kon = kclosed, on
|
[D+]*Diffusion |
koff = kclosed, off
|
kd, open *Diffusion; (kdopen = 100.5e‐6*exp(‐0.7*V*F/R*T)) |
kbursting, on = kclosed bursting, on
|
[D+]*Diffusion |
kbursting, off = kclosed bursting, off
|
kdBursting,Open *Diffusion; (kdBursting,Open = 1.5012e‐6*exp(‐0.7*V*F/R*T)) |
kneutral, on
|
[D]*Diffusion |
kneutral, off
|
400e‐6*Diffusion |
kneutral, inactivated, on
|
kneutral, on
|
kneutral, inactivated, off
|
5.4e‐6*Diffusion |
kneutral, closed, on
|
kneutral, on
|
kneutral, closed, off
|
800e‐6*Diffusion |
Diffusion |
5500 M−1ms−1
|
States of Markov model
|
Rate constants
|
D+IC3 →D+IC2, D+C3→D+C2, |
α11 |
DIC3 →DIC2, DC3→DC2 |
|
D+IC2→D+IF, D+C2→D+C1, |
α12 |
DIC2→DIF, DC2→DC1 |
|
D+IC2→D+IC3, D+C2→D+C3, |
β11 |
DIC2→DIC3, DC2→DC3 |
|
D+IF→D+IC2, D+C1→D+C2, |
β12 |
DIF→DIC2, DC1→DC2 |
|
D+O→D+IS |
αx1 = 4.4923e+3 *αx |
D+IS→D+O |
βx1 = 2.7031e‐1 *βx |
DO→DIS |
αx2 = 1.4947e+1 *αx |
D+C1→D+O |
α13c = 3.6811*α13 |
DC1→DO |
α13n = 2.3570e+2*α13 |
D+O→D+C1 |
β13c = (β13*kcon*koff*α13c)/(kon*kcoff*α13) |
DO→DC1 |
β13n = (β13*kc_on*α13n*k_off)/(kc_off*α13*k_on) |
DIS→DO |
βx2 = (βx*k_on* αx2*ki_off)/(αx*ki_on*k_off) |
D+O→D+IF |
α22 = 6.8705e+4 *α2 |
DO→DIF |
α_22 = 2.1182e+2 *α2 |
D+IF→D+O |
β22 = (α13c* α22* α33)/(β13c* β33) |
DIF→DO |
β_22 = (α_33*α13n*α_22)/(β_33*β13n) |
D+C3→D+IC3, D+C2→D+IC2, D+C1→D+IF |
β33 = 1.7561e‐1 *β3 |
DC3→DIC3, DC2→DIC2, DC1→DIF |
β_33 = 1.2197e‐3*β3 |
D+IC3→D+C3, D+IC2→D+C2, D+IF→D+C1 |
α33 = 4.0832e‐2 *α3 |
DIC3→DC3, DIC2→DC2, DIF→DC1 |
α_33 = (ki_off* α3*kc_on* β_33)/(ki_on*kc_off* β3) |