established periodontal
pathogens, such as Porphyromonas gingivalis and Aggregatibacter
actinomycetemcomitans. Fastidious and not-yet-cultivated species
more recently associated with periodontal disease, Filifactor alocis,
Dialister invisus, and TM7 [G-1] oral taxon (OT) 347 (34, 35),
were present in low numbers. The typical cariogenic bacterium S.
mutans was detected in the early biofilm of 2 of the 11 individuals.

Changes in abundance over time. Temporal changes in bac-
terial prevalence and proportions during the first 6 h of biofilm
formation were assessed by computing the Spearman correlation
coefficient (rho), which measures how well the amount of a given
species correlates with the time of enamel exposure to the oral
environment (see Table S3 in the supplemental material). Among
these species, significant increases in rho values over time were
noted for G. haemolysans (P � 0.0005), S. anginosus or S. interme-
dius (P � 0.02), S. mitis bv. 2 (P � 0.0002), S. oralis (P � 0.0002),
and Streptococcus cluster I (P � 0.003). Significant decreases over
time were observed for Stenotrophomonas maltophilia (P � 0.02).
When corrected for multiple-hypothesis testing across all probes
(see Table S3 in the supplemental material), the rho values for G.
haemolysans and S. oralis remained strongly significant (FDR q
[corrected P value] � 0.25), indicating that these species are likely
to play important roles during dental biofilm maturation and pos-
sibly microbial coaggregation. A heat map of the rho values of the
47 most abundant species is shown in Fig. 3, and the values are
shown in Table S3 in the supplemental material. While trends in
increases and decreases could clearly be observed for some of the
bacteria listed, they were significant for only a few species.

Identification of not-yet-cultivated phylotypes. The HOMIM
technology offers the opportunity to detect not only those species
that can be cultured, but also those that have escaped identifica-
tion so far by in vitro culturing approaches. Table 1 shows the
prevalences of uncultivable species found among the 11 subjects
(HOMIM score of �1). Eight not-yet-cultivated phylotypes were
detected, including species belonging to the candidate bacterial
division TM7. All noncultivable phylotypes detected exhibited
low HOMIM scores (�2), except Actinomyces sp. strain OT 177,
which showed a HOMIM score of 3 at one time point (see Table S2
in the supplemental material). It was also the most prevalent, since
it was detected at all time points in at least half of the subjects
(Table 1). The other phylotypes were detected in less than 25% of
the subjects at all time points examined. Overall, the data reveal
that these noncultivable species constitute a small but integral part
of the early biofilm.

DISCUSSION

The results obtained show that the early in vivo dental biofilm
exhibits considerable bacterial diversity. A total of 124 probes re-
acted positively, providing evidence for the presence of a mini-
mum of 92 bacterial species belonging to 40 genera and 7 phyla.
Furthermore, for the first time, we report on the presence of non-
cultivable species in this native tooth surface biofilm.

Overall, very good consistency was observed in oral coloniza-
tion among subjects, whether the species were prevalent or not, as
evidenced by the abundancy gradient of the mean values among
subjects (Fig. 2, right column). As expected, the streptococci were
the most abundant at all time points. Within the bacteria that
showed significant increases over time were the well-known early
colonizers S. oralis, S. anginosus, and S. intermedius (Fig. 3). For
these streptococci, the mechanism of attachment to the acquired

enamel pellicle has been related to acidic proline-rich proteins,
�-amylase, and various glycoproteins (36–40). Importantly, these
streptococci are able to proliferate in the presence of oxygen, a
characteristic of only the early biofilm environment.

At the 2-h time point, and at subsequent time points, G. hae-
molysans was among the 10 most prevalent bacteria. What sets this
species apart from most of the other prevalent early colonizers is
the fact that its rho value for increase over time was highly signif-
icant (FDR q � 0.25). G. haemolysans has previously been identi-
fied by classic cultivation methods (19) and is considered to be
among the core microbial colonizers of in situ dental biofilm of
healthy individuals (26). In this study, we identified this species in
in vivo biofilm and in the very earliest phases of biofilm formation.
The potential role that Gemella plays in biofilm processes, such as
coaggregation and symbiosis, or even in disease promotion, re-
mains to be established.

At the 4-h time point, H. parainfluenzae was among the first
nonstreptococcal species to appear, with a high mean HOMIM
score of 3 (Fig. 2; see Table S2 in the supplemental material). The
early appearance of H. parainfluenzae can be explained by its ad-
herence characteristics (41, 42), since it displays high affinity for
salivary mucin MG1 (43) present in the acquired enamel pellicle
(44). Furthermore, H. parainfluenzae has been shown to coaggre-
gate with S. sanguis and S. oralis due to its outer membrane adhe-
sin that recognizes specific receptor polysaccharides (45–48).

The 6-h samples revealed what could be considered the key
colonizers of early in vivo-formed biofilm. In order of abundance,
these colonizers are S. oralis, H. parainfluenzae, G. haemolysans, S.
sanguinis, S. anginosus/S. intermedius, S. exigua, Streptococcus gor-
donii, and R. dentocariosa/R. mucilaginosa. Surprisingly, S. exigua,
which is not well studied, was found to be among the most abun-
dant colonizers of all subjects at all time points, with a mean
HOMIM score across time points of 1.9 (see Table S2 in the sup-
plemental material). Typically associated with endodontic (49)
and periodontal lesions (50), the species is fastidious and grows
poorly (51) and may therefore have been easily overlooked in
previous culture-based studies. The key colonizers identified here
form the substratum for the developing biofilm architecture. This
structure has been shown to form in an orchestrated fashion (48)
and is capable of impacting oral health adversely.

It has been estimated that at least 35% of the 700 bacterial
species in the oral cavity cannot be grown in culture at this time
(52, 53). The identification of both cultivable and not-yet-cultiva-
ble bacterial species in biofilm structures is equally important and
critical for understanding the complete bacterial “interactome” of
dental colonizers. The elegant work of Diaz and coworkers, al-
though using not an in vivo but an in situ approach, provided
evidence for uncultivable species belonging to the phyla Firmic-
utes and Bacteroidetes in the early biofilm, with tentative class as-
signments to Clostridia and Flavobacteria, respectively (26). In our
in vivo investigation, we found eight uncultivable phylotypes
and were able to make a more definitive genus level assignment
(Table 1). They are Bergeyella sp., Haemophilus sp., Fretibacte-
rium sp. (2 strains), TM7 sp., Actinomyces sp., Megasphaera sp.,
and Stomatobaculum sp.

It is well recognized that there are many qualities of oral bio-
film that can lead to the development or suppression of biofilm-
induced pathogenicity (54–56). The presence of a few unculti-
vable species, such as those of the candidate bacterial division
TM7, could be highly significant for the manifestation of oral
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diseases, particularly periodontal disease (57). In the recently pro-
posed polymicrobial synergy and dysbiosis model of periodonti-
tis, the disease is caused ultimately by a dysbiotic change in the
biofilm microbiota that triggers an inflammatory host response
(58). This model contends that commensal oral microbes can be
“accessory pathogens” (54), since such nonpathogenic species can
provide biofilm conditions favoring an increase of periodontal
pathogens, leading to disease manifestation. Uncultivable dental
biofilm microbes, such as Actinomyces sp. OT 177, identified here
and shown to be present at all time points, may play hitherto-
unappreciated roles in dysbiotic mechanisms.

While the HOMIM approach has significantly expanded our

knowledge of the temporal relationships of bacterial attachment,
it does not allow us to decipher directly the spatial relationships
among the bacterial species investigated. Some insight into the
spatial relationships of mature biofilm structures have been ob-
tained using electron microscopy techniques and, more recently,
confocal laser scanning microscopy (CLSM), fluorescence in vitro
hybridization (FISH), and the recent state-of-the-art combinato-
rial labeling and spectral imaging (CLASI)-FISH methodology
(59–61). The use of such techniques will be necessary in order to
gain insight into the 3-dimensional architecture of the biofilm.

In summary, this study has provided an in-depth microbial
characterization of the in vivo dental biofilm formed over the first

FIG 3 Heat map showing changes in bacterial intensities in the early biofilm over time. Shown are the results for the 47 probes with the highest level of abundance
(maximum HOMIM score of �2 across all samples). Each column represents one subject, and each cell indicates Spearman’s correlation coefficient (rho) of the
HOMIM scores for a given species in a given subject with the four time points of biofilm formation. Red and blue represents rho values of �1 and �1,
respectively, indicating that the proportion of a given species continuously increased or decreased, respectively. White represents a rho value of 0, indicating that
the scores showed no pattern of increase or decrease over time. Gray indicates that all HOMIM scores for a given species in a given subject were identical and rho
is undefined. All of the available time points for each subject (3 or 4) were used to compute the correlation coefficient within that subject. The probes are labeled
with species descriptors, followed by HOMD oral taxa in parentheses. F., Fusobacterium; L., Leptotrichia; S. sanguinegens; Sneathia sanguinegens; all other S.,
Streptococcus. Spearman’s correlation coefficients were also computed for each species with respect to time points across all samples in each row, and probes with
across-subject rho values significantly different from zero (P � 0.05) are indicated by asterisks.
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6 h of development. It has yielded the first microbial identifica-
tions at the genus level of not-yet-cultivable microbes and has
provided semiquantitative insights into their abundance in the
incipient oral biofilm. It is obvious that the functional properties
of these microorganisms in the oral biofilm environment are of
high interest from the clinical and disease prevention perspectives.
While one strategy would be to prevent growth conditions favor-
ing detrimental bacteria, other pursuits will require a more de-
tailed knowledge pertaining to the cultivation and cocultivation of
all biofilm inhabitants (62–65). Such insights will be helpful in
designing target-specific approaches for the prevention of and/or
intervention in diseases exhibiting an oral-biofilm-based etiology.
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